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Thermalized formulation of soft glassy rheology
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Department of Physics, University of South Florida, Tampa, FL 33620, USA

We present a version of soft glassy rheology that includes thermalized strain degrees of freedom.
It fully specifies systems’ strain-history-dependent positions on their energy landscapes and there-
fore allows for quantitative analysis of their heterogeneous yielding dynamics and nonequilibrium
deformation thermodynamics. As a demonstration of the method, we illustrate the very different
characteristics of fully-thermal and nearly-athermal plasticity by comparing results for thermalized
and nonthermalized plastic flow.

I. INTRODUCTION

As far back as the work of Ree and Eyring [1], plas-
tic deformation of solids has been modeled as being
controlled by multiple relaxation processes with differ-
ent characteristic rates. The energy landscape picture
of Stillinger et. al. [2, 3] allows it to be simultaneously
viewed as being controlled by energy minima of broadly
distributed depths and statistical weights. Recently, a
multitude of simulation studies have rather conclusively
shown that structural glasses can be regarded as be-
ing composed of localized “plastic zones” with a wide
range of thermodynamic and mechanical stabilities [4–
12]. “Soft spots” have smaller elastic moduli, lower ac-
tivation energies, higher vibrational entropies, and yield
first under deformation, while “hard spots” follow oppo-
site trends [4–12]. Modern theories of plasticity such as
soft glassy rheology (SGR) [13–15] and shear transforma-
tion zones (STZ) [16, 17] connect the energy-landscape
and plastic-zone ideas, viewing amorphous solids as being
composed of spatially localized plastic zones that directly
correspond to basins in systems’ energy landscapes with
characteristic relaxation rates determined by the heights
of their associated energy barriers. Recent studies [18–
24] have shown that the STZ and SGR theories are ther-
modynamically consistent and therefore amenable to rig-
orous nonequilibrium-thermodynamic treatment. How-
ever, a particularly important open problem [18–24] is de-
termining the degree to which plastic flow is thermalized,
i.e. the degree to which the “slow” degrees of freedom
corresponding to plastic zone configurations are in equi-
librium with the “fast” degrees of freedom [18, 19] cor-
responding to localized motions of systems’ constituent
atoms and molecules. Here we present a version of SGR
theory that includes fully thermalized strain degrees of
freedom and plastic flow.
Consider a system composed of plastic zones of acti-

vation energy U . Standard SGR theory, following the
trap model [25, 26], accounts for glassy systems’ elastic
heterogeneity by assuming these energies are exponen-
tially distributed, i.e. by employing an exponential en-
ergy landscape ρ(U) = Ũ−1 exp(−U/Ũ). If the typical
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zone’s activation energy Ũ = αkBTg, then one can de-
fine the reduced variable u = U/kBTg and obtain the
convenient form ρα(u) = α−1 exp(−u/α). Under an ap-
plied strain rate ǫ̇, these zones either deform elastically
or yield. Over a time interval ∆t, zones yield with prob-
ability 1− exp[−∆t/τ(u, ǫel, x)], where

τ(u, ǫel, x) = τ0 exp
[ u

αx

]

exp

[

−Ku(ǫ
el)2

2αx

]

(1)

is their characteristic relaxation time, ǫel is their elastic
strain, Ku is their dimensionless elastic modulus, and x
is the dimensionless “noise temperature”. The model ex-
hibits a glass transition at x = 1 [13, 14]. Note that while
α has – for convenience – been set to unity in most pub-
lished theoretical work [13–15, 21–23], the distributions
of plastic-zone activation energies in model glasses [4–12]

indicate Ũ > kBTg and hence α > 1 for many systems.
In SGR theory, when zones yield, they are removed

(annihilated) and are typically replaced by new un-
strained zones, again with values of u drawn randomly
from ρα(u). However, as noted in the original papers
[13, 14], there is no physical reason to assume plastic
zones are either initially unstrained or are replaced by
new unstrained zones upon yielding. These assumptions
are merely heuristics adopted for simplicity that have
been followed in most subsequent work [21–23, 27–30].
Recent simulations [9, 12] have suggested that plastic
zones often survive through multiple yielding events and
hence are not always annihilated, but that their elas-
tic strains (ǫel) and spring constants (K) do in general
change upon yielding. One simple way to treat such ef-
fects theoretically is to assume that zones are annihilated
upon yielding, but that the newly created zones replac-
ing them are drawn from an energy landscape ρ∗(u, ǫel)
that accounts for strain energy. For the nearly athermal
systems for which SGR was originally formulated (e.g.
foams and pastes [13, 14]), it remains unclear how to
construct such a landscape. For thermal systems such as
metallic and polymeric glasses [31, 32], however, ρ∗(u, ǫel)
can be inferred from thermodynamics. Here we adopt
this approach, extending SGR to account for strain de-
grees of freedom in a thermodynamically consistent fash-
ion and to treat thermalized plastic flow. Our method’s
continuous formulation allows direct calculation of sys-
tems’ nonequilibrium, strain-history-dependent positions
on their energy landscapes, which in turn allows standard
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statistical mechanics to be employed for followup calcu-
lations.

II. THERMALIZED VERSION OF SGR

THEORY

Following other recent work [21–23], we formally treat
amorphous materials (“systems”) as ensembles of plas-
tic zones. Material disorder is encoded in the functional
form of ρ(u). There are no infinitely deep energy min-
ima in a real glass. For this reason (and for numeri-
cal convenience), we introduce a cutoff at umax = α2,
and impose it by multiplying ρα(u) by a cutoff func-
tion Cα(u) = 1 − (u/α2). The use of such a cutoff
function is supported by the extreme value statistics of
low-energy states in disordered systems [33]. Physically,
Umax = α2kBTg is the activation energy of the most sta-
ble plastic zone configurations that are compatible with
the given system’s microscopic interactions; recent soft-
spot studies [7, 10, 11] suggest α2 ≃ 10. The resulting
zone depth distribution (i.e. the density of u-zones on the
glass’ energy landscape) is

ρ(u) =

[

1− (u/α2)
]

exp(−u/α)

v0 [α− 1 + exp(−α)]
, (2)

where v0 is the typical volume of a plastic zone. For
simplicity (and following conventional SGR theory [13–
15, 21–23]), we assume that: (i) zones are structureless
so that the strain-dependent density of states ρ∗(u, ǫel)
is a function only of u, i.e. ρ∗(u, ǫel) ≡ ρ(u); (ii) zone
volumes are independent of u and ǫel.
Suppose that the occupation probability of zones with

activation energy U and elastic strain ǫel is p(u, ǫel).
The statistical weight of such zones is w(u, ǫel) =
ρ(u)p(u, ǫel). This construction is obviously amenable
to thermodynamic treatment. The average value of any
material property ζ is given by

〈ζ〉 =
∫ α2

0

∫ ∞

−∞

ζ(u, ǫel)w(u, ǫel)dǫeldu. (3)

For arbitrary x, the thermodynamics of SGR-model sys-
tems are complicated, but still tractable [21–23]. Here we
will consider the simpler case where the typical energy
scale X = αkBTgx associated with SGR-style “noise” is
thermal in origin, i.e. X = kBT . Zones’ relaxation time
(inverse yielding rate; Eq. 1) therefore becomes

τ(u, ǫel, T ) = τ0 exp

[

Tg

T
u

]

exp

[

−Tg

T

Ku(ǫ
el)2

2

]

. (4)

Thus the mapping of τ from standard SGR [13, 14] to the
present theory is quite simple: x is just the ratio of the
typical thermal energy kBT to the typical zone activation
energy Ũ = αkBTg. See Table I for a further discussion
of relations between the notation employed herein and
that of Ref. [14].

We assume that systems’ strain degrees of freedom are
thermalized and therefore most zones have nonzero stress
and strain even in undeformed systems. The energy of a
strained zone is Eu(ǫel) = −U + Ku[ǫ

el]2/2, where Ku =
kBTgKu. Systems’ partition functions are given by

Z =

∫ α2

0

∫ ∞

−∞

ρ(u) exp[−β(Eu(ǫel) + α2kBTg)]dǫ
eldu,

(5)
where β = (kBT )

−1. In Eq. 5, zones with activation
energy U and elastic strain ǫel have a Boltzmann fac-
tor fBoltz(u, ǫ

el, T ) = exp[−β(Eu(ǫel) + α2kBTg)]; their
equilibrium occupation probability is peq(u, ǫ

el, T ) =
fBoltz(u, ǫ

el)/Z. Thus, in unstrained systems, the equi-
librium statistical weight of such zones is weq(u, ǫ

el, T ) =
ρ(u)peq(u, ǫ

el, T ).

Here we will consider an idealized, highly-aged initial
condition wherein systems have reached thermal equilib-
rium, i.e. we assume the initial zone statistical weights are
w(u, ǫel) = weq(u, ǫ

el, T ). Numerical tractability requires
assuming that the maximum magnitude of the elastic
strain ǫel in unstrained systems’ u-zones is δ(u). Then
the thermalized initial condition becomes

w(u, ǫel) =

{ weq(u, ǫ
el, T ) , 0 ≤ u ≤ α2 and |ǫel| ≤ δ(u)

0 , u > α2 or |ǫel| > δ(u)
.

(6)

Here and below, proper normalization of w(u, ǫel) is
maintained by replacing the exact partition function (Eq.

5) with Z =
∫ α2

0

∫ δ(u)

−δ(u) ρ(u)fBoltz(u, ǫ
el)dǫeldu and ad-

justing weq(u, ǫ
el, T ) accordingly.

One obvious choice for δ(u) is zones’ zero-temperature
yield strain ǫyu; states with larger ǫel are unstable at all
temperatures [14]. Here we adopt this choice. We define
Ku = 2uk(u) so that plastic zones have spring constants
Ku = 2Uk(u) and their zero-temperature yield strains are

ǫyu = 1/
√

k(u). For simplicity, here we choose k(u) = 400
in order to give all zones the same value of ǫyu, specifically
ǫyu = .05, a typical value for real metallic [31] and poly-
meric [32] glasses. Zones with low u thus correspond to
low-modulus soft spots [5, 6, 8, 9, 12]. Note that other
functional forms for k(u) can be chosen to give other
distributions of ǫyu as desired. For example, low-u zones
can be made to yield at smaller strains – as is typical of
soft spots [6, 9] – by choosing k(u) ∝ u−1, which gives
ǫyu ∝ √

u.

The two most common experimental deformation pro-
tocols are constant-strain-rate extension (or compression,
or shear) and constant-applied-stress creep. Here we will
consider the former since it is conceptually simpler [15].
We will discuss a scalar version of our theory, but all
equations and results presented below are straightfor-
wardly generalizable to tensorial stresses and strains us-
ing methods like those described in Refs. [23, 34]. The
macrosopic strain applied to the system is ǫ = ǫ̇t. Then
the total configurational energy density E(ǫ) of strained
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systems is [23]

E(ǫ)

kBTg

=

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

[

α4k(u)(ǫel)2 − 1
]

uw(u, ǫel)dǫeldu.

(7)
In SGR theory, zones are structureless and have no in-

ternal entropy [14]. From the statistical definition of en-
tropy S = −kB 〈ln(p)〉, strained systems’ configurational
entropy density is given by [21, 23]

S(ǫ)

kB
= −

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

ln
[

p(u, ǫel)
]

w(u, ǫel)dǫeldu. (8)

Since X = kBT , systems’ Helmholtz free energy density
F (ǫ) satisfies the usual relation F (ǫ) = E(ǫ) − TS(ǫ).
Note that this definition of entropy is chosen to give
S(ǫ) = kB ln[Ω(ǫ)] in the T → ∞ limit, where Ω(ǫ) =

(∆u∆ǫ)−1
∫ α2

0

∫ δ(u)+ǫ

−δ(u) ρ(u)dǫeldu is the volume and ∆u

and ∆ǫ are the “quanta” of phase space. In any dis-
cretized calculation, in the limit of small ∆u and ∆ǫ,
S(0) = S0 − b(T ) ln(∆x∆ǫ), where S0 is a reference
value and b(T ) can be determined by comparing un-
strained systems with different ∆u∆ǫ [with b(0) = 0 and
b(∞) = 1]. Determining “natural” values of ∆u and ∆ǫ
would require specifying the distinguishability of basins
of different u and ǫel, which is beyond our scope; here we
choose values of ∆u and ∆ǫ that give clearly-converged
results for S(0) + ln(∆u∆ǫ) in the high-T limit.
We evolve systems forward in time using the following

plastic flow rule:

dw(u, ǫel)

dt
= −ǫ̇

∂(u, ǫel)

∂ǫel
− w(u, ǫel)

τ(u, ǫel, T )

+ f(u, ǫel, T )

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

w(ũ, ǫ̃el)

τ(ũ, ǫ̃el, T )
dǫ̃eldũ.

(9)

Here τ−1(u, ǫel, T ) is the yielding rate of u-zones (Eq. 4),
and the factor f(u, ǫel, T ) is given by

f(u, ǫel, T ) =
ρ(u)peq(u, ǫ

el, T )θ(u, ǫel)
∫ α2

0

∫ δ(u)

−δ(u)

ρ(u)peq(u, ǫ
el, T )dǫ̃eldũ

, (10)

where

θ(u, ǫel) =

{ 1 , |ǫel| < δ(u),

0 , |ǫel| ≥ δ(u)
. (11)

This form of f(u, ǫel, T ) ensures that newly created zones
populate stable [Eu(ǫel) < 0] configurations according
to their equilibrium occupation probabilities. A simi-
lar f(u, ǫel, x) was proposed in Ref. [14] and was used to
calculate the linear viscoelastic moduli G∗(ω); here we
extend this method to nonlinear response.
The factors of peq(u, ǫ

el, T ) in Eq. 10 reflect the
fact that the present theory is fundamentally thermal

TABLE I. Comparison of the notation used in this work to
the notation used in Ref. [14]. Note that the present model is
mathematically equivalent to that discussed in Section IVC of
Ref. [14] if one sets ρ(E) = (1− E/α) exp(−E), k(E) = 2E,
and q(ℓ;E) = ρ(E) exp[−k(E)ℓ2/2x]θ(E, ℓ).

Quantity Ref. [14] Present work

Scaled activation energy E u/α

Scaled elastic strain ℓ ǫel/ǫyu

Flow factor q(ℓ;E) f(u, ǫel, T )

Scaled noise temperature x kBT/Ũ

in nature, and is designed to treat thermalized plas-
tic deformation. More specifically, the inclusion of the
peq(u, ǫ

el, T ) terms reflects our assumption that plastic
flow is thermalized by the same reservoir that maintains
constant T . Since we assume fully thermalized flow,
we need not and do not adopt a dual-subsystem, two-
temperature nonequilibrium-thermodynamic ansatz like
those employed in Refs. [18–24]; cf. Section V. Note that

Ref. [29] similarly employed x = kBT/Ũ to treat plastic
deformation of thermal glasses, but did not adopt a fully
thermalized plastic flow rule including thermalized strain
degrees of freedom as we have done here.
Two other technical points relating to differences be-

tween our theory and standard SGR should be men-
tioned. First, in real systems, “frustration” [14] effects
arising from correlations between spatially neighboring
plastic zones may inhibit creation of new zones for which
the sign of ǫel is opposite that of ǫ. Strong frustration
would make a nonsymmetric f(u, ǫel, T ) more appropri-
ate for describing plastic flow. However, since proper
treatments of frustration are presumably both compli-
cated and system-specific [14], they have rarely been
treated within SGR theory, and are not considered here.
Second, we do not allow for the (very real [9, 12]) possibil-
ity that the number of plastic zones in a system changes
during deformation, because any such changes are likely
to be highly system-specific and thus beyond the scope
of the present effort.
Eq. 9 usually cannot be solved analytically, so we

solve it numerically. To make the model computation-
ally tractable, we discretize the zone activation energies
(ui = i∆u) and strains (ǫj = j∆ǫ). This yields the evo-
lution equation

w(ui, ǫj ; tk) = w(ui, ǫj−1; tk−1)

[

1− ∆t

τ(ui, ǫj−1, T )

]

+ f(ui, ǫj , T ; tk−1)
〈

τ−1(ǫ)
〉

∆t,
(12)

where the timestep ∆t = tk+1 − tk = ∆ǫ/ǫ̇ [35], and

〈

τ−1(ǫ)
〉

=

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

w(u, ǫel)τ−1(u, ǫel, T )dǫel.

(13)
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is the average zone yielding rate. On the right hand side
of Eq. 12, the first term indicates zones present at the
previous timestep (t = tk−1) that did not yield, and the
second term indicates creation of new zones with ther-
malized strains. Since zones can yield at any time, the
allowed values of j at time tk are (−ℓi,−ℓi+1, ..., ℓi+k),
where ℓi ≡ δ(ui)/∆ǫ. Thus the allowed values of the
elastic strain ǫel are ǫj = (−ℓi,−ℓi+1, ..., ℓi+k)∆ǫ. The
thermalized initial condition (Eq. 6) becomes

w(ui, ǫj , t0) =

{

weq(ui, ǫj)∆u∆ǫ , 0 ≤ i ≤ α2/∆u

and − ℓi ≤ j ≤ ℓi

0 , i > α2/∆u or |j| > ℓi

.

(14)

Eq. 12 is then integrated forward in time until ǫ reaches
its final target value ǫmax. A wide range of strain rates
can be treated at fixed computational cost because our
choice of timestep (∆t = ∆ǫ/ǫ̇) sets the required number
of iterations of Eq. 12, kmax = ǫmax/∆ǫ, to be indepen-
dent of ǫ̇. In general, the computational cost of deforma-
tion runs scales as (α2/∆u)(ǫmax/∆ǫ)2δ(α2). Here the
numerical parameters ∆u = .01 and ∆ǫ = 10−5 were
chosen to be small enough to achieve convergence of all
results presented below. The C++ code employed for all
calculations presented herein is available online [36].

III. RESULTS FOR SYSTEMS’ MECHANICS,

DYNAMICS, AND THERMODYNAMICS

We now proceed to analyzing an example system’s me-
chanics, dynamics and thermodynamics using the above
formulae. Figure 1 shows results for α =

√
8 systems

deformed at a high strain rate (ǫ̇ = τ−1
0 ) to a maximum

strain ǫmax = 0.1. With these parameters, deformation
runs took no more than 8 hours on one CPU core. Re-
sults are shown for three temperatures: T/Tg = 1/2, 3/4,
and 39/40. The first two are typical values of Troom/Tg

for metallic and polymeric glasses, while T/Tg = 39/40
is chosen to represent systems slightly below Tg.
Panel (a) shows results for the elastic component of

stress,

σel(ǫ) =

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

Kuǫ
elw(u, ǫel)dǫeldu. (15)

Following standard SGR-theoretic practice [14], we fo-
cus on this elastic term. Stress is simply an integral
over contributions from different zones that are coupled
only through the trap-model-style dynamics (Eqs. 9-12)
and thus interact only weakly. The elastic response is
temperature-dependent because systems at higher T lie
higher on their energy landscapes, i.e. the initial con-
dition winit(u, ǫ

el, T ) = weq(u, ǫ
el, T ) increasingly favors

plastic zones with lower u and hence lower Ku as T in-
creases. Anelastic decrease of ∂σ/∂ǫ sets in at lower
strains and strengthens more with increasing ǫ at higher
T . Yield stresses σy decrease with increasing T , while

yield strains ǫy increase (Table II). These temperature
dependencies are relatively weak here because α2 ≫ 1
and the applied strain rate is high (ǫ̇τ0 = 1). Beyond
yield, systems display dramatic strain softening that –
as in experiments [31, 32] – weakens with increasing T .
Within the present theory, the reason that strain soft-
ening weakens with increasing T is as follows: at higher
T , more zones yield at ǫ < ǫy, and hence fewer zones
are in low-stress (small-ǫel) states at ǫ = ǫpysm. At still
larger strains, a postyield stress minimum of the type
observed in some metallic glasses [31, 37, 38] is present
at ǫ = ǫpysm. This minimum occurs because yielding
releases a large fraction of systems’ elastic strain, which
then builds up again as deformation continues. See the
Appendix for a discussion of how all of these effects vary
with ǫ̇τ0.

Systems exhibit complex yielding dynamics. Panel (b)
shows the average zone relaxation time (inverse yield-
ing rate) 〈τ(ǫ)〉. 〈τ(ǫ)〉 decreases rapidly with increas-
ing strain as stress-activated plasticity becomes increas-
ingly important, passes through a minimum at ǫ ≃ ǫy,
increases again for ǫ > ǫy, and then decreases again
for ǫ > ǫpysm. All trends are consistent with experi-
mental observations [39–41] showing that relaxation in
real glasses often speeds up by orders of magnitude near
yielding, and can then slow down again upon strain
softening. Panel (c) shows the dynamical heterogeneity

∆τ
〈τ〉 =

√
〈τ2〉−〈τ〉2

〈τ〉 of this relaxation. Heterogeneity in-

creases markedly with increasing strain for ǫ < ǫy, then
decreases again for ǫ > ǫy. The reason that heterogene-
ity increases is that plastic flow populates zones with an
increasingly wide range of u and ǫel as deformation pro-
ceeds, especially when many zones are yielding. Note
that such effects can be finely adjusted within the present
model by varying the functional forms of Ku and δ(u).

Experiments typically show [39–41] that heterogene-
ity decreases during yielding and remains relatively low
during plastic flow. The different trends shown in panel
(c) may arise because currently available SGR theories
lack any “facilitation” mechanism. Mechanical facilita-
tion is the speedup of yielding that occurs in heteroge-
neous systems when zones have a broad distribution of
stresses [42]. Zones that carry stresses much higher than
the average value 〈σ〉 yield faster because their environ-
ments cannot maintain local mechanical equilibrium (i.e.
cannot force-balance such large stresses), and zones that
carry very low stresses may similarly yield faster when
〈σ〉 is large. The net effect is homogenization of the yield-
ing dynamics and of systems’ relaxation in the postyield,
plastic-flow regime [39–42]. It would be interesting in fu-
ture work to add mean-field facilitation (or a comparable
stress-diffusion mechanism [43]) to SGR theory.

In Eqs. 7-13, the zone populations w(u, ǫel) are strain-
history-dependent. For systems that have undergone
plastic deformation, w(u, ǫel) 6= weq(u, ǫ

el), and E(ǫ),
S(ǫ), and F (ǫ) are not thermodynamic state functions,
but instead are inherently nonequilibrium quantities. It
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FIG. 1. Dependence of nonlinear mechanics and thermodynamics on ǫ and T for thermalized SGR. Panel (a): Elastic stress-
strain curves [σel(ǫ) (Eq. 15)]. Panels (b-c): average zone relaxation time 〈τ 〉 /τ0 and its dispersion ∆τ/ 〈τ 〉. Panels (d-f):
free energy F (ǫ), energy E(ǫ), and temperature×entropy TS(ǫ) (Eqs. 7-8). Blue, green, and red lines respectively indicate
T/Tg = 1/2, 3/4, and 39/40. Systems have α =

√
8 and are deformed at constant strain rate ǫ̇ = τ−1

0
. All energies are scaled

by the maximum zone activation energy α2kBTg, and stresses are further scaled by α2/v0.

TABLE II. Characteristic strains ǫy and ǫpysm and their associated elastic stresses σy and σpysm for thermalized (th) and
nonthermalized (nth) α =

√
8 systems. ǫy and ǫpysm are respectively the strains at yield and at the postyield stress minimum

(Figs. 1a and 5a). σy and σpysm are scaled by α4kBTg/v0. Note that these results are for a high strain rate (ǫ̇τ0 = 1); their
rate dependence is discussed in the Appendix.

T/Tg ǫy (th) σy (th) ǫpysm (th) σpysm (th) ǫy (nth) σy (nth) ǫpysm (nth) σpysm (nth)

1/2 0.0468 3.472 0.0730 1.562 0.0550 4.521 0.0661 0.1636

3/4 0.0494 2.977 0.0805 1.600 0.0576 4.122 0.0755 0.3124

39/40 0.0519 2.454 0.0883 1.411 0.0602 3.721 0.0843 0.4483

is therefore worthwhile to examine their evolution dur-
ing deformation. Panels (d-f) of Fig. 1 show F (ǫ), E(ǫ),
and the entropic component of free energy TS(ǫ). To
facilitate comparison of systems at different T , ∆F =
F (ǫ)−F (0) and T∆S = T [S(ǫ)−S(0)] are shown rather
than the bare values, and all quantities are scaled by
the characteristic energy Umax = α2kBTg. As expected,
results for F and E are quadratic in strain in the elas-
tic regime, reach maxima near ǫy, then decrease dur-
ing strain softening as massive zone yielding releases
stored elastic strain energy. The dominant contribution
to ∂F/∂ǫ is energetic as long as ǫ̇ 〈τ〉 is large. Thermal-
ized flow (Eqs. 9-12) creates new zones with probabili-
ties proportional to their equilibrium statistical weights
weq(u, ǫ

el, T ), and therefore acts to push systems back to-
wards their initial states, producing the negative ∂S/∂ǫ
for ǫ > ǫy. Note that similar calculations of S(ǫ) cannot
be straightforwardly performed in discrete-zone imple-
mentations of SGR [27–30] because they do not explicitly
determine p(u, ǫel) as we do here.

Since the mechanical work W (ǫ) =
∫ ǫ

0 σ(ǫ′)dǫ′ satis-
fies the first law of thermodynamics, its dissipated com-
ponent is simply Q(ǫ) ≡ W (ǫ) − ∆F (ǫ), where ∆F =
F (ǫ) − F (0). Figure 2 shows that as expected, Q(ǫ) is
small in the elastic regime, but grows rapidly at larger
strains. Rapid growth of Q(ǫ) begins in the anelastic
regime, as “softer” [5, 6, 8, 9] zones [zones with lower
activation energies and yield strains] begin yielding. For
ǫy <∼ ǫ <∼ ǫpysm, most mechanical work is dissipated. One
might naively suppose the largeQ(ǫ) to be at logical odds
with the relatively small increase in S(ǫ). However, this
is not so, because the thermalized plastic flow rule (Eqs.
9-12) causes flow to be mostly into less-strained zones of
similar u, i.e. to push w(u, ǫel) back towards its initial
state. We will show below (Sec. IV) that nonthermalized
flow produces strikingly different behavior.

In real systems, the high levels of energy dissipation de-
picted in Fig. 2 often produce temperature increases that
in turn lead to enhanced strain softening [31, 44]. Here,
for simplicity, we ignore such effects and assume that the
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FIG. 2. Energy dissipation in the same systems depicted
in Fig. 1. Dotted, dashed, and solid lines respectively show
∆F (ǫ), W (ǫ), andQ(ǫ). Note that the stress σ(ǫ) appearing in
the definition of W (ǫ) =

∫ ǫ

0
σ(ǫ′)dǫ′ is σ(ǫ) = σel(ǫ)+σentr(ǫ),

where the entropic term σentr(ǫ) = −T (∂S/∂ǫ).

coupling of systems to their environmental thermal reser-
voirs maintains constant T . This is a potentially inaccu-
rate approximation, and should be corrected in future
work when necessary. Any such corrections, however,
will presumably [23] require system-specific treatments
that are beyond the scope of this study. Here we have
shown Q(ǫ) in Fig. 2 mainly to motivate what follows.
Our method’s prediction of the strain-history-

dependent zone statistical weights w(u, ǫel; ǫ) allows easy
visualization of how systems’ positions on their energy
landscape evolve during deformation [45]. Elastic (plas-
tic) deformation can then be identified with affine (non-
affine) evolution of w(u, ǫel; ǫ). Concurrently, since the
thermalized plastic flow rule (Eqs. 9-12) is consistent
with the standard thermodynamic identification of dissi-
pated work as heat that changes microstate populations,
Q(ǫ) can be directly related to systems’ flow over their
energy landscapes and hence to the fundamental char-
acter of their plastic flow. Figure 3 shows w(u, ǫel; ǫ) for
the T/Tg = 1/2 system at the three representative strains
(Table II) ǫ = 0, ǫ = ǫy, and ǫ = ǫpysm. Panel (a) shows
the initial ǫ = 0 distribution, which illustrates how ther-
malization of strain degrees of freedom influences sys-
tems’ initial positions on their energy landscapes. No-
tably, many zones have initial elastic strains ǫelinit that are
not negligible compared to their yield strains ǫyu. Panel
(b) shows that the majority of the zones present at ǫ = 0
deform affinely (i.e. do not yield) throughout the strain
range 0 ≤ ǫ ≤ ǫy. Those that do yield by ǫ = ǫy

are primarily those with positive ǫelinit. In contrast, by
ǫ = ǫpysm, most zones have yielded and been replaced by
new zones with smaller ǫel. This can be seen in panel (c):
the primary maximum of w(u, ǫel; ǫpysm) is at ǫel < ǫy.
However, the secondary maximum at ǫel > ǫy shows that
some of the zones present in the initial undeformed state
remain intact at ǫ = ǫpysm. As expected, most of these
had negative ǫelinit. These results are closely connected to
the breadth of the stress maxima shown in Fig. 1(a); all
reflect the fact that yielding is a gradual process.

Comparing panels (a-c) of Fig. 3 helps us understand
how mechanical work gets dissipated during strain soft-
ening. Elastic strain energy gets released as plastic zones
yield. Thermalized plastic flow takes the system back to-
wards its initial position on its energy landscape. Indeed,
its position at ǫ = ǫpysm is closer to its initial ǫ = 0 po-
sition than to its position at ǫ = ǫy, consistent with the
F (ǫpysm)− F (0) < F (ǫy)− F (ǫpysm) < F (ǫy)− F (0) re-
sult [as well as similar trends in E(ǫ) and S(ǫ)] shown in
Figure 1(d-f). It will be interesting in future work to re-
peat this exercise for different α as well as different initial
conditions, e.g. nonequilibrium winit(u, ǫ

el) 6= weq(u, ǫ
el)

that more accurately reflect typical glasses; cf. Sec. V.

The w(u, ǫel; ǫ) distributions calculated by integrating
Eq. 12 enable prediction of many other physical proper-
ties, such as strain-history-dependent probability distri-
butions of zone relaxation times

P (τ̃ ; ǫ) =

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

w(u, ǫel)δ[τ̃ − τ(u, ǫel, T )]dǫeldu,

(16)
elastic stresses

P (σ̃el; ǫ) =

∫ α2

0

∫ δ(u)+ǫ

−δ(u)

w(u, ǫel)δ[σ̃el −Kuǫ
el]dǫeldu,

(17)
and any other relevant thermodynamic or mechanical
quantity. Figure 4 shows results for P (τ ; ǫ) and P (σel; ǫ)
for the three characteristic strains ǫ = 0, ǫ = ǫy, and
ǫ = ǫpysm (Table II). Zone yielding rates span many
orders of magnitude because of their wide ranges of u
and ǫel. Temperature and stress/strain affect the shapes
of the P (τ) distributions in nontrivial ways. For exam-
ple, stress-activated relaxation and plastic deformation
do not merely shift 〈τ〉 or transform the P (τ) distribu-
tions in any “affine” manner; instead, they change their
shape, as can be seen by comparing the distributions for
ǫ = ǫy and ǫ = ǫpysm. Even more complex physics can
be seen in the P (σ) distributions. At ǫ = 0, they are
simply Gaussian distributions reflecting the thermalized
initial condition (Eq. 6). In contrast, the split peaks of
the T/Tg = 1/2 distributions for ǫ = ǫy and ǫ = ǫpysm

reflect the emerging coexistence of yielded and unyielded
plastic zones depicted in Fig. 3.

Distributions like P (τ ; ǫ) and P (σ; ǫ) contain much in-
formation that cannot be gleaned from their mean values
(〈τ(ǫ)〉 or σel(ǫ)). For example, the tails of the distri-
butions may dominate certain physical phenomena such
as aging during deformation [27, 32], and may therefore
be important for understanding the mechanics of hetero-
geneous systems (i.e. glasses) in more detail. Clearly,
discrete-zone implementations of SGR (e.g. [27–30]) can-
not easily provide distributions spanning many orders of
magnitude in probability as we have done here.
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FIG. 3. Strain-history-dependent position of the thermalized T/Tg = 3/4 system on its energy landscape. Panel (a): w(u, ǫel)
for unstrained systems (ǫ = 0). Panel (b): w(u, ǫel) at the yield strain (ǫ = ǫy = 0.0468). Panel (c): w(u, ǫel) at the postyield
stress minimum (ǫ = ǫpysm = 0.0730). Because this α =

√
8 system remains low on its energy landscape, w(u, ǫel) is shown

only for 3/4 ≤ α2u ≤ 1; values for α2u < 3/4 are finite but remain small.

FIG. 4. Strain-history-dependent probability distributions of
zones’ relaxation times [P (τ ; ǫ) from Eq. 16: panel (a)] and
elastic stresses [P (σel; ǫ) from Eq. 17: panel (b)]. Systems are
the same and line colors indicate temperatures as in Figs. 1-
2. Dotted, solid, and dashed curves respectively indicate data
for ǫ = 0, ǫ = ǫy, and ǫpysm (Table II).

IV. COMPARISON TO NONTHERMALIZED

SGR

To illustrate the significance of thermalization, we con-
trast some of the above results to those obtained from a
more traditional version of SGR theory where (as in the
original formulation [13, 14]) strain degrees of freedom
are not thermalized and newly created zones have zero

strain. As in Refs. [13–15, 27–30], we assume all zones are
initially unstrained. Then the equilibrated initial condi-
tion then becomes w(u, ǫel, T ) = ρ(u)peq(u, 0, T )δ(ǫ

el),
the allowed values of j at time tk are (0, 1, ..., k), and
the allowed values of the elastic strain ǫel are ǫj =
(0, 1, ..., k)∆ǫ. The evolution equation for zone popula-
tions (i.e. the traditional-SGR counterpart to Eq. 12) is

z(ui, ǫj ; tk) = z(ui, ǫj−1; tk−1)

[

1− ∆t

τ(ui, ǫj−1, T )

]

+ ρ(u)δ(ǫj)
〈

τ−1(ǫj−1)
〉

∆t.
(18)

On the right hand side of Eq. 18, the second term in-
dicates standard SGR-style creation [13, 14] of new un-
strained zones; the peq(u, ǫ

el, T ) factors present in Eq.
12 are absent here because traditional SGR is a nearly
athermal theory. The other equations (7, 8, 13, 15) for
thermodynamics, dynamics, and mechanics we have used
above remain the same, but the different assumptions
made by traditional SGR impose δ(u) = 0 [in contrast to

the δ(u) = 1/
√

k(u) condition derived in Sec. II].
These different theoretical assumptions produce a con-

siderably different physical response. Figure 5 shows the
traditional-SGR counterparts to the results shown in Fig.
1. Panel (a) shows that nonthermalized systems’ yielding
behavior differs in several ways from their thermalized
counterparts: (i) their yield strains ǫy and yield stresses
σy are larger; (ii) their anelastic regime is narrower; and
(iii) their postyield strain softening is much sharper, oc-
curring over a narrower strain window and ending at
a lower stress minimum; see Table II. The extremely
low values of σpysm arise because the combination of the
traditional-SGR initial condition (ǫelinit = 0 for all zones)
with our chosen k(u) [that produces ǫyu = .05 for all u]
means that all zones yield nearly simultaneously. As a
consequence of effect (i), average relaxation times [panel
(b)] drop more in nonthermalized systems than in their
thermalized counterparts. Differences in the dynamical
heterogeneity of yielding [panel (c)] arise because non-
thermalized plastic flow (Eq. 18) populates zones with a



8

FIG. 5. Dependence of nonlinear mechanics and thermodynamics on ǫ and T for nonthermalized SGR. Panel (a): Elastic
stress-strain curves [σel(ǫ) (Eq. 15)]. Panels (b-c): average zone relaxation time 〈τ 〉 /τ0 and its dispersion ∆τ/ 〈τ 〉. Panels (d-f):
free energy F (ǫ) , energy E(ǫ), and temperature×entropy TS(ǫ) (Eqs. 7-8). Blue, green, and red lines respectively indicate
T/Tg = 1/2, 3/4, and 39/40. Systems have α =

√
20 and are deformed at constant strain rate ǫ̇ = τ−1

0
. All energies are

scaled by the maximum zone activation energy α2kBTg, and stresses are further scaled by α2/v0. Note that replacing the δ(ǫel)
proportionality in Eq. 18 with a θ(u, ǫel) proportionality eliminates the post-softening (ǫ > ǫpysm) stress increases shown in
panel (a); instead, systems exhibit perfect-plastic flow at a constant stress σflow(T ), which in turn affects other measures of
response like those shown in panels (b-f).

wider range of u – and hence a wider range of τ – than
its thermalized counterpart (Eq. 12.

As shown in panels (d-f), the nonequilibrium ther-
modynamics of deformation are also quite different in
traditional SGR. This is a consequence of both the dif-
ferent initial states of systems and the different plastic
flow rules. In thermalized systems, the strain energy
in zones with negative ǫelinit decreases with increasing ǫ
for ǫ < |ǫelinit|. No such zones are present in nonther-
malized systems. This causes nonthermalized systems to
be driven much further up their energy landscapes prior
to yielding than they are in their thermalized counter-
parts, so much so that for high strain rates an unstable
(E(ǫ) > 0) flow regime appears for ǫ >∼ .05 [47]. More-
over, nonthermalized plastic flow populates the upper re-
gions of systems’ energy landscapes much more than its
thermalized counterpart. Specifically, it produces both
the much higher E(ǫ) for ǫ >∼ ǫy shown in panel (e)
and the massive entropy increase at ǫ ≃ ǫy shown in
panel (f). The magnitude of ∆S(ǫ) is so large partially
because zones’ elastic strains are nearly δ-function dis-
tributed [i.e. w(u, ǫel; ǫ) ∝ δ(ǫel − ǫ)] for ǫ ≪ ǫy, but
become broadly distributed for ǫ >∼ ǫy. Replacing the
initial condition [w(u, ǫel, T ) = weq(u, 0, T )δ(ǫ

el)] with a
strain-thermalized initial condition (Eq. 6) or replacing
the flow factor f(u, ǫel) = ρ(u)δ(ǫel) in Eq. 18 with a
nonthermalized version of Eq. 10 reduces ∆S consider-
ably. However, ∆S remains considerably larger than it is
for thermalized flow because (as noted above) nonther-

malized flow populates lower-u zones to a much greater
degree. This combination of sharp increases in E, S
and mobility (i.e.

〈

τ−1
〉

) in nonthermalized systems is
consistent with the old idea [48] that yielding effectively
“melts” glasses. Also consistent with this idea is the fact
that beyond yield, E(ǫ) depends only weakly on T . That
these behaviors are present for nonthermalized but not
for thermalized plasticity is of considerable interest.

V. DISCUSSION AND CONCLUSIONS

Many modern theories of plasticity, including the SGR
and STZ theories, employ effective temperatures Teff to
reflect the fact that the slowly relaxing configurational
degrees of freedom (i.e. plastic zones) in deforming sys-
tems tend to fall out of equilibrium with their fast ki-
netic/vibrational degrees of freedom and with their en-
vironmental thermal reservoir. They reason that Teff ,
which is thermodynamically conjugate [49, 50] to the con-
figurational entropy associated with the plastic zones, in
general differs from the reservoir temperature T . Recent
thermodynamics-focused work [18–24] has shown how to
rigorously account for energy and entropy transfer be-
tween these slow and fast degrees of freedom, and hence
to predict the evolution of Teff during deformation.
The formulation of SGR theory developed in Sec. II

allowed us to straightforwardly take the alternative ap-
proach of directly calculating systems’ strain-history-
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dependent positions on their energy landscapes, i.e.
w(u, ǫel; ǫ) distributions like those illustrated in Fig. 3.
Since it allows for direct calculation of w(u, ǫel; ǫ), the
present theory has no need for a Teff -like quantity. Simi-
larly, since in contrast to standard SGR (where x reflects
the degree to which flow is thermalized by mechanical
“kicks” [13–15] from surrounding zones) the present the-
ory assumes that these kicks are themselves thermalized
by systems’ fast degrees of freedom and therefore that
their magnitude is set by the reservoir temperature T ,
it has no need for any x-like quantity. While its “T -
only” approach probably restricts its applicability to the
most thermal amorphous materials, e.g. metallic, small-
molecule, and polymeric glasses, such materials are both
commonplace and technologically important.

SGR theory assumes that the boundaries between
basins on systems’ potential energy landscapes lie at
U = 0, independent of u. This assumption can be used to
justify both the traditional SGR flow law (Eq. 18) and
the thermalized version (Eq. 12) discussed herein. Eq.
18 is obtained by assuming that when zones yield, they
are replaced by new zones that randomly (athermally)
populate basins on the system’s energy landscape. In
contrast, Eq. 12 assumes that new zone selection is fully
thermalized, i.e. new zones populate basins with prob-
ability proportional (Eq. 10) to their equilibrium occu-
pation probability peq(u, ǫ

el, T ). Which flow law is more
realistic for a given system will depend on the degree to
which the system is thermal – i.e., upon ǫ̇τ0, the ratio of
kBT to the system’s mechanically relevant energy scales,
as well as other factors [20], in some presumably com-
plicated fashion – and the behavior of real systems lies,
in all likelihood, somewhere between these two limiting
cases. Here our purpose was not to determine where any
specific system lies along the athermal–thermal contin-
uum, but simply to illustrate in a pedagogical way vari-
ous consequences of the differences between the physics
assumptions used to derive Eqs. 12 and 18.

Consistent with this purpose, we made two further sim-
plifying approximations. First, following SGR-theoretic
convention [13–15, 21–23, 27–30], we treated plastic zones
as internally structureless. Since plastic zones in real
systems are composed of the systems’ constituent par-
ticles and their internal entropy consequently tends to
decrease with increasing strain, the present theory may
need to be modified to incorporate a strain-dependent
density-of-states function [ρ∗(u, ǫel)] to optimally model
real materials. Such modifications will be highly system-
specific – for example, the ǫel-dependence of ρ∗(u, ǫel)
will be different for polymeric vs. metallic glasses [31, 32]
– and are therefore beyond the scope of this initial study.
Second, the equilibrated initial condition employed here
[w(u, ǫel; 0) = weq(u, ǫ

el)] is obviously an idealization
that is not physically representative of most real glasses.
We chose it to set up an easily understood demonstra-
tion of the present formulation’s potential for analyzing
systems’ deformation thermodynamics, and in particular
their plastic flow over their energy landscapes. However,

we emphasize that all methods described herein can be
employed with arbitrary initial conditions. For exam-
ple, to model “young” glasses, one can set winit(u, ǫ

el) =
ρ(u)peq(u, ǫ

el, Teff ) with a Teff > T that slowly ap-
proaches T during the aging process [15, 18–24, 49].
Ronald G. Larson, Gregory B. McKenna, Ken Kamrin,

Samy Ferabia, Suzanne M. Fielding and Mark D. Ediger
provided helpful discussions. This material is based upon
work supported by the National Science Foundation un-
der Grant No. DMR-1555242.

VI. APPENDIX: RATE-DEPENDENT

YIELDING AND STRAIN SOFTENING

FIG. 6. Rate-dependent mechanical response for thermalized
flow. Panel (a): Stress-strain curves for T/Tg = 3/4, for
strain rates 10−5 ≤ ǫ̇τ0 ≤ 103; brighter green indicates higher
rates. Panel (b): Scaled yield stresses σy(ǫ̇) [solid curves] and
yield strains ǫy(ǫ̇) [dashed curves]. Systems are the same and
line colors indicate temperatures as in Figs. 1-2.

One of the most common applications of plasticity the-
ory has been prediction of the temperature and strain-
rate dependences of systems’ yield and flow stresses.
Here we report and discuss the ǫ̇-dependence of the var-
ious T -dependent quantities presented in Table II. Fig-
ure 6 shows stress-strain curves for thermalized plas-
tic flow at T/Tg = 3/4 over a wide range of strain
rates 10−5 ≤ ǫ̇τ0 ≤ 103. All results are qualitatively
consistent with trends observed in experimental studies
of rate-dependent mechanical response in bulk metallic
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glasses [31, 37, 38]. Anelastic response sets in at lower
strain for lower ǫ̇ because zones have more time to yield
(via thermal activation) over any given strain interval.
Yield stresses and strains increase steadily with increas-
ing strain rate. Panel (b) shows that these increases are
approximately logarithmic in ǫ̇, as is expected for ther-
mally activated yielding [1].

Two features of the data shown in Fig. 6 are partic-
ularly noteworthy. First, the temperature and rate de-
pendencies of ǫy are strongly coupled; ǫy decreases with
increasing T at low ǫ̇, but increases with increasing T at
high ǫ̇. This behavior reflects the fact that low-ǫ̇ yield-
ing is primarily thermally-activated (i.e. driven by slow
thermal activation over relatively large energy barriers),
whereas high-ǫ̇ yielding is primarily stress-activated (i.e.

the higher strain energies associated with the larger ǫy

lower energy barriers and speed yielding). Note that both
positive and negative ∂ǫy/∂T are observed in real glasses
[31, 32]. Second, the strain rate dependence of σpysm is
far weaker than that of σy . Stress overshoots (i.e. finite
|σy − σpysm|) that increase with ǫ̇ are observed in a wide
range of glassy materials, including most polymeric and
metallic glasses [31, 32]. Analysis of the thermodynam-
ics [E(ǫ), S(ǫ) and F (ǫ)] shows that while systems de-
formed at higher strain rates are driven further up their
energy landscapes, they return to similar positions on
their energy landscapes [i.e. have comparable w(x, ǫel; ǫ)]
at ǫ = ǫpysm even though the values of ǫpysm are signifi-
cantly different. Results like this illustrate the utility of
plasticity theories with properly thermalized strain de-
grees of freedom.
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