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Kinetic theory (KT) has been successfully used to model rapid granular flows in which 

particle interactions are frictionless and near elastic. However, it fails when particle interactions 

become frictional and inelastic. For example, the KT is not able to accurately predict the free 

cooling process of a vibrated granular medium that consists of inelastic frictional particles under 

microgravity. The main reason that the classical KT fails to model these flows is due to its 

inability to account for the particle surface friction and its inelastic behavior, which are the two 

most important factors that need be considered in modeling collisional granular flows. In this 

study, we have modified the KT model that is able to incorporate these two factors.  The 

inelasticity of a particle is considered by establishing a velocity-dependent expression for the 

restitution coefficient based on many experimental studies found in the literature, and the particle 

friction effect is included by using a tangential restitution coefficient that is related to the particle 

friction coefficient. Theoretical predictions of the free cooling process by the classical KT and 

the improved KT are compared with the experimental results from a study conducted on an 

airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, 

and G. Goutallier, EPL (Europhysics Letters) 86, 60007 (2009)]. Our results show that both the 

velocity-dependent restitution coefficient and the particle surface friction are important in 

predicting the free cooling process of granular flows; the modified KT model that integrates 



 
 

these two factors is able to improve the simulation results and led to a better agreement with the 

experimental results. 

I. INTRODUCTION 

The study of granular flow is of interest in a wide variety of fields in fundamental and 

applied sciences, including industrial flows such as pneumatic conveying and fluidized bed 

reactors, and environmental flows such as sand dunes and snow avalanches. Granular matter 

under rapid flow conditions is most commonly modeled as a continuum phase. Kinetic Theory 

(KT) supplemented with numerical simulations is considered to be one of the best tools to 

describe the behavior of rapid granular flows [1-3].  Most of these KT models have been derived 

for dilute flows of smooth, frictionless particles [4-6], which are essentially extensions of the 

classical KT of non-uniform gases [7]. However, there is one important difference between 

granular particles and gas molecules: kinetic energy is conserved in gas molecule collisions but 

dissipated in particle collisions. The dissipation of energy in granular particle collisions is due to 

the particle inelasticity, which is measured by the coefficient of restitution e. Most of the KT 

models assume the coefficient of restitution  for a specific granular material is a constant and 

independent of the particle impact velocities [8-11]. Due to the macroscopic size of particles, 

external fields such as gravity would have a significant effect on granular flows. This makes it 

very difficult to experimentally investigate the flow behavior of granular materials due 

exclusively to particle collisions. Instead, the Discrete Element Method (DEM) is often used to 

verify the theoretical solutions in the absence of gravity [12]. Good agreements between 

theoretical predictions of the KT models and the DEM simulations have been reported [11,13,14], 

which is understandable since the same constant coefficient of restitution e as implemented in the 

KT models has also been used in the DEM simulations. However, these DEM or KT models that 



 
 

are based on a constant e fail to predict some of the most basic features of the experimental 

results [15,16]. 

It has been widely reported that the coefficient of restitution e strongly depends on the 

impact velocity of a particle in collision [17-20]. To accurately measure e at small impact 

velocities could be very challenging. Early experiments were made in the presence of gravity 

with impact velocities typically larger than 10 cm/s. The measured e shows a monotonic 

decrease as the impact velocity increases [21,22]. Based on the data from [21], Lun and Savage 

[23] were the first to incorporate the velocity-dependent e into the KT. They adopted an 

exponential decay function for e to roughly match the experimental results at an impact velocity 

ranging from 100 cm/s to 250 cm/s. Due to the limited data for low impact velocity, at that time 

it was believed that the particle deformation was essentially elastic and the energy dissipation 

was small at very low impact velocities [24,25]. As a result, the fitting function of e in their 

study predicts e=1 at very low impact velocities.  

The effect of particle surface friction is also important for the KT of granular flows.  Lun 

and Savage [26] considered this effect in their KT model by using a constant tangential 

restitution coefficient β . When β  equals -1, the particles are frictionless and there is no change 

in the tangential component of the relative velocity. On the other hand, when β  equals 1, the 

tangential component of the relative velocity reverses completely and the particles are said to be 

perfectly rough. However, it has been shown that the tangential restitution coefficient β  is not 

an independent parameter; it is related to the particle inelasticity and surface friction [27]. To 

consider the particle surface friction, sliding and sticking mechanisms must be distinguished in 

the binary collision model, and a relationship between β, the friction coefficient μ and the 



 
 

normal coefficient of restitution e, has to be established. Furthermore, the rotational degree of 

freedom also needs to be taken into consideration in the KT model; both translational and 

rotational granular temperatures should be employed to characterize the random velocity 

fluctuations of granular particles [28,29]. The widely used modification of the KT model that 

considers particles of small friction coefficient was developed by Jenkins and Zhang [30]. They 

employed the same structure in their model as the classical KT model for frictionless particles, 

but replaced the coefficient of restitution e with an effective coefficient of restitution that 

accounts for the additional loss of translational fluctuation energy due to friction. However, their 

modification does not work for particles with large friction coefficients such as those used in the 

experiment [31] which have a friction coefficient μ =0.6. A few more KT models have been 

developed since then. These models mainly use collision integrals to produce new constitutive 

relations for rough spheres. In these models both particle friction and rotation were considered 

for energy fluxes without limitation on the friction coefficient [32,33]. The influence of these 

collisional parameters on the simulation results of a gas-solid bubbling fluidized bed has been 

investigated which showed improved predictions when compared with the experimental results 

[34,35]. However, these models require the inputs of the initial and boundary conditions of 

rotational granular temperatures that are usually unknown for most granular flow systems, so 

they have been rarely used in the literature. It must be pointed out that the collision models 

mentioned above are for binary collisions and valid only for rapid granular flows. For dense 

granular flows where network interactions dominate, collisional stress model such as the one 

proposed by Zhang [36-38] has to be employed. It is also found that the translations and rotations 

could be correlated when particles are rough [39].  Simulations show β could be tuned to 

produce a huge distortion from the Maxwellian distribution function in some cases [40].  



 
 

Grasselli, Bossis and Goutallier [31] and Tatsumi, Murayama, Hayakawa and Sano [41] 

experimentally investigated the granular flow cooling processes in microgravity. Large 

discrepancies between the KT predictions and their experimental results have been reported [31]. 

They also found that the coefficient of restitution e decreases as the impact velocity becomes 

small, which is contrary to the conventional belief that e is close to one at small impact velocities 

and continuously decreases as the impact velocity increases. Their efforts to address these 

discrepancies include the use of e as a function of the normalized fluctuation energy in the 

dissipation rate expression of the KT model and a constant roughness coefficient β  that ranges 

from -1 to 1 to account for the particle roughness. With these modifications, they were able to 

slightly improve their KT model results. Nevertheless, the predictions of their KT model still 

don’t match the experimental results well; the discrepancy in granular temperature is as large as 

200% at the initial stage of the cooling process. We think there are two main factors that 

contribute to the discrepancy: the use of a constant tangential restitution coefficient β  and an 

inappropriate use of the restitution coefficient profile in their KT model. To address these issues, 

a KT theory considering both tangential restitution coefficient β  and the friction coefficient μ

should be adopted. Also, instead of employing a granular temperature dependent e in the KT 

model, an impact velocity-dependent e at particle level should be used and the expression of e 

should be incorporated into the derivation of the Boltzmann kinetic equation. 

 In this paper we investigate the large discrepancies between the theoretical prediction of 

the existing KT models and the experimental results and develop modified KT models for the 

free cooling process of the granular flows.  One of the modifications is to incorporate the 

velocity-dependent coefficient of restitution e directly into the Boltzmann kinetic equation to 

derive the translational fluctuation energy dissipation rate. Unlike the velocity-dependent e 



 
 

profile proposed by Lun and Savage [23], the present e profile considers the adhesive forces at 

slow impact velocities as supported by the recent experimental studies and has a much smaller 

value at low impact velocities. We also examine two different approaches that incorporate the 

effect of particle surface friction into the KT models, which are named as Model I and Model II. 

Both models are derived based on the exact rates of translational and rotational fluctuation 

energy dissipation calculated by Herbst, Huthmann and Zippelius [42]. Model I is the extension 

of the KT model proposed by Jenkins and Zhang [30]. It determines the rotational granular 

temperature by assuming rotational energy dissipation rate is minimal, and the frictional effect 

could be absorbed into an effective restitution coefficient effe . Compared to the original model 

which is limited to small μ and does not consider 0β  as an input, the present Model I takes both 

0β   and μ  into consideration and it can be applied to a system with large μ . On the other hand, 

Model II which is proposed by  Herbst, Huthmann and Zippelius [42] considers the rotational 

energy dissipation and translational energy dissipation separately by solving their coupled 

equations. Results from these two models are compared to show that Model I is able to produce 

results that are comparable to Model II. Finally, we incorporate the velocity-dependent e into 

Model I and Model II to study the free cooling process of a granular flow. The simulation results 

are compared with the results from the existing KT models as well as the experimental data [31]. 

II. VELOCITY-DEPENDENT RESTITUTION COEFFICIENT 

The coefficient of restitution e is introduced to conveniently model particle collisions. 

Despite e cited as a constant in many studies, early experiments have shown that e could depend 

on the impact velocity for a given granular material [43,44]. This phenomenon was explained by 

the fact that the collision force depends on a combination of factors, including the elastic 

deformation at low impact velocities and the increased energy dissipation due to the plastic 



 
 

deformation at high impact velocities. The effect of the velocity dependent e on the KT models 

has been analyzed by Lun and Savage [23], who adopted a varying e that decays exponentially 

with the increasing impact velocity.  However, contrary to the previous finding that e increases at 

small impact velocity [15,18,20,45], recent experiments show that for spheres as large as a few 

millimeters, the restitution coefficient e sharply decreases when the impact velocity becomes 

small. This new finding was further explained by the existence of van der Waals attraction at 

relatively low surface energies for typical grain materials. Many granular systems have particle 

collisions with a small impact velocity typically below 20 cm/s, the van der Waals adhesion 

between the flattened parts of a particle’s surface can lead to a reduced restitution coefficient at 

these low impact velocities [19,46].  

In the experimental study of granular cooling process by Grasselli, Bossis and Goutallier 

[31], the authors attempted to consider the velocity-dependent e by incorporating it into the 

fluctuation energy dissipation rate of the KT model, implying that the use of e is based on the 

granular temperature or normalized fluctuation energy of granular materials. This cannot be 

accurate since e is defined for each individual particle collision and therefore, has to be a 

function of the impact velocity of two particles involved in the collision. In the present KT 

model, the velocity-dependent e is used to derive the dissipation term directly from the 

Boltzmann kinetic equation by integrating the velocities of all the particles in collisions.    

The choosing of restitution coefficient e is very important in the KT modeling; it is the 

primary factor that determines the rate of dissipation of granular flows. The simplest experiment 

to measure e would be to drop a sphere onto a flat horizontal plate with the help of gravity, and 

then determine the velocities both before and after the collision. However, the impact velocities 

for this kind of experiments are typically larger than 1 m/s. Small velocities may not be easily 



 
 

achieved because of gravity. Consider dropping a bead at a height of 1 cm, its impact velocity 

when it strikes the plate could reach 44 cm/s in free fall without considering air drag. It will 

require a much smaller height in order to produce a small impact velocity. However, the 

accuracy of measurement deteriorates as the height decreases. Another method to study two-

particle collision at small velocities is to suspend the two particles on a pendulum, each particle 

held by a string, then release one or both spheres from a certain height. This setup allows 

particles to collide at very low velocities when the strings are long enough. A more sophisticated 

approach, which only recently became possible, is to conduct the experiments in a microgravity 

environment.  Without gravity, there will be no constraints on the motion of particles and 

extremely low impact velocities can be achieved. In Fig.1, the experimental results at low impact 

velocities from two different approaches, one using pendulum [20] and the other using 

microgravity [31], are compared. The diameters of steel beads used in the experiments are 3 mm 

and 2 mm, respectively. The data collected from these two experiments show a similar profile of 

velocity-dependent e. As the impact velocity changes from 25 cm/s to 100 cm/s, the restitution 

coefficient e approaches 0.9, which is the value of the restitution coefficient of steel cited in 

many studies. However, both experiments show a rapid decrease of e when the impact velocity 

drops below 25 cm/s. Considering that the two sets of data were obtained by two different 

methods yet they match each other very well, they provide a strong evidence to support the 

existence of adhesive forces when the surface energies are small and the impact velocity is low. 



 
 

 

FIG. 1. Normal restitution coefficient e vs. the normal impact velocity. Soild circles show 

experimental results under microgravity condition from Grasselli, Bossis and Goutallier [31]; 

solid triangles show results using pendulum from Sorace, Louge, Crozier and Law [20]; solid 

line is the fitting result given in Eq. (1). 

As explained by the Johnson, Kendall, and Roberts (JKR) theory [46], the adhesive 

forces between particles could cause e to decrease at low impact velocities. Some models that 

consider adhesive forces have successfully explained these experimental results [17,19,20]. 

However, those models require more specific material properties such as the van der Walls 

surface energy and viscous relaxation time that are hard to measure experimentally, and the 

expressions for e are usually much more complicated. Consider a collision between two identical 

spheres, each with a pre-collision velocity 1c  or 2c , and =12 1 2c c -c  is the relative velocity. The 

unit-vector connecting the center of two spheres is denoted by k. In the present study we chose a 

velocity-dependent e profile for steel particles by fitting the experimental data shown in Figure 1:  



 
 

( )( )2
0 1 exp / ae e A V⎡ ⎤= − − ⋅⎢ ⎥⎣ ⎦12c k   1)

Here, 0e  =0.9, 2
aV  =200cm2/s2 and A  =0.4. This expression will be used in our KT model later 

on. It must be pointed out that the expression in Eq. (1) is only for systems of low granular 

temperature and low particle velocity since it is based on impact velocities below 100 cm/s. For 

systems of high granular temperature and high impact velocities, particle collisions may result in 

plastic deformation and reduce the coefficient of restitution, therefore different fitting profiles 

will be needed.  

 

III. KINETIC THEORY WITH LARGE SURFACE FRICTION 

The original KT models are derived for frictionless and nearly elastic particles without 

particle rotational motion. However, granular materials are frictional and inelastic. The particles 

can rotate after a collision due to surface friction, so translational kinetic energy may be 

converted to rotational energy, affecting the dissipation rate of translational kinetic energy. Two 

kinds of collisions are defined in collision mechanics. The first one is sliding collision. In such a 

collision, the tangential collision force t
ijF exceeds the maximum friction force ( t n

ij ijF Fμ> ), 

causing the particles to slide. Here, n
ijF is the normal component of the collision force, μ  is the 

static friction coefficient. The tangential force arises from the Coulomb friction associated with 

the relative motion between the two spheres at the contacting surfaces. The other one is called 

sticking collision. In this case the tangential component of the collision force is below the 

maximum friction force ( t n
ij ijF Fμ< ) and there is no relative motion between the contacting 

surfaces. In most KT models and hard sphere simulations, collisions are not resolved and the 

restitution coefficient e is given as a constant. Similarly, earlier models involving particle 



 
 

rotations considered the tangential coefficient of restitution β  as merely a constant averaged 

over the entire range of sticking and sliding contracts [26,27]. The sliding and sticking 

mechanisms were later distinguished with the use of the friction coefficient μ , the normal 

restitution coefficient e, and the tangential restitution coefficient 0β  for sticking collisions  [47-

49].  

 

FIG. 2. A pair of colliding particles 

Consider a collision between two identical spheres, each with a pre-collision velocity 1c  

or 2c   and post-collision velocity 1c′ or 2c′ . The relations between these velocities are 

Δ′1 1c =c + c  

 

(2
)

2 2 Δ′ −c =c c  (3
)

Similarly, the angular velocityω  changes after a collision follows 

Δ′ +1 1ω =ω ω (4
)

2 2 Δ′ +ω =ω ω (5
)

 The relative velocity at the point of contact g  is given by 



 
 

( )
2
d+ ×1 2 1 2g=c -c k ω +ω  

(6)

According to the definition of restitution, we have 

( )' e⋅ = − ⋅g k g k  (7)

( )× ×β= −'g k g k  (8)

Based on Eqs. (2-8) and the conservation laws for linear and angular momentum, the 

translational and rotational velocity changes during a collision are equal to 

( ) ( )1 1
2 2

de ηΔ ⎛ ⎞= − + ⋅ − × × +⎜ ⎟
⎝ ⎠

12 12 12c c k k k c k ω  (9)

( )2 d
qd
ηΔ ⎡ ⎤= × + × ×⎣ ⎦12 12ω k c k k ω  

(10)

Where =12 1 2c c -c , 12 1 2ω =ω+ω , [ ] ( )1 / 2 1q qη β ⎡ ⎤= + +⎣ ⎦ , and 
24 /q I md= . Here d, m, and I 

are the particle diameter, mass, and the moment of inertia, respectively. k is the unit vector 

directed from the center of particle 2 to particle 1. The tangential coefficient of restitution β has 

to include both sliding collisions ( 1 0fβ− ≤ ≤ ) and sticking collisions ( 00 1β≤ ≤ ). The 

tangential restitution coefficient for sliding collisions fβ  depends on the impact angle at the 

point of contact θ  between g  and k as well as the surface friction coefficient μ [50], while the 

tangential restitution coefficient for sticking collisions 0β  should be constant. Whether a 

collision is of the sliding or sticking type depends on θ  . When this angle is greater than a critical 

angle cθ , a sliding collision occurs. On the other hand, a sticking collision take places if this 

angle is less than or equal to cθ . The effective tangential restitution coefficient is found to be, 
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(11)

And the critical angle cθ can be obtained by forcing β  to be continuous 

0

1 1tan
1c

e q
q

θ μ
β

+ +=
+  

(12)

where ( )11 1 cotf
q e

q
β μ θ+= − + + , Eq. (12) has been proved to have a good agreement with 

the experimental results [49,51]. In general, if we consider e as a function of impact velocity, 

both cθ and fβ  could be affected. It is noted that at small impact velocity, there should be more 

sliding collisions (decreasing cθ ) and less rotational energy dissipation (decreasing fβ ) for 

sliding collisions compared to a system with constant e.  However, when the results for constant 

e and velocity-dependent e of  Eq. (1) are compared, as shown in Figure 3, we find the effect of 

velocity dependent e on the particle rotational behaviors is insignificant. For example, if μ is 

small such as the case μ =0.1 in Figure 3, the change of cθ at different impact velocities (when 

velocity-dependent e is used) is small. By assuming cθ as a constant, most of the collisions 

would be of sliding type since cθ is small and the dissipation of rotational fluctuation energy 

mainly depends on fβ . However, the change of fβ  is also small between a constant e and a 

velocity-dependent e even at low impact velocities, as shown in Figure 3. On the other hand, if 

μ is large such as the case μ =0.6, the critical angle cθ would also be large but the change of cθ

at different impact velocities is still insignificant when velocity-dependent e is used. At large cθ , 

the portion of sliding collisions where θ > cθ would be small compared to sticking collisions. 



 
 

Even though fβ  can vary a lot during sliding collisions, the sticking collisions take 0β as the 

tangential restitution coefficient which is a constant and fβ  would have little impact on the 

rotational energy dissipation rate. Therefore, as an approximation we will assume both cθ  and 

fβ  are independent of the impact velocity when we integrate the Boltzmann kinetic equations at 

the end of this section. 

 

FIG. 3. The effect of velocity-dependent e to the critical angle cθ  (left) and to the tangential 

restitution coefficient of sliding collisions fβ  (right). 

To account for the energy dissipation due to particle rotations, we focus on the 

dissipation term of the Boltzmann kinetic equation. Since we only consider free cooling cases in 

this study, the collisional source term is given by   

( ) ( ) ( )
1

(2)

0
, d d d d d

2

Nd f tχ Φ ΔΦ
−

⋅ <
= ⋅∫

12
12 1 1 1 2 2 2 1 2 1 2c k

c k c ,ω ,r ,c ,ω ,r k c c ω ω  
(13)

where N is the number of dimensions, ΔΦ represents the change of Φ  during a collision, and

(2)f is the coupled particle velocity distribution function,  
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2 2 2

fd d df t g f f
f
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Here φ  is the solid volume fraction; we choose ( )0 3

2
2(1 )

g φφ
φ

−=
−

for three-dimensional systems 

[52] and ( )0 2

1 7 /16
(1 )

g φφ
φ

−=
−

 for two-dimensional systems [5], which is the expression for the 

radial distribution function at contact. In the homogeneous cooling state, by assuming the 

rotations and translations of particles are independent of each other, the unperturbed (zeroth-

order) particle probability distribution function is of Maxwellian form for both the translational 

and rotational velocity fluctuations [53], that is 

( )
/2 /2 2 21, exp

2 2 2 2

N N

T R R T

IIf t n
m mπ πΘ Θ Θ Θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ω cc,ω,r  
(15)

The translational granular temperature is defined as
2

T

fd d
nN

Θ = ∫ c c ω
and rotational granular 

temperature is defined as
2

R

I fd d
nmN

Θ = ∫ω c ω
, where n is the particle number density. 

The total change of translational energy in a collision equals

( )' 2 ' 2 2 2
1 2 1 2

1
2

E mΔ = + − −c c c c . Based on Eq. (9), we find  

( ) ( )
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⎩ ⎭
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12

12 12 12 12 12

c k

c c k k ω k ω c

 
(16)

By letting ΔΦ be EΔ , Eq. (13) can be integrated to obtain the rate of dissipation of translational 

fluctuation energy per unit volume. The integration results could be divided into two parts,  

1 2T T TΓ Γ Γ= + , corresponding to the two terms in Eq. (16). The first term 1TΓ  is the energy 



 
 

dissipated due to the inelastic interactions in the normal direction; the second term 2TΓ  is 

caused by the interactions in the tangential direction. By assuming a constant normal restitution 

coefficient e, the exact rate of dissipation of the translational fluctuation energy calculated by 

Herbst, Huthmann and Zippelius [42] has the form 

( )2
1 12 1T Te KΓ Θ⎡ ⎤= − −⎣ ⎦  (17)

( ) ( )2 0 02 2

1 arctan 1 148 1
2 1 1T TKση λ η

σ σ σ
Γ Θ

⎡ ⎤⎛ ⎞
= − + − +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

 
(18)

Therefore, the 3-Dimensional (3D) translational fluctuation energy dissipation rate for 

homogeneous cooling is 

( ) ( ) ( )2
0 02 2

1 arctan 1 112 1 48 1
2 1 1T T Te K Kση λ η

σ σ σ
Γ Θ Θ

⎡ ⎤⎛ ⎞
⎡ ⎤= − − − + − +⎢ ⎥⎜ ⎟⎣ ⎦ + +⎝ ⎠⎣ ⎦

 
(19)

Similarly, the dissipation rate of the rotational fluctuation energy takes the form  

( ) ( )0 02 2

1 arctan 1 1 148 1
2 1 1R TK

q
ση λ λ η

σ σ σ
Γ Θ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

 
(20
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where 
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3/20
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g
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d
ρφ

π
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) 

Here, ( )0 01 / 2 1q qη β ⎡ ⎤= + +⎡ ⎤⎣ ⎦ ⎣ ⎦ , ( )1/2 cot cσ λ θ= +1 ; φ  is the solid volume fraction; R

Tq
λ Θ

Θ
= is 

the ratio related to rotational granular temperature and translation granular temperature. For 2D 

systems, the translational and rotational fluctuation energy dissipation terms reduce to the 

followings [54]: 
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(23)

It must be pointed out that the above equations are derived for constant coefficient of 

restitution e and they have to be modified for velocity-dependent e. Since e is defined for an 

individual particle collision, it has to be a function of the impact velocity of two particles 

involved in the collision. This coefficient should be used to derive the rate of energy dissipation 

directly from the Boltzmann kinetic equation. According to Eq. (13), the translational energy 

dissipation rate is 

( ) ( )
1

(2)

0
, d d d d d

2

N

T
d E f tΓ Δ

−

⋅ <
= ⋅∫

12
12 1 1 1 2 2 2 1 2 1 2c k
c k c ,ω ,r ,c ,ω ,r k c c ω ω  

(24
) 

The velocity-dependent e primarily affects the energy dissipated due to the inelastic interactions 

in the normal direction 1TΓ . The portion in the tangential direction 2TΓ  and rotational fluctuation 

energy dissipation rate RΓ remains the same since we assume a velocity-dependent  e would have 

insignificant effect on cθ and fβ , as discussed earlier in this section. We only need to reintegrate 

the energy dissipation term 1TΓ with a velocity-dependent e given by Eq. (1), 

( ) ( ) ( ) ( )
1 22 (2)

1 0

1 1 , d d d d d
2 4

N

T
d m e f tΓ

−

⋅ <

⎡ ⎤= − ⋅ ⋅⎢ ⎥⎣ ⎦∫
12

12 12 1 1 1 2 2 2 1 2 1 2c k
c k c k c ,ω ,r ,c ,ω ,r k c c ω ω  

(25) 

Details of the integration are provided in the Appendix. Overall the 3D translational fluctuation 

energy dissipation rate TΓ has the form 
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Similarly, the 2D translational fluctuation energy dissipation rate follows  
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To consider the rotational effect in the KT, we examined two models based on two different 

approaches: Model I is an extension of a simplified model originally proposed by Jenkins and 

Zhang [30] which includes the rotational effect into the dissipation rate of translational 

fluctuation energy; Model II is  a model developed by Herbst, Huthmann and Zippelius [42] 

which solves the coupled Ordinary Differential Equations (ODEs) of Eqs. (19) and (20) and 

considers the rotational and translational fluctuation energy dissipation separately. Since both 

Model I and Model II consider the effect of particle surface friction, we would compare the new 

energy dissipation rates predicted by different models at constant e. The combination of both 

velocity-dependent e and particle surface friction will be studied and compared with 

experimental results in Section IV. 

A. Model I: Inclusion of the frictional effect by modifying translational granular 

temperature 



 
 

In Model I, the rotational granular temperature described in Eqs. (20) and (23) is not solved 

directly but the increased translational fluctuation energy dissipation caused by particle rotations 

is incorporated into the model by modifying the translational granular temperature. Similar to the 

assumption made in [30], we assume that the rotational fluctuation energy dissipation rate is very 

small (i.e., 0RΓ ≈ ). This allows us to find λ from Eqs. (20) and (23), which is treated as a 

constant for given particle properties. The modified translational fluctuation energy dissipation 

rates could then be obtained from Eqs. (19) and (22). Previous studies have shown that the extra 

translational fluctuation energy dissipation caused by the particle surface friction can be 

absorbed into an effective normal restitution coefficient [55].  Following this approach, several 

different effective restitution coefficient models have been proposed by different groups, 

including 29
2 2effe e π μ μ= − +  [30],  ( )22 1effe e eμ μ= − + +  [56], and  ( )3 exp 3

2effe e μ μ= − −  

[11].  

In Model I, the frictional effect is also included into the effective restitution coefficient. 

Compared to other models, the current Model I has two main advantages: a) there is no 

limitation on the friction coefficient μ ; and b) the tangential restitution coefficient for sticking 

collisions 0β will be included. Figure 4 shows the comparison of the effective restitution 

coefficients between the Model I and other models found in the literature for a system with 

constant e=0.9.  



 
 

 

FIG. 4. Effective restitution coefficient derived from various models for a system with e=0.9 and

0β =0.1. 

From Figure 4 we find that the original model by Jenkins and Zhang [30] and Yoon and 

Jenkins [56] only works at small restitution coefficient μ ; it starts to deteriorate as μ  increases, 

eventually becomes unphysical when μ >0.4, resulting in effe >1 and a prediction of the increase 

of granular temperature that is not possible. The fitting expression from the DEM simulation data 

by Chialvo and Sundaresan [11] matches well with the results of the present model for 3D 

systems when μ <0.05. However, their model shows a rising trend when μ >0.4, which is hard 

to explain since rougher particles should dissipate more energy. Unlike these original 

modifications that don’t consider the tangential restitution 0β for sticking collisions in the 

expression of effe , 0β is incorporated into Model I. It is found that 0β has a limited impact on the 

dissipation rate when μ  is small. This explains why the original model [30] that ignores 0β  can 



 
 

still predict reasonable results [57]. However, as μ  increases, the ratio of sticking collisions to 

sliding collisions also increases, resulting in a significant change of dissipation rate as seen in 

Figure 5, and the original model is no longer applicable. 

 

FIG. 5. The impact of tangential restitution coefficient 0β on the effective restitution coefficient. 

The two dashed lines on bottom show the ratio of rotational granular temperature to translational 

granular temperature from Model I. 

 

We also found the increased translational fluctuation energy dissipation rate caused by 

the frictional effect is less significant in a 2D system than in a 3D system. This finding is useful 

to help understand the discrepancy found between the theoretical predictions and the 

experimental measurements discussed in the next section. The experimental technique used in 

[31] was only able to measure two translational velocity components. In the experiment the 

particles were confined between two parallel plates with a distance of the particle diameter to 



 
 

make the system 2D. However, in order for the particles to move freely in the 2D plane, the 

distance between the two parallel plates would be slightly larger than the particle diameter, and 

there will be a small velocity component in the direction that is normal to the plane. Therefore, 

the experimentally measured translational granular temperature should be slightly less than the 

predictions of an ideal 2D system. 

 

B. Model II: Inclusion of the frictional effect by solving rotational granular temperature 

In this model we solve the two coupled ODEs given in Eqs. (22) and (23). Contrary to the 

Model I in which the ratio λ  is a constant and calculated by forcing 0RΓ = , λ  in Model II is a 

variable determined by solving the additional governing equation for the rotational granular 

temperature. In addition, the initial rotational granular temperature 0RΘ  is needed as an input in 

Model II. To understand the importance of different initial rotational granular temperature and 

compare it with Model I, we set up a free cooling granular case with a different initial rotational 

granular temperature 0RΘ . Three cases are considered with the same initial translational 

temperature 0TΘ and different initial rotational temperatures of  0

0

0R

T

Θ
Θ

= , 0

0

0.25R
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Θ
Θ

=  (with 

initial 0RΓ = ), and  0

0

1R
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Θ
Θ

= , respectively.  



 
 

 

 

FIG. 6. The granular temperature vs. time for three cases with the same initial translational 

granular temperature but different initial rotational granular temperature: (a) 0

0

0R

T

Θ
Θ

= , (b)

0

0

0.25R

T

Θ
Θ

=  and  (c) 0

0

1R

T

Θ
Θ

= . 0.6μ =  and 0 0.1β =  are used in all the three cases. The two 

dashed lines on top show the translational granular temperature profiles predicted by the present 

models and the dashed line on bottom shows the dimensionless rotational granular temperature 

from Model II (Model I doesn’t solve the rotational granular temperature, so the λ which is 

related to the ratio of rotational to translational granular temperatures is kept at its initial value 

during the cooling process).  



 
 

From Figure 6(a) we can see that the collisions are able to transfer more translational energy 

to rotational energy in the initial stage if the initial rotational granular temperature is low, 

causing an increase of the rotational granular temperature in a short period of time. After the 

rotational granular temperature reaches its maximum value, both rotational and translational 

granular temperatures start to decrease. The second case shown in Figure 6(b) predicts a 

translational granular temperature slightly higher than the first one due to the larger amount of 

initial rotational granular temperature. Finally, with 0

0

1R

T

Θ
Θ

= , Figure 6(c) shows that the large 

amount of rotational energy could be converted to the translational energy during collisions, 

making the translational granular temperature decay slowly. Overall, both Model I and Model II 

predict similar results, but their discrepancy becomes larger for systems with high initial 

rotational granular temperatures. 

 



 
 

FIG. 7. The effective restitution coefficient vs. time during a cooling process. The dashed line on 

bottom shows the ratio of the rotational granular temperature to the translational granular 

temperature in model II during the cooling process for a 2D system with e=0.9, 0β =0.1 and

0.6μ = .  

To better compare Model I and Model II, we make the initial rotational granular 

temperature 0RΘ the same for both cases. The case in Figure 6(b) was selected since its 0RΘ is 

calculated by forcing 0RΓ = , which is the same as that in Model I. The resultant effective 

restitution coefficients are plotted in Figure 7. It is observed that when a system starts to cool 

down from its equilibrium state, λ which is related to the ratio of the rotational to the 

translational granular temperatures increases and eventually reaches a constant value that is 

higher than the initial value. The similar trend was also reported in the previous work by 

Brilliantov, Pöschel, Kranz and Zippelius [39]. The increased λ  forces more rotational energy to 

be converted to translational energy. This explains the smaller translational fluctuation energy 

dissipation rate predicted by Model II when compared to Model I, since Model I simplifies the 

rotational effect by fixing the ratio λ  at its initial value, which is smaller. Overall both models 

predict an effective restitution coefficient that is very close to the value derived from the DEM 

simulation results by Chialvo and Sundaresan [11]. 

 

IV. COMPARISONS WITH EXPERIMENTAL RESULTS 

We test the two different KT models, Model I and Model II that consider the effect of 

particle surface friction from the last section, by applying them to the free cooling process of 

granular materials. The experiments were performed using a granular system composed of 

spherical particles under parabolic flights [31]. The particles were confined between two 



 
 

horizontally placed plates with a small gap slightly larger than the particle diameter. The plates 

were made of glass in order to cancel out the electrostatic effects and to minimize the friction 

between the particles and the walls. This setup only allows the free motion of particles that are 

parallel to the plane, resulting a 2D system. The granular system was initially vibrated and 

gradually came to rest due to the inelastic collisions. By analyzing the trajectories of the particles 

using a high-speed camera, their velocities could be determined, so the granular temperature of 

the systems could be calculated. Since the image analysis can only be performed in two 

dimensions, only two velocity components could be obtained. Such a setup used in the 

experiments with one layer of spherical particles could be treated as a 2D system filled with 

disks in KT models, and the area fraction instead of the volume fraction should be used in the 

calculations. For the steel beads, the restitution coefficient 0.9e = ; the friction coefficient 

0.6μ = and 0 0.1β = , as provided in [31]. However e may decrease at small impact velocities as 

shown in Figure 1 and a velocity-dependent e of Eq. (1) will be used in our simulations 

Figure 8 shows the translational granular temperature versus. time predicted by various 

KT models. The experimental results are also plotted for comparisons. It could be seen that the 

classical KT model which considers the system as 3D differs significantly from the experimental 

result; the discrepancy becomes even larger if we consider the system as a 2D system. Both Eq. 

(26) and (27), which treat the system as 3D and 2D respectively, under-predicts the energy 

dissipation rate and shows a much slower decay of the granular temperature. This is because the 

classic KT models does not account for the extra energy dissipation due to the particle surface 

friction and the increased inelasticity at a small impact velocity. If we consider the rotational 

motions with the given particle roughness while keeping the restitution coefficient e constant, the 

three models including the model by Chialvo and Sundaresan [11], Model I, and Model II 



 
 

produce almost the same results. The initial rotational granular temperature in Model II is 

calculated by assuming the system at the equilibrium state. As shown in Figure 8, even though 

all three models have significantly improved their predictions in comparison to the classical KT 

models, they still significantly underestimate the decay rate of the translational granular 

temperature compared to the experimental results.  

 

FIG. 8. Granular temperature along with the time during the free cooling process. The black line 

represents the experimental measurements from Grasselli, Bossis and Goutallier [31]. The two 

dashed lines on top show the theoretical predictions with the constant  by the classical KT 2D 

and 3D models, the other lines show the results of the KT models considering surface friction by 

Chialvo and Sundaresan [11], the present model I and model II.  

Figure 1 clearly shows that the restitution coefficient e could be much smaller than the 

constant value 0.9e =  when the particle impact velocity is slow. Noting that the impact 



 
 

velocities in the experiments are generally below 20cm/s, we believe the use of a constant 

0.9e =  results in an underestimate of the energy dissipation, as observed in Figure 8.  To 

investigate the effect of a velocity-dependent e on the granular flow cooling process, the new 

energy dissipation rate Eq. (27) is used in our improved KT models. As shown in Figure 9, there 

is a significant drop on the granular temperature predicted by both Model I and Model II. This 

shows the use of a velocity-dependent e can be crucial in improving the accuracy of KT models 

for granular flows. Also the fact that both Model I and Model II predict similar results may 

indicate that in this particular free cooling case, the ratio λ has an insignificant impact on the 

dissipation rate of the translational fluctuation energy, and the assumption of small rotational 

fluctuation energy dissipation rate used in Model I is reasonable. 

 
 



 
 

FIG. 9. Granular temperature along with the time during the free cooling process. The solid line 

represents the experimental data from  Grasselli, Bossis and Goutallier [31]. The two dashed 

lines show the theoretical predictions of translational granular temperature from Model I and 

Model II with the velocity-dependent , respectively.  

 

However, the modified KT models still slightly overestimate the translational granular 

temperature, especially at the initial stage. As explained in the previous section, such discrepancy 

could be caused by the existence of small gap between particles and the glass walls, and the 

recent finding that the translations and rotations are correlated when particles are rough could 

also contribute to the error since the Maxwellian distribution function used here will be no longer 

accurate. Nevertheless, the results in Figure 9 clearly show that our improved KT models which 

incorporate the velocity-dependent restitution coefficient e and the frictional effect are able to 

lower the predicted granular temperature and produce results that agree well with the 

experimental measurements.  

V. CONCLUSION 

 Previous modifications of the KT models for granular flows are limited to small 

restitution coefficients and result in a reduced energy dissipation rate that is not physically 

possible at large friction coefficient. These models could significantly underestimate the decay 

rate of the granular temperature in the system during the free cooling process. To improve the 

accuracy of current theory and facilitate the modeling of a wide range of granular flow systems, 

we have developed improved KT models that are able to incorporate the particle surface friction 

and the increased inelasticity at small impact velocities.  By fitting the experimental data found 

in the literature, a velocity-dependent normal restitution coefficient profile has been derived and 



 
 

used in the present KT models. Two different approaches that considers the particle surface 

friction, named as Model I and Model II, were examined and evaluated. Model I simply absorbs 

the effect of particle rotation into the effective restitution coefficient and only translational 

granular temperature is solved; Model II solves the coupled equations for both rotational and 

translational granular temperatures, resulting in a better accuracy. For this free cooling case, both 

Model I and Model II could predict similar results with good accuracy. Comparing with the 

experimental results, we have shown that both the velocity-dependent restitution coefficient and 

the particle surface friction are important in accurately predicting the granular temperature of the 

system; our  KT models that integrate these two factors are able to improve the simulation results 

and produce a good agreement with the experimental measurement.  

APPENDIX 

For 3D systems the unperturbed particle distribution function could be written as 
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The part of the translational fluctuation energy dissipation that is related to the normal restitution 

coefficient in homogeneous cooling state is given by 
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Since the energy dissipated due to the inelastic interactions in the normal direction is 

independent of the angular velocities, the integration of the above expression over d d1 2ω ω

would yield to 
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To obtain the integrations in Eq. (A3), we need to transform the integral variables 2d d1c c to 

'
12d d12c c where 
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. The Jacobian of this transformation is 1/8. 
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We obtain 
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By treating cθ  as constants and fβ  independent of the impact velocity, expression for the decay 

rate of translational fluctuation energy would be 
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Similarly, for 2D systems we have 
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