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A granular system composed of frictional glass beads is simulated using the Discrete Element
Method. The inter-grain forces are based on the Hertz contact law in the normal direction with
frictional tangential force. The damping due to collision is also accounted for. Systems are loaded
at various stresses and their quasi-static elastic moduli are characterized. Each system is subjected
to an extensive dynamic testing protocol by measuring the resonant response to a broad range of
AC drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small
AC drive amplitudes has resonance frequencies that shift downward (i.e., modulus softening) with
increased AC drive amplitude. Detailed testing shows that the slipping contact ratio does not
contribute significantly to this dynamic modulus softening, but the coordination number is strongly
correlated to this reduction. This suggests that the softening arises from the extended structural
change via break and remake of contacts during the rearrangement of bead positions driven by the
AC amplitude.

INTRODUCTION

Granular materials are comprised of an ensemble of
randomly packed solid particles and the mechanical be-
haviour of the systems is basically determined by the in-
teractions at contacts. These materials are ubiquitous in
industry and in geosciences, and are also of fundamen-
tal interest to ground motion and earthquake dynam-
ics. Unlike ordinary materials, granular media can ex-
hibit solid-like and fluid-like behaviour and there exists
transition between the two states [1]. A granular solid
shows strong nonlinear elasticity and sound propagation
provides a footprint of this feature [2–5]. The nonlin-
ear dynamic response found in granular media such as
resonance frequency softening, slow dynamics and har-
monic generation [6–9] is very similar to those discovered
in rocks [10–14].

Other nonlinear behavior observed in granular solids
include stress- strain hysteresis [13], fabric anisotropy [15,
16] and loading-history- dependent sound velocity [6, 15,
16]. Such behaviour is closely related to the fragility of
the granular solid determined by the very inhomogeneous
and anisotropic contact network ; it may react elastically
to load changes in one specific direction but infinitesimal

loads in another direction will drive rearrangements in
the sample [17].

If the jammed granular solids are treated as homoge-
nous, for example by coarse graining [18], the effective
medium theory (EMT) [19–21] may be applied using an
affine approximation to qualitatively connect the global
response, like the bulk and shear elastic moduli K and G,
to the local geometry. In the case of isotropic compres-
sion, the EMT based on the Hertz contact law predicts
the scaling for K ∝ (φZc)

2/3σ1/3 and G ∝ (φZc)
2/3σ1/3

where σ is the confining pressure, φ the packing frac-
tion and Zc the coordination number (assumed to be
constant)[5, 19, 20]. The scaling of K and G can be
determined by the velocities of compression and shear
waves, via vP = [(K + 2G)/ρ]1/2 and vS = (G/ρ)1/2

where ρ = ρ0φ and ρ0 are respectively the packing and
the particle densities [5, 19]. It has been revealed by
numerical simulations that at low σ the bulk modulus
still scales as K ∝ σ1/3 while the shear modulus scales as
G ∝ σ2/3 near unjamming [5, 24]. This observation can
be explained by the breakdown of the effective medium
theory due to the nonaffine motion caused by the re-
arrangement of the contact network or particle positions.
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FIG. 1. (left) Representation of a sample, with large particles
in a darker color. The packing is enclosed between two walls
along the y-direction. (right) The two horizontal sections in
the sample enclose a local region where wall effects are min-
imal. The perturbation are movements of the top wall while
the bottom wall adjusts to maintain constant loading stress.

Current numerical works on vibrational properties fo-
cus on the density of modes as the packing fraction de-
creases to the jamming point [22–28]. An issue of broad
interest is the evolution of material characteristics as a
granular packing approaches the unjamming transition
by vibration-induced fluidization [29]. The combination
of acoustic probing and pumping in the nonlinear regime
allows us to highlight the material softening near this
transition, using sound velocity [9, 30] or resonance [7]
measurements. Simulations with 2D disk packings using
a normal Hertzian contact force and a tangential viscous
force have qualitatively reproduced the experimental ob-
servation of resonance frequency softening with increas-
ing dynamic amplitude. This behaviour arises from rear-
rangements of the contact network, resulting in a reduc-
tion in the average contact number but without signifi-
cant rearrangement of particle positions [28]. However,
the effect of friction on the elastic softening [9, 30] is
absent in these frictionless systems.

Here we address this issue by simulating the effects of
resonance frequency softening in confined 3D frictional
bead packings under an applied dynamic (AC) drive. We
drive the confined granular packing at larger and larger
amplitudes to explore the nonlinear response of the mate-
rial that provide clues to the transition from a solid state
to a fluid state where the mobility of particles becomes
important, nevertheless having a mean-square displace-
ment smaller than the particle size. Note that the gran-
ular packing does not flow in our simulations due to the
absence of macroscopic shear, but merely approaches the
fluid state with significant elastic softening and particle
position rearrangement [9, 29]. In the next section, we
present the numerical model and the protocol of tests and
then we show the simulation results. All these findings
will be analysed using the mean- field approach.

NUMERICAL MODEL AND METHODOLOGY

We apply the Discrete Element Method [31]
(LIGGGHTS 3.4 [32]) to simulate the mechanical behav-
ior of 3D glass bead packings under static and oscillatory
loading stress. The Hertz contact law is used to repro-
duce normal elastic interactions between elastic spheres
and an elastofrictional model is implemented to describe
the tangential interaction. The collision process is also
included for the viscoelastic damping.

Intergrain forces

The total force Fi acting on a particle i is the sum of
the contact forces with interacting particles j ∈ J and
viscosity damping. Specifically, it is the sum of a normal
force Fn based on the Hertz theory, and a tangential force
Ft based on an approximation of the Mindlin model [33]:

Fi =
∑
j∈J

(
knδn

3/2
ij n̂ij − γnvijn̂ij

)
−
∑
j∈J

(
ktδn

1/2
ij δtij t̂ij − γtvij t̂ij

)
− γavi

(1)

where δnij and δtij are the normal overlap and relative
tangential displacement between particles i and j. δtij is
truncated to fulfil ‖ft‖ < µs‖fn‖ where µs is the coeffi-
cient of the Coulomb friction, fn is the normal force at
one contact and ft is the tangential force. Particles over
threshold are modelled as slipping against each other.
n̂ij and t̂ij are the normal and tangential unit vectors of
each contact ij. Finally, vi is the velocity of particle i
while vij = vj −vi. γa is the viscous damping coefficient
for numerical stabilisation.

Provided with the Young’s modulus Yg, shear modulus
Gg and loss coefficient βg of the grains, the normal and
tangential elastic constants are:

kn =
4

3
Yg
√
R∗ (2)

kt = 8Gg

√
R∗ (3)

and the viscoelastic parameters related to collision losses:

γn = 2βg(R∗δnij)
1/4

√
5

3
m∗Yg (4)

γt = 4βg(R∗δnij)
1/4

√
10

6
m∗Gg (5)

The effective radius R∗ and mass m∗ depend on the
respective radii R and masses m of the two particles:
1/R∗ = 1/Ri + 1/Rj and 1/m∗ = 1/mi + 1/mj .

The equation governing rotational velocity is:

Ii
dΩi

dt
= ri × Ft,i + Ti,j (6)
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FIG. 2. Elastic and shear moduli K and G of the granular
samples as a function of loading stress σ. power-law The inset
shows the compression and shear protocols.

with Ii the moment of inertia, ri the vector from the
center of the particle i to the contact point, Ft,i the tan-
gential component of the force exerted on the particle i
and a torque at each contact:

Ti,j = µrknδnijRi
∆Ωij

‖∆ωij‖
(7)

with µr the rolling resistance and ∆Ωij = (RiΩi +
RjΩj)/(Ri +Rj) is the relative angular velocity [34].

Energy is basically dissipated via frictional damping in
sliding and, in collisonal interactions, via the coefficient
β = ln(e)/

√
ln2(e) + π2, with e the restitution coeffi-

cient.

Granular sample preparation

3D samples are created by randomly filling particles of
radius r1 or r2 into a box with dimensions (lx, l

init
y , lz) =

(10−2, 2.5 × 10−2, 10−2) m (See Fig. 1). Particles have

a density ρ0 = 2500kg/m
3
. The y-axis is vertical (with

y = 0 at the bottom) and periodic boundary conditions
are applied in the x- and z-directions. Two walls enclose
the system in y-direction. These walls can be moved
via a fixed function or servo-controlled, in which case an
algorithm will move the wall with a maximal velocity
vmax to maintain a constant loading stress.

A variable velocity from vmax = 6 m/s to 0 is ap-
plied to the bottom of the box to compact the parti-
cles while the top wall moves to reach a static loading
stress σ. After a period ∆t1 = 0.2 s, the bottom wall
moves with a sinusoidal vertical movement A sin(ωt) with
ω = 1.26 × 105 rad/s for a period ∆t2 = 2 s to perturb
the system and bring it closer to equilibrium. The am-
plitude of perturbation A = ly5× 10−5 with ly the sam-
ple height when perturbation starts. Preliminary simu-
lations showed that this value drives rearrangements and
compaction in the samples. Finally the bottom wall is

stopped and the packing is allowed to evolve and relax
during period ∆t3 = 7.8 s, to reach a sample height of
ly ≈ 1.2 × 10−2 m with about 4100 particles. Granular
samples are confined by the loading stress σ, set at 10
logarithmically spaced values between σ = 10 kPa and
σ = 1438 kPa. The resulting static strain ε0 is estimated
as ∼ 10−4 − 10−3 with a limited precision at low values
depending on the test protocol.

All simulations are run with γa = 10−7 kg/s (air ef-
fect at room temperature) and timestep dt = 8× 10−8 s.
Particles have contact force parameters: Yg = 65 GPa,
νg = 0.25, Kg = 43.33 GPa, Gg = 26 GPa, µs = 0.22,
βg = 0.0163 and µr = 0.01. The radii of particles are
r1 = 3× 10−4 m and r2 = 4× 10−4 m. 60% of the sam-
ple mass is made of particles with radius r1 and 40% with
radius r2.

Tests under quasistatic compression and shear

The granular samples are compressed by uniaxial load
or sheared at constant volume to determine their bulk
and shear moduli, respectively (see figure 2, inset). The
driving incremental strains (cycle) are ∆ε ∼ ×10−6.

During a compression test, the bottom wall remains
fixed while the top wall moves downward at constant
velocity vlid to make a small cycle around the confining
stress σ. The top wall first moves down at velocity vlid
over a period ∆tcompr, then up at vlid for 2∆tcompr, then
back down at vlid for ∆tcompr. The compressive strain
εyy = (ly− l0y)/l0y (the deviation of sample height ly from
its initial value l0y) and compressive stress σyy on the top
wall are recorded. The stress for an isotropic packing is
given as:

σyy =
3Y (1− ν)

(1 + ν)
εyy (8)

with Young’s Modulus Y and Poisson ratio ν of the gran-
ular medium.

A shear test is performed by imposing the wall at fixed
positions along the y-axis, while the top wall is sheared
along the x-axis. The wall moves at velocity vlid in the x-
direction for a time ∆tcompr, then moves back at vlid for
2∆tcompr, and finally at vlid for ∆tcompr. The shear stress
σyx and the strain εyx = (xlid − x0lid)/l0y are recorded
during the simulation. Assuming isotropic linear elastic
behavior, the stress-strain relation is given as:

σyx = 2Gεyx (9)

Equations (8) and (9) constitute a system of two equa-
tions with two unknowns: the Young’s Modulus Y and
Poisson ratio ν of the granular material. The bulk
and shear moduli are given by K = Y/3(1 − 2ν) and
G = Y/2(1 + ν). The moduli were determined using the
full cycle, with negligible hysteresis observed during the
loading-unloading.
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FIG. 3. Two series of frequencies sweeps obtained for σ = 55 kPa (a) and σ = 695 kPa. Line color represents the drive strain
of each sweep (from εdrive = 3.8 × 10−7 in light green to εdrive = 4.8 × 10−3 in dark blue). Harmonics are visible. Resonant
frequencies decrease and peak broaden as drive strain increase. As shown in Fig. 5, each figure correspond to a different
boundary condition.

Compression and shear tests were both performed at a
velocity vlid = 10−7 m/s for ∆tcompr = 0.2 s. The high-
est velocity ensuring quasi-static measurements is com-
puted for I = 2γ̇rmin/

√
σmin/ρ < 10−3, with rmin =

3×10−4 m, σmin = 10 kPa, ρ ≈ 1400 kg/m3. The strain
rate γ̇ = vlid/ly implies vlid < 5.79 × 10−2 m/s for our
samples.

Tests under compressional vibration

A probing layer inside the sample with y-coordinate
comprised between 0.2ly and 0.4ly has been selected (to
avoid the wall effect) to study the dynamic strain of the
granular packing εlocal to an applied vibration. The sys-
tem is driven for N(= 100) periods at each drive fre-
quency so that it reaches quasi-steady state and data are
averaged over the last N ′ = 60 periods and recorded.
Measurements are made 50 times per period.

Frequency sweeps are performed in the granular pack-
ings under different confining stress σ, maintained by the
bottom wall. The applied vibration is introduced by ver-
tically moving the top wall with Adrive sin(ωt) for N pe-
riods. The frequency during sweeps is increased from
ω = 6.2 × 103 rad/s to ω = 6.2 × 105 rad/s by steps
of 1.9 × 102 rad/s. The drive amplitude A ranges from
5×10−8 to 6×10−5 m. The dynamic strain is computed
as the amplitude Adrive divided by the average height of
the system 〈ly〉 : εdrive = Adrive/〈ly〉,varying accordingly
from 4.13× 10−6 to 4.95× 10−3)

For measuring the resonance response of the sample,
we investigate the dynamic strain of a local layer away
from the nodes of the standing waves. Here, the local
strain εlocal is computed as follows. First the instanta-
neous strain is determined as the relative difference be-
tween the local layer height l(t) and its average lωi

over

the last N ′ = 60 periods of the system driven at ωi:

εωi
(t) =

l(t)− lωi

lωi

(10)

The strain ε
ωi

(t) is composed of a slowly- evolving com-
ponent due to the relaxation of the specimen and a
component oscillating at drive frequency. We remove
the slowly-evolving component by subtracting a moving-
average window with a length equivalent to one period of
the system. Finally we fit the amplitude and phase of the
sinus εlocalsin(ωt+φ) on the remaining strain oscillation.

Slipping contact ratio and coordination number

In addition to the dynamic strain, we also studies the
Slipping Contact Ratio SCR(t) of the probe layer which
is the ratio between contacts ’slipping’ in regard to each
other (algorithmically when the Coulomb threshold is ap-
plied to the tangential force) to all contacts in the probing
layer. The average 〈SCR〉 corresponding to a frequency
ωi is obtained over the last N ′ periods of SCR(t) driven
at ωi. Similarly, the coordination number Zc(t) is the
average number of contacts of particles in the probing
layer. 〈Zc〉 is the average of Zc(t) over the last N ′ pe-
riods. In this work, we investigate the values of εlocal,
〈Zc〉 and 〈SCR〉 in the same probing layer as a function
of the driving frequency ω.

RESULTS AND DISCUSSION

Elastic Moduli

Fig. 2 shows the bulk K and shear G moduli obtained
by compression and shear tests in granular samples as a
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FIG. 4. The first modes are extracted from the frequency
sweeps (Fig. 3 and reported in (a) as a function of local strain.
When scaled according to predictions of Hertzian theory, res-
onances collapse onto primary curves (b). The two resonances
correspond to different modes (Fig. 5). Resonant frequency
remains constant for low drive strain, then decreases above a
threshold value.

function of the confining stress σ. K scales as σ0.379 being
close to the Hertz theory prediction with a dependency
of σ1/3 [20] whereas G scales as σ0.233 with an exponent
lower than those found in other simulations with imposed
confining pressure [5, 22, 35]. As shown below, the value
of bulk modulus found here are in good agreement with
the compressional sound velocity deduced from our main
resonance simulation. We also observe a strong depen-
dence of the elastic modulus on the coordination number
and packing fraction of the samples [35]. In the present
samples, the coordination number ranges from 4.38 to
4.95, and the packing fraction from 0.60 to 0.62, in the
range expected for an isotropic packing of frictional par-
ticles [36].

Resonance, Hertzian scaling and softening

Figure 3 shows two series of frequency sweeps per-
formed for low σ = 10 kPa and high σ = 695 kPa, respec-
tively. Both figures show the results for a series of drive
strains from εdrive = 3.8×10−7 to 4.8×10−3 (the highest

FIG. 5. Each figure shows the strain profile of the sample
vibrated at resonance. The first and second modes (a) and
(b) of a low stress sample show a closed boundary at the top
and open at the bottom. In the high stress sample (c), both
boundaries are open.

value for which a peak could be distinguished for all sam-
ples). At low drive strain, the resonance frequency does
not decrease, but the system exhibits harmonics (shown
with arrows on Fig. 3) as found in the experiments [8].
As the drive strain increases, resonance frequencies de-
crease and resonant peaks broaden and start to merge
with each other.

We plot these frequency shifts in Fig. 4. The res-
onances ω satisfying ω < 2.5 × 105 rad/s are extracted
detecting and fitting each peak with a third-order polyno-
mial, and reported in Fig. 4(a). Samples at high loading
stress, above 480 kPa show a clear linear regime at low
local strain εlocal followed by a softening. This thresh-
olding was selected because the two first modes at low
loading stress merge as drive strain increases and, at high
loading stress and high drive strain, only the first mode
remains. The Hertz theory, as implemented in equation
(1), predicts a contact force proportional to the overlap
between two particles fn ∝ δ3/2. If our samples were
to follow the mean-field approach based on the Hertzian
contact, the resonance ω would scale as σ1/6 [2] and the
strain ε as σ2/3 [20]. We apply this scaling and report
the data on Fig. 4(b), where we observe that resonances
collapse onto primary curves: two for low stresses and
one for high stresses.

We note that resonant modes at σ = 55 kPa and
σ = 695 kPa represent different boundary conditions.
Fig. 5(a,b) shows the local strain ε vertical profile in
a sample at σ = 55 kPa vibrated at its first and second
modes ω1 and ω2. The data shows an approximately free
boundary condition at the top wall with very small strain
or stress, and a clamped-like boundary at the bottom wall
with finite strain or stress. The first modes of such a sys-
tem are λ/4 and 3λ/4 (black line on (a) and (b)). In con-
trast, the high loading stress samples σ = 695 kPa shows
clamped-like boundary conditions at both ends where the
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FIG. 6. Ratio of the average particle velocity vlocal in the
local layer to the maximal velocity of the wall vdrive under
σ = 695 kPa. At low strain, the ratio of both velocities is
roughly constant. At high strain, the local particle velocity
decreases compared to drive velocity.

dynamic strain or stress is very small compared to the
static strain or confining stress. The first mode, λ/2,
and data are reported on Fig. 5(c). Data in all three
cases follow the predicted modes. The deviation on the
boundary and at the antinode are presumably due to the
inherent fluctuation in the granular material. Fig. 4(b)
thus shows a Hertzian scaling of the resonance for two dif-
ferent boundary conditions. At low loading stress, two
modes are observed which soften at higher local strain,
and merge together. Data for high loading stress sup-
ports higher local strains and shows a clear linear regime
at low local strain. Moreover, from Figs. 4a and 5c, we
measure a resonant frequency ω ∼ 1.5 × 105rad/s with
a wavelength λ = 2ly which gives a longitudinal sound
speed c = λω/2π = 500 m/s. The bulk modulus can then
be deduced by K = ρc2 ∼ 625 MPa, which is consistent
with the value derived from the static compressional test
(Fig. 2).

We also investigate the transmission of the kinetic en-
ergy into the granular system from the driving force,
by comparing the average particle velocity vlocal in the
probing layer and the driving wall velocity vdrive. The
particle velocity is obtained from the relation Ekin =
(1/2)Mgv

2
local, with Ekin returned by simulations and the

packing mass Mg = 1.77×10−3 kg for σ = 695 kPa. The
maximal driving velocity of the wall is the product of
the resonant frequency and the displacement amplitude:
vdrive = ωA. Fig. 6 shows that at low strain (linear
regime) the ratio of the particle velocity to the driving is
almost constant and equal to 1.1, but at higher strain it
decreases to about 0.6. Furthermore we observe a striking
similarity between this ratio and the resonance frequency
decrease with increasing dynamic strain (Fig. 4(b) and
Fig. 9(a)). This behaviour can be qualitatively under-
stood in terms of the coefficient of amplitude transmis-
sion which depends on the acoustic impedance and ac-

FIG. 7. Coordination number 〈Zc〉 (right-hand vertical axis,
thick line), Slipping Contact Ratio 〈SCR〉 (left-hand verti-
cal axis, thin line) and normalized frequency spectrum (out-
lined in the background) in the linear (a), transition (b) and
nonlinear (c) regions of the drive strain at loading stress
σ = 695 kPa. Shifts in 〈Zc〉 are below 0.01 for low drive
strain. In the transition regime, Its average value increases
as a result of perturbation up to a saturation value of 5.71.
〈SCR〉 increases peaks at resonant frequencies. In the nonlin-
ear regime the system softens, and the coordination number
decreases at resonance. Left axis shows the variation range
for each case.

cordingly the sound velocity of the granular sample [30]:
the lower the sound velocity (due to elastic softening),
the lower the transmission coefficient.

Changes of coordination number and slipping
contact ratio upon applied vibration

To understand the responses of granular samples to
the applied vibration, we investigate simultaneously the
structural changes of the contact networks. More specif-
ically, we study the coordination number and slipping
contact ratio on the grain scale in our samples. Fig. 7
shows three frequency sweeps performed on a sample at
σ = 695 kPa. The background outline represents a scaled
profile of the frequency sweep. The percentage of slipping
contacts 〈SCR〉 (left axis) is represented with a thin line
while the average coordination number 〈Zc〉 (right axis) is
represented with a thick line. In the linear regime (a), the
coordination number remains constant at ∼ 4.86, with
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variations due to small movements in the sample. The
slipping contact ratio peaks at resonance, and progres-
sively increases from 0 to 1% over the frequency sweep,
showing a progressive mobilisation of contacts. At higher
drive strain (b), the coordination number peaks around
the first resonant mode and spans the range 4.8 to 5.5
over the frequency sweep. The slipping contact ratio
peaks at the first resonant mode. At higher drive strain
(c), the coordination number decreases at resonance fre-
quency. The slipping contact ratio shows a moderate
peak at resonance, than decreases after reaching 20% of
mobilised contacts. Results in (b) and (c) show lasting
changes in the grain arrangement (coordination number),
and dynamic changes in the sample (slipping contact ra-
tio).

Fig. 8 reports the average coordination number at res-
onance for different loading stresses and local strains. In
all cases, the average is constant at low strain and de-
creases at high strain. High loading stresses reach higher
local strain values and we therefore use the sample at
σ = 695 kPa to study the behavior of the system. Varia-
tions in initial coordination number (value at low strain)
are due to randomness in the packing generation.

In order to test the effect of slipping contacts on
the softening, the resonant frequencies of the sample at
σ = 695 kPa are reported for different values of the fric-
tion µs in Fig. 9(a). The linear and nonlinear regime are
identical whether contacts can slip (µs = 0.22) and al-
most not (µs = 50 and µs = 1000). Fig. 9(b) shows the
coordination number for the three friction coefficients.
The linear regime spans the same range of strain, and all
three systems show a decrease of coordination number
in the nonlinear regime. We remark that for this study
the different specimens are prepared with the same par-
ticle friction µs = 0.22 and as a result they show the
same initial packing and coordination number. We also
studied samples prepared with different initial particle
friction and found that the initial coordination number
decreases with increasing initial friction coefficient (re-
sults not reported here). However, these different pack-
ings show the same softening behavior. In the case of
high friction, curves in Fig. 9 (a) and (b) have a similar
shape. Fig. 9 (c) shows the scaled slipping contact ratio
µs〈SCR〉 defined as the slipping contact ratio multiplied
by the friction coefficient. We found that all scaled data
collapses onto a single line showing a linear relation be-
tween scaled 〈SCR〉 and local strain. This means that
〈SCR〉 is proportional to the friction coefficient both in
the linear and nonlinear regime. The tangential compo-
nent of the interaction force has no or limited impact on
the material softening, in contrast with the previous ex-
perimental observations where the microslip between the
solid beads leads to the softening of contact stiffness and
consequently the effective material softening ([9]).

0.4cm

FIG. 8. Coordination number at resonance for the first mode
of the different packings. In all cases the coordination number
is constant at low strain and decreases at high strains.

CONCLUDING REMARKS

We form granular systems, subject to a normal
Hertzian force and a tangential elasto-frictional force, in
mechanical equilibrium at a sequence of confining stresses
σ = Kε0, where K is the effective bulk modulus of gran-
ular samples (Fig. 2) and 10−5 ≤ ε0 ≤ 2 × 10−3 . The
bulk modulus of these granular systems K scales with
the confining stress as K ∝ σ0.379, close to Hertz theory
prediction. The shear modulus G scales as σ0.233. This
scaling is lower than the one found in other published
simulations of confined packings [5, 22, 35] and remains
open for further analysis.

We subject these granular systems to dynamic test-
ing using AC drive with amplitude A at frequency ω.
The output of this dynamic testing at 10−7 ≤ εdrive ≤
2 × 10−3 is the resonance frequency ω and the local AC
strain εlocal as a function of A or εdrive. We find to good
approximation that the scaled resonance frequency is a
universal function of the scaled strain, with the scaling
appropriate to a Hertz contact system, ω ∝ σ1/6, despite
of important nonaffine motion of the particles with mean-
square displacement being smaller than the particle size.

At low drive amplitudes, εdrive < 10−4, the dynamic
response is linear and the effective elastic constant de-
duced from the resonance frequency is independent of A.
At high drive strain εdrive ∼ 10−3 being close the static
strain by the (high) confining stress, there are large de-
partures from linearity. There the resonance frequency
decreases as drive amplitude increases. These departures
are taken to represent a reduction in dynamic modulus,
termed ’softening’. The softening is a manifestation of
the path toward unjamming transition; one infers that
at slightly larger drive levels, the material will fluidize.
The Hertz scaling extends into the AC amplitude domain
in which we observe this softening. Throughout our ex-
ploration over (S,A)-space (to be detailed elsewhere), we
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FIG. 9. (a) resonant frequency of sample at σ = 695 kPa for
a range of local strains and three friction coefficients µs. µs

has no impact on the softening or the transition from linear
to nonlinear. (b) Coordination number 〈Zc〉 and (c) slipping
contact ratio multiplied by the friction coefficient µs〈SCR〉
at resonance. The behavior of 〈Zc〉 is similar and, at high
friction, closely follows the shift in resonant frequency of (a).
〈SCR〉 is proportional to the local strain and to the friction
coefficient both in the linear and nonlinear regime.

monitor a number of quantities that could shed light on
the microscopic properties of the system, e.g., the aver-
age coordination number 〈Zc〉, the slipping contact ration
〈SCR〉 and the average particle velocity vp.

It is natural to ask if the slipping contact plays a role
on the observed elastic softening. We repeated a number
of calculations, primarily at σ = 695 kPa, with the fric-
tion coefficient that controls ’slipping’ set to values that
include almost no slipping, and examined the slipping
contact ratio. Even when the number of slipping con-
tacts is reduced by several orders of magnitude we find
no significant change in the nonlinear elastic response.
The motion afforded by slipping contacts is not the re-
sponsible mechanism that contributes to the softening, as
found in the experimental observations at strain ampli-
tude of 10−6 due to the nonlinear tangential Mindlin con-
tact [7, 9]. Such contact softening mechanism is absent
in the present numerical model, but our finding suggests
another mechanism of softening likely related to the de-
crease of the coordination number due to the rearrange-
ment of the particle position, driven by the applied AC
amplitude in a manner similar to effective temperature

characterized by non-affine motion of the particles [29].
The results are different from those found in 2D sim-
ulations where the particle positions are little changed
under AC drive [28]. The modulus reduction would be
proportional to the amplitude of particle rearrangements
which in turn is proportional to the amplitude of the
AC drive. The modulus reduction is associated with
increased fragility ultimately leading to fluidization, a
phase transition not explored here.

In summary we have applied DEM to study the be-
havior of a particle ensemble, driven progressively harder
under resonance conditions. We have done this at several
applied loads. We find a material softening manifested
by the resonance frequency decrease with AC amplitude.
The coordination number is the most telling character-
istic measured, showing the softening arises from the
breaking and remake of contacts that are brought into
existence and given mobility of the particles by the AC
drive amplitude. This approach could be valuably ap-
plied to the transition from the solid to the fluid states,
which is approached in these simulations.
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