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We examine a rapidly solidifying binary alloy under directional solidification with non-equilibrium
interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed depen-
dent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady)
cellular instabilities, mode S, and a pulsatile instability, mode P. We examine how weak imposed
boundary-layer flow of magnitude |V| affects these instabilities. For small |V|, mode S becomes a
travelling wave and the flow stabilizes (destabilizes) the interface for small (large) surface energies.
For small |V|, mode P has a critical wavenumber that shifts from zero to non-zero giving spatial
structure. The flow promotes this instability and the frequencies of the complex conjugate pairs
each increase (decrease) with flow for large (small) wavenumbers. These results are obtained by
regular perturbation theory in powers of V far from the point where the neutral curves cross, but
requires a modified expansion in powers of Y/ near the crossing. A uniform composite expansion

is then obtained valid for all small |V].

I. INTRODUCTION

Additive manufacturing (AM), or three-dimensional
(3D) printing, has undergone tremendous progress
throughout the past three decades and offers substan-
tial advantages over existing manufacturing methods.
The layer-by-layer production capabilities offered by AM
can be used to print complex parts of various geome-
tries while minimizing manufacturing time and material
wastage. AM is currently capable of printing a consid-
erable range of products [see, e.g., 1], including metallic
parts [2], aero-engine components [3], protective coatings
[4], electronics [5], natural structural materials [6], tissues
[7, 8], hydrogel-based materials for implantable medical
devices [9] and implants and prosthesis [10]. However,
parts produced by AM are susceptible to a range of unde-
sirable effects such as distortion, compositional changes,
lack of fusion defects [1], high surface roughness, layer
delamination and warping [11], and denudation [12], de-
pending on the geometry of the molten pool, temperature
distribution and thermo-physical effects.

One of these effects involves the onset of flow within
the melt pool as a consequence of high temperature gradi-
ents near the heat source. The resulting sharp gradients
in surface tension induce Marangoni convection within
the melt pool as depicted in Fig. 1 [11, 13]. Liquid to
the rear of the heat source solidifies rapidly and the mi-
crostructure of the grown solid is determined by processes
at the solid-liquid interface. It is the purpose of this pa-
per to investigate the influence of flow on the morpho-
logical stability of a rapidly solidified binary alloy. Dise-
quilibrium effects, including solute trapping and kinetic
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undercooling, become significant at rapid solidification
rates and we investigate their roles within a thermody-
namically consistent model of directional solidification in
disequilibrium.

Such a configuration enables one to examine the con-
ditions under which to expect instabilities at the solidifi-
cation front under the presence of flow, given physical es-
timates for the magnitude of flow induced by Marangoni
convection within the melt pool in a practical physical or
engineering situation, and how these instabilities change
when physical or material properties are varied, as well
as conditions under which all instabilities are suppressed
completely. Such estimates provide a starting point that
may aid in gauging the choice of physical paremeters or
material properties to avoid undersirable effects in prac-
tical scenarios.

The morphological stability of a binary alloy in ther-
modynamic equilibrium without flow has been first ex-
amined by Mullins & Sekerka [14]. Many generalisa-
tions have been provided by Coriell & McFadden [15]
and an absolute stability limit exists such that the insta-
bility disappears for large enough surface energy. The
effect of boundary-layer flow on the stability of a di-
rectionally solidified binary alloy under thermodynamic
equilibrium has been investigated by Forth & Wheeler
[16] in the limit of large Schmidt number and large
Reynolds number. Hobbs & Metzener [17] conducted
a long-wavelength analysis of the problem and found
that imposed boundary-layer flow favours traveling waves
through a destabilizing mechanism.

When the interface is no longer at thermodynamic
equlibrium, as is the case at large solidification rates,
phase transitions are no longer governed by the phase dia-
gram. Departures from equilibrium have been formulated
within thermodynamically consistent generalisations by
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FIG. 1. Schematic of the solidification of a liquid melt pool
in one form of additive manufacturing.

[18-23] to include effects that occur at high solidification
rates, such as the effects of solute trapping and kinetic
undercooling. These generalizations have been used in
a model without flow to find that oscillatory instabilities
may occur in disequilibrium, in addition to the previously
observed cellular modes found at interfacial equilibrium
Coriell & Sekerka [24]. The state diagram has been set
out for both the cellular and the oscillatory modes by
Merchant & Davis [25], and an absolute stability limit
involving attachment kinetics has been found for the os-
cillatory mode.

We investigate the influence of boundary-layer flow,
indicated in Fig. 1, on the stability of the liquid-solid
interface in directional solidification in a rapid solidifica-
tion environment by performing an asymptotic analysis
for weak flow. In contrast to the scenario at interfacial
equilibrium, two branches of instability (steady S and
periodic P modes) are present here and a singular per-
turbation problem arises near the crossing point. We
use matched asymptotic expansions to analyze perturba-
tions to both branches and find that there is a symmetry
breaking singularity where the two branches couple.

We begin by setting out the theoretical framework and
formulating the linear stability theory in Sec. II. The
stability of the interface under no flow is discussed in
Sec. III. We investigate the effect of flow by performing
regular asymptotic analyses for the steady and oscillatory
branches in Sec. IV, followed by a singular perturbation
analysis near the singular point in Sec. IVB. We form
a uniformly-valid composite solution in Sec. IV C and
revert to physical scalings in Sec. IV D. We finish with a
discussion of the results and concluding remarks in Sec.
V.

II. FORMULATION

We consider the rapid directional solidification of a bi-
nary alloy of local solute concentration C; in the liquid,
Cs in the solid, pulled at speed V' in the negative z-
direction through heat exchangers located at z = £L.
For simplicity, it is assumed that L — oo, and the po-
sition of the resulting solid-liquid interface is given by
Z = h in the local coordinate system of Fig. 1.

In the non-equilibrium model set forth in [18, 21—

23], departure from equilibrium gives rise to a non-
equilibrium local interfacial temperature 77 and local so-
lute concentration Cy in the solid. Both of these are
deviations from the equilibrium phase diagram. The lo-
cal solute concentration in the solid is related to that of
the liquid through

Cs = Cik(V,), (1)

where k is the non-equilibrium segregation coefficient,
which depends on the local interface speed V,,. The seg-
regation coefficient is close to the equilibrium value kg
at low solidification rates and approaches unity at rates
high enough that solute is completely trapped into the
solid. A model proposed by Jackson et al. [19] and Aziz
[20] describes this variation by

(V) = kg + ﬁoV

where [y is a constant. Dimensional variables are de-
noted by tildes.

The arguments of Boettinger & Perepezko [21] and
Boettinger & Coriell [22] for a planar interface, modi-
fied by the Gibbs-Thomson effect for curved interfaces,
yield that the response function for interfacial tempera-
ture, including the effects of capillary undercooling and

kinetic undercooling, is given by

mpg E
kg —1Vy’

Tr = T (1 + 2HLl) +m(V,)C) — (3)
1%
[see, e.g., 25, 26] where Ty is the equilibrium melting
temperature of the pure material, H is the mean curva-
ture, v is the surface energy, L, is the latent heat per
unit volume, mg is the equilibrium slope of the liquidus,
kg is the equilibrium-segregation coefficient, V; is the up-
per bound for the rate at which crystallization can occur,
and the change in liquidus slope due to non-equilibrium

segregation is given by
(kE — k(V,,)-

m(Vy,) = mE{l—k
L))y
For a non-planar, three-dimensional surface,
has (1+3)

B 3/2
(1 +hZ + h%)

— 2hzhghag + hyg (1+52)

2H = (5)

The solidification rate for non-planar growth is modified
to

~ V-i-ﬁg
V= —— (6)
(1 + |Vh|2)



A. Basic state and non-dimensionalisation

For ease of presentation, we adopt the approximations
of Merchant & Davis [25] for the thermal and solutal
problems, namely, that the diffusivity of solute is negli-
gible in the solid phase, that the diffusivity of solute in
the liquid phase is much smaller than the thermal diffu-
sivities of both phases, that the thermal conductivities of
both phases are equal and that latent heat production at
the interface can be neglected. The latter assumptions
have the advantage that they allow for the freezing of
the temperature. For the liquid, we assume that it is in-
compressible, that the effect of gravity is negligible and
that there is no change in the density of the material as
it changes phase.

In a coordinate system moving with the front at speed
V', conservation of temperature, solute, momentum and
mass in the liquid (2 > h) are summarised by

0= V21, (7)

oC; oC; . - .
a_fl - Va—; +a-VC =DV, (8)

ou ouw . ~._ = =2 ~
pl(E—VE—i—u-Vu)——VP‘FMV“a (9)

For the solid (% < h),
0 = V3T, (11)

Far field boundary conditions on the flow field and solute
concentration are

u—Usxer as Z— oo, (12)

C—Cyx as Z— oo (13)

The remaining boundary conditions at the interface in-
volve the local solutal balance

where 7 = (—0h/d&,0h/d7,1)/1/1 + |Vh|? is the unit
normal vector, and the local conservation of mass and
no-slip condition

@=0, z=h(i,i,i). (15)
We shall adopt spatial and temporal scalings based on
solute diffusion and scale the velocity and pressure fields
by the far-field flow and viscous pressure scaling so that
Dy

R ahad] Ez_tu
v V2

. (16a — d)

We scale the temperature and solutal field by

Tijﬂl_TO 7TS_TO
YT Gpv Tt Go v
O — CuoJk
Cp=— /ke (17a — ¢)

Coo(kp —1)/kg’

where G is the imposed temperature gradient and Ty is
a reference equilibrium freezing temperature of the sub-
stance. The dimensionless equations become

0= V2T, (18)
80l (901 _ 2
S 5, tVur VG =ViC, (19)
Ju Ou 2
V.-u= O7 (21)
for the liquid (z < h),
0= V3T,, (22)

for the solid (z < h),

uU— ey as z— 0o, (23)
C—1 as z— o0. (24)

in the far field and
Cs = Cik(V,,) (25)

(Ol — OS)Vn = —(—Olzhz — Clyhy + Clz)'
(14 |VR|?)T2 (26)

M
T, =T, = MC, — A—kp)? (kg —k(Va)) -
. (1 —In M) (1+ (kg — 1)C))
ke
+2HMT — MUV, (27)
at the interface z = h, where
k(V,) = T BV, (28)
V, = 1+—ht (29)

"+ VR
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FIG. 2. The neutral stability curve under no flow. The steady
branch is shown as a solid curve and the oscillatory branch
is shown as a dashed curve. Parameters used: kg = 0.2,
=01,U=00,T=1,R=1,V=0.

and

2H =
(1402 +n2)*?

(30)

We note that in rapidly evolving systems, the segregation
coefficient (28) — a bounded function of V;, — varies non-
linearly in V,,, which in turn varies nonlinearly, in gen-
eral, with the kinetic undercooling. However, the degree
of undercoolings that are commonly encountered even in
rapidly evolving systems warrant a linear dependence for
undercooling, (27), to be sufficient [26].

Seven dimensionless parameters appear in the above.
They are the morphological number M, the disequilib-
rium parameter 3, the attachment-kinetics parameter U,
the equilibrium segregation coefficient kg, which is the
limiting value of the speed-dependent segregation coefli-
cient k(V,,), the dimensionless surface energy I', the ex-
ternal flow parameter V and the inverse Schmidt number
R. Explicit formulas for them are given by

= = la,b
M DleE B ﬂ ﬂOVa (3 a, )
VEkg
- RE oy _p v 324, b
u o — 120V’ Vv / (32a,b)
TyuvVke Dy

I'= = . b
ToDmnlhn -1’ = (334, )

This system possesses a steady-state solution, for

which the interface is planar, given by
T=z+M~, Cpo=1-0de"7? (34a,b)

ho=vo=wo=po=0, uy=1—e*%, (35a,b)

FIG. 3. Neutral stability curves in rescaled variables (¢, 7).
Pulling speed versus far field solutal concentration for both
the leading-order steady (black, solid curve) and oscillatory
(blue, solid curve) branches and their perturbations due to
weak flow (black, dashed and blue, dashed curves). Parame-
ters used: 4 =0.3, 4 =0.05,kg =08, R =1,V =1.

where
___ ke 7 B _
e v R U oy R
. ket+p _ ks
F=Trg 0= (37a, b)

B. Linear stability analysis

We investigate the stability of the planar-interface so-
lution using linear perturbation theory and search for
normal-mode solutions with growth rate o and wave-
vector o = (a1, ) by writing X = Xo(2) + eX(, 1),
where X (z,t) = X1(2) exp(ot + i(a1z + agy)) for X =
(u,v,w,p,Cy), and h = ef(x,t) = enexp(ot + i(a1x +
aoy)). The stability of the system is determined by the
sign of ¢, where 0 = ¢+ iw, and q,w € R, with stability if
q < 0 for all wavenumbers and instability otherwise. The
instability is steady if w = 0 and oscillatory if w # 0.

Eliminating pressure and horizontal velocity yields a
fourth-order differential equation,

d . 1 /a2 9 9
(o—a—l—lall)uo——(@—al—oQ .
d? 9
'(@_0‘1

for the vertical component of velocity, with interfacial
boundary conditions

— a%) wy = i Vugwy, (38)

wy =0, w)=iRyuy, 2=0 (39a, b)



and far field conditions

w; =0, w;—0 as z—o0. (40a, b)

Here, the prime denotes differentiation with respect to z.
It suffices to consider this fourth-order system to deter-
mine the flow field and so our perturbation problem can
be formulated in terms of wi, Cj; and 7; only.

The perturbed solutal field satisfies

Cli — (af + a3)Ci = VwiCly + i VueCry +

in 2 > 0 with the far-field condition

Chp—0 as z— o0, (42)

and interfacial conditions

k
~Ciy + Ch) = (1= gy ) anCo

+ (1= k)(nCjy + Cn), (43)

at z = 0, originating from a perturbation to the local
solute conservation condition (26), and

0 = (kg — 1)[(ﬂ+1)n+/\4(—nc;0—cu+
+(8+1)n (T (o2 + 02) + old) )}L
Mn (E/kg) [oﬁn((l ~ kp)Cio — 1)+
HEP0C + CE| /G4, @)

at z = 0, originating from a perturbation to the inter-
facial temperature condition (27). The latter condition
determines the position of the perturbed interface. This
system of perturbation equations is a differential eigen-
value problem for (Cj1,ws,n), which admits nontrivial
solutions only for certain eigenvalues o.

Setting V = 0 turns off the external flow and recovers
the result of Merchant & Davis [25]. In this case, the
characteristic equation can be obtained in closed form.
We display plots of relevant results for comparison in
Sec. III.

IIT. ZERO FLOW

In the absence of flow, the linear stability problem gives
rise to the following characteristic equation

I
B+1

~ 2(ﬂ+kE)(ﬁ+kE+a)>

M t=my =

((ﬂ +kg) — Bo+

B+ +5+2kp—1
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FIG. 4. Values of the second-order contributions ms for
the steady mode for varying disequilibrium parameters § =
0.01,0.02,0.05,0.1. Parameters used: kg = 0.5,/ = 0.1, =
1,R=1.

+oUs —U) — a°T, (45)

obtained by Merchant & Davis [25], where

A =vVida?+40+1, (46)

o kg ((1 —kg) + (B + kg)log (ﬂfifiE)) )
(1—-kp)(B+kg)?

and

BkE
B+1)(B+kg)?

T's and U, are the critical values of I and U, respectively,
beyond which all disturbances are stabilized under no
flow.

At marginal stability, we have ¢ = iwg, wg € R (we
reserve the subscript 0 to denote quantities involving no
flow). There are two possible scenarios. The first is one
in which wy = 0, which corresponds to the steady in-
stability giving mode S. The second is one in which
wo # 0, which corresponds to the oscillatory instabil-
ity giving mode P. The values of wy are obtainable by
requiring that I(mg) = 0, which we expect on physical
grounds. The values of wy can be seen graphically against
a1 for the mode P in Fig. 8. The neutral curves for the
S and P branches, as well as the regions of instability,
are depicted in Fig. 2. The neutral curve for the P in-
stability consists of two branches with complex conjugate
frequencies.

By non-dimensionalizing with respect to capillary
scales rather than diffusion scales, as in [25], it is possible
to isolate the dimensionless pulling speed and far field so-
lute concentration as independently controllable parame-
ters. Such a rescaling is of benefit from the experimental
perspective, where these two parameters, specifically, are
controllable. To scale length and time against the capil-
lary scales [ ~ (yTar/(L,G)Y?, t ~ Ty /(L,GDy), we

Us =

(48)
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FIG. 5. Plots of mg (solid) and mo + V*m2 (dashed) against
a1 for mode S, where § = 0.01, kg = 0.5, 44 = 0.1, I' = 1,
R =1,V = 0.5. Only the steady branch appears at leading-
order.

use the following rescaling specified by Merchant & Davis
[25]:

M=v¢, T=Y|¢ B=RBY,
U=V N]C, a=d|V, o=V

(48a—c¢)
(49a—c¢)

The resulting neutral stability curves can be obtained
implicitly and are shown in Fig. 3. The marginal di-
mensionless pulling speed versus the concentration is dis-
played for both the leading-order steady and oscillatory
branches.

The following behaviour has been reported by Mer-
chant & Davis [25] absent flow. When % is fixed, say € =
8, and ¥ increases from 0 to a critical value ¥ =~ 0.3, the
solid-liquid interface remains planar. Steady cells appear
as ¥ increases past its critical value. The cells deepen
and their wavelength decreases as ¥ is increased further,
until a cellular-dendritic transition, not explained by lin-
ear theory, occurs. As ¥ increases further, the cells re-
turn and then finally disappear at a critical #" =~ 2. The
solid-liquid interface becomes planar within a window of
stability. As 7 increases further past a critical value
¥ = 3, the pulsatile mode becomes unstable, producing
solute bands periodic in the direction of solidification.
These disappear and the interface regains stability once
¥ reaches a critical value of ¥ = 5. Nonlinear effects be-
come important for intermediate values of ¥ within this
range. For higher values of %, both steady and pulsatile
modes of instability co-exist within a region of intersec-
tion.

IV. ASYMPTOTICS FOR WEAK FLOW

In this section, we analyze the asymptotic behaviour
of the solid-liquid interface for both branches for weak
flows V <« 1. For clarity, we present only the results of
our analysis in this section, and refer the reader to the
Appendices for detailed derivations.

FIG. 6. Frequencies wo (solid, thick) and wo + Vw; (dashed)
against a1 for mode S for various disequilibrium parameters
B = 0,0.025,0.05. Parameters used: kg = 0.5, U4 = 0.1,
r=1R=1.

A singular perturbation problem arises in scenarios in
which both steady and oscillatory branches appear, as
a result of the occurance of the singular point on the
neutral curve, at which the two oscillatory branches meet
the steady branch giving rise to a multiple eigenvalue. We
treat this by developing matched asymptotic expansions
involving regular perturbations in an outer region, away
from the singular point, and singular perturbations in an
inner region, close to the singular point.

A. Regular perturbations

We proceed by expanding in the external-flow-
parameter ) as follows

Cin = Ciio +VCi11 + V?*Crya + -+, (50)
wy = wig + Vwi1 + V2w12 + - (51)

We are interested in marginal stability, which occurs
when ¢ = 0. The value of M for which this occurs can
be expanded in V as

M P =mo+Vmi +V?ma+--- . (52)

The resulting instability may have either wy = 0 or wy #
0 and we write

w=wo+Vws +Vwa +---. (53)

At zeroth-order (V = 0), there are situations in which
only mode S appears, situations in which only mode P
appears, and situations in which both modes S and P
appear.

We find that the coefficient m4 in (52) vanishes for
mode S. As expected on physical grounds, the direction
of flow, given by the sign of V, should not influence the
onset of the leading-order steady branch of the instability.
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FIG. 7. Perturbations to the neutral curves for the leading-
order (a) steady (dashed, black) and (b) oscillatory (dashed,
blue) branches. The unperturbed neutral curve is overlaid
for the steady (solid, black) and oscillatory (solid, blue)
branches. Both the steady and the oscillatory branches ap-
pear at leading-order. There are two oscillatory branches and
they lead to distinct inverse morphological numbers at higher
order. Parameters used: 8 =0.1 kg =05, U =0.1, ' =1,
R=1YV=0.5.

The influence of flow on mode S can be determined by
examining second-order corrections in V.

Despite m; = 0 for mode S, there is a nonzero contri-
bution w; # 0. The frequency w; is shown in Fig. 6 in a
situation in which only the mode S appears, and in Fig.
8 in a situation in which both modes S and P appear.

Thus, for S,

M =mo+Vmg+ -, (54)
and for P,
M‘lzmo—i—le—i—---. (55)

Following the details presented in Appendix A, we find

N——— sy
T =64

S——

FIG. 8. (a) Perturbations to the frequencies for the leading-
order (a) steady (dashed, black) and (b) oscillatory (dashed,
blue) branches. The unperturbed frequencies wo are over-
laid for the steady (solid, black) and oscillatory (solid, blue)
branches. Parameters used: g = 0.1 kg = 0.5, Y = 0.1,
'=1,R=1,V=05.

for mode P, wg # 0 that

4

L k (1-k%
(77[3(;-1-2 1—kg) = Z% Big), (56)

my =
j=1

as given in (A35), where the P ; are specified in Appendix
A, and for mode S, wy = 0,

L(B+ke)+(1—kg)
mo = S]ﬁ(ﬂ—l—El (1—]{3EE Z%JQU (57)

as given in (A47), where the constants Jy1; are given in
Appendix C.

The perturbations mo for mode S are diplayed in Fig.
4, and plots of the perturbations m; and the resulting
M~ = mg + Vm; are shown in Fig. 7. There are two
oscillatory branches at leading order, yielding complex
conjugate roots +iwp. These two branches correspond to
a single M~! at leading order. At higher order, these
two branches split. Both of these are displayed in Fig. 7.
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FIG. 9. Singular perturbation results (dotted curves) near the
singular root for the inverse morphological number in (a) and
frequency in (b) against the wavenumber. Zeroth order results
(no flow) are overlain as solid curves (the steady branch is
shown using thin solid curves, and the oscillatory branch is
shown using thick solid curves). Parameters used: § = 0.1
ke=05U=01,T=1R=1 V=05

Note that only the upper branch determines the insta-
bility boundary, however, the other branch may lead to
higher growth rates and we choose to display both of the
branches for this reason. The corresponding frequency
perturbation w; and wy + Vw; are shown in Fig. 8 for
both the leading-order oscillatory and steady branches
in the scenario in which both of them appear at leading-
order.

Close to the crossing point, the regular perturbation
expansions diverge as seen in Figs. 7 and 8. This signals a
need for a singular perturbation analysis near this point,
which we perform in Sec. IV B.

B. Singular perturbations

Of interest for the current section is the point at which
the two branches meet. This is a junction of three
branches: S and P (complex conjugates). We have seen
in the previous section that a regular perturbation expan-
sion fails in the vicinity of this singular root. In order to

—————
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FIG. 10. The composite solution (dashed), uniformly valid
for all wavenumbers, for the inverse morphological number
in (a) and frequency in (b), against the wavenumber. Zeroth
order results (no flow) are shown in as solid curves (the steady
branch is shown using thin solid curves, and the oscillatory
branch is shown using thick solid curves). Parameters used:
B=01kg=05U=01T=1R=1 V=05

resolve for the behaviour near this multiple root, we pose
an asymptotic expansion in the parameter V'/3, of the
form

wy = Wo + VY3010 + VY3010 + - -, (58)
Ci = Crio + V3C0 + V/3Criz + -+ . (59)
We are again interested in marginal stability, which oc-

curs when ¢ = 0 and this time expand the value of M ™!
for which this occurs as

MY =g + V3 + Vi35 + -, (60)
and the imaginary part of o as
w=V1/301+V®3+V5/3G)5+---. (61)

Taking V — 0 leads to ¢ = 0, which is the value of
o at the singular root, as expected. We seek an inner
expansion near the singular root, which occurs at some
wavenumber oy = 9. The appropriate inner scaling for
the wavenumber is

a1 = ayg + a V3, (62)



which follows from the square-root dependence of the two
oscillatory frequencies on the wavenumber in the vicinity
of the singular root at leading-order.

It is necessary to consider expansions up to third-order
in V1/3 to obtain leading-order information on the influ-
ence of flow. We lay out our analysis order by order, in
Appendix B.

We find, at first order in V'/3, that the wavenumber
10 satisfies

ﬁl—‘s _ _ 4Fs (ﬁ + kE) .
a1 T S G a1
[ ufa) 1
<[Qz(0<10)]2 4) ’ (63)
where

Q1(on0) = (B+2)8°+(8+3)Bks—(B+1)*afo+kE, (64)

and

Qg(alo)=ﬁ+2kE—1+(ﬁ+1)\/4a%0+1. (65)

This relation ensures that a; = ay9 corresponds to the
multiple root. Using it, one may obtain an asymptotic
expression for ayg in the form

oy = —— 'kEﬁl/Q_F
V2kg +1

(2k3, + TkE, — 1)
20/FE (2kg + 1)°/?

for 8 small in the limit &/ = 0. We find, at second order
in Vl/?’, that Mo satisfies

B2 +0(8%),  (66)

mg = — 2l'ajgor 1+

(L(kp +B) +1—kr)y (5
- (ﬂil) (kE_l)nE %(Jm,l), (67)

which depends on @i, and j27111 are constants that are
given in Appendix C. We determine @; by examining the
third order in V/3 and find that @; solves the cubic

1@} + Y1101 + 73 =0, (68)

where ~1,...,73 are given in Appendix B. With @
known, mg is determined from (67).

The resulting singular perturbations for the inverse
morphological number and frequency near the singular
root are shown in Fig. 9. The topology of the neu-
tral curves changes near the singular root. The low
wavenumber steady branch joins with one of the oscil-
latory branches and the high-wavenumber steady branch
joins with the other oscillatory branch. The regions of
stability and instability become disjoint.

ac

FIG. 11. Cut-off wavenumber «. for the onset of instability
with flow (dashed) and without flow for mode S (solid) and
mode P (dotted). Parameters used: kg = 0.5, § = 0.1,
U=01,R=1,V=05.

C. Composite solution

As the contributions of flow to the leading-order os-
cillatory branch appear at O(V), the inner solution (67)
is sufficient to determine a uniformly valid solution for
the leading-order oscillatory branch. However, this is
not the case for the leading-order steady branch, where
the leading-order effects of flow appear at O(V?). It is
therefore necessary to derive higher-order terms in the
singular expansion for the inverse morphological number
in this region.

As shown in Appendix B, the form of my4 is given by

My = p1@] + p2a11@F + p3@1 + pacd; + pszr, (69)

where p1, ..., ps are numerical constants that depend on
a9 and the physical parameters. This expression for my
depends on @3, which we determine in Appendix B by
considering the next highest order and obtain the equa-
tion

(pe@; + pran1)@s + ps@y + po1 @7+

+p10@5 + p11053,6@1 + praagy = 0, (70)

for w3 by requiring the morphological number to be real,
giving that ms = 0, and noting that oy = ayg corre-
sponds to the singular point that eliminates ws. Here,
p6, - - -, p12 are numerical constants that depend on the
parameters. Given the form of &g from (70), 7y is fully
determined via (69). This determines the inverse mor-
phological number to the required order in the inner re-
gion for a smooth composite solution to be formed.

An additive composite solution is formed for M ™! and
w by matching the inner solutions (60) and (61) with the
leading-order outer solutions M~ ~ mg + V2ma, o ~
Vwi, for the steady branch, and M~! ~ mg + Vm;, o ~
wo + Vwy, for the oscillatory branch. Fig. 10 shows the
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FIG. 12. (a) Maximal M}, for mode S and the associated
(b) frequency wm and (c¢) wavenumber au, as a function of
I" with flow (dashed) and without flow (solid) for kg = 0.7,
B=1,U=02 R =1.

composite solution against the results without flow. The
singularity at the junction of the three branches is well
resolved and the solution is uniformly valid throughout
the domain.
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FIG. 13. Frequency wo+ Vwy as a function of V for the steady
(solid) and two oscillatory (dashed) branches for o = 0.06,
ke =05 8=01,U=01T=1R=1.

D. Physical Scalings

We revert back to the natural scalings (48 a — ¢) and
(49 a—c), which use surface energy to scale the quantities,
and discuss the effect of flow on the resulting neutral
curves. An advantage of the natural scalings is that they
give neutral curves that appear similar to the dimensional
ones.

We obtain the neutral stability curves implicitly via the
transformations (48a — ¢)—(49a — ¢) and display them
graphically in Fig. 3. The neutral curves without the
presence of flow are overlain in the figure, for compar-
ison. Displayed are the marginal dimensionless pulling
speed versus the concentration for both the leading-order
steady and oscillatory branches. The presence of flow en-
larges the region of instability in favour of the leading-
order oscillatory branch. The minimal value of ¥ for
which oscillatory instabilities occur is smaller once per-
turbed by the presence of flow. On the other hand, the
range of values of ¥ for which leading-order steady in-
stabilities occur reduces under the presence of flow. In
this way, the presence of flow eliminates instabilities for
low enough concentrations.

V. DISCUSSION AND CONCLUSIONS

We have analyzed the effects of weak flow on the di-
rectional solidification of a binary alloy with an interface
that departs from thermodynamic equilibrium. In partic-
ular, with no flow the linearized instabilities of the front
display two modes [25]. On their neutral curves there is
a steady, cellular mode S and a time-periodic mode P,
and we study how these are changed by the imposition
of a weak shear flow of boundary layer type. Perturba-
tion methods are used for flow magnitude |V| < 1. The
mode S is steady for V = 0 with maximizing wavenum-
ber a,, and cut-off wavenumber «.. of unit order. In Fig.
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quency w. for mode P as a function of U with (dashed) and
without (solid) flow for kg = 0.7, =1, T'=2, R = 1.

2, ay, ~ 0.35 and a,. ~ 0.58, and the angular frequency
w = 0. The critical morphological number is given by
M1 ~ 0.074. The neutral curve in natural coodinates
is also shown in Fig. 3.

The imposition of flow delays the instability as seen in
Figs. 3 and 5. The instability exists for I' < I';, the abso-
lute stability boundary, and I'y increases with increasing
V. Both «,, and a. decrease with V for moderate I, as
seen in Fig. 5. The previously steady mode now travels
due to V as shown in Fig. 13, where w is linear in V and
negative for small o and the maximizing w,, is negative
for small I" as seen in Fig. 12b, meaning that the wave
travels into the shear consistent with dendrites growing
into oncoming flow, an effect of the concentration of so-
lute being asymmetric fore and aft (Jeong et al. [27]).
Here, w > 0 for large a and w,,, > 0 for large I" as seen
in Fig. 12b.

The mode P has «a,, = 0 for V = 0 as shown in Fig.
2, so that the mode is pulsatile with no spatial structure,
but a,, # 0 when V # 0 as seen in Fig. 10a, where
am =~ 0.03. The mode appears as a complex conjugate
pair for V # 0 but each frequency increases with flow
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for large a as shown in Fig. 13, the corrections again
linear in V. The frequencies decrease with flow for small
a as seen in Fig. 10b. The mode exists for kinetics
parameter U < Uy, a second absolute stability boundary.
Flow promotes instability P as shown in Fig. 3.

The cutoff wavenumber for the onset of instability
smoothly transitions from one branch of instability to
the other as seen in Fig. 11. Fig. 3 illustrates the effect
of flow on modes S and P together. Mode P is destabi-
lized and mode S is stabilized at the nose of the neutral
stability curve. Waves appear for both modes in the pres-
ence of flow. Experiments [28-31] on metallic systems in
rapid solidification display bands, microstructures that
have alternate layers of dendrites/cells and structure-free
material periodic in the pulling direction. Merchant and
Davis [25] show that these bands are always located in
the sector of (¢,¥') space, see Fig. 3, common to both
the S and P instabilities. With flow, this sector moves
downwards and to the left (right) for high (low) val-
ues of the naturally scaled attachment kinetics param-
eter ./, (3.5a), meaning that banding would occur at
lower pulling speeds and lower (higher) concentrations
than without flow. Even more importantly, with flow
the mode S, dendrites/cells, now travel, and the mode P
now has a non-zero critical wave number inducing spatial
structure in the P mode. Thus, banding morphologies
are intrinsically altered by the presence of flow.
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Appendix A: Regular perturbations
1. Zeroth order

The zeroth-order perturbed vertical velocity and solu-
tal fields satisfy

?wio(2) (a2 + iwo’R) + w%)(z) + ngg) (z) =
Raw)y(z) + wly(2) (2a2 +iweR), (Al)

Ciio(z) (o +iwg) = Cfio(2) + Clyo(2), (A2)

and are subject to the boundary conditions
wlo(O) =0, wllo(o) = inalRa (A3a7 b)
wio(2), wip(2),Clo(z) =0 as z— oo, (Ada—c)
on (B + ke +ioo) = (14 8)C10(0)+ (A5)



+(1 = kg)Ci10(0), (A6)

iBonooL = (L (B +kg) + 1 —kg) (Cio(0) + dn) +
+ (B+1)n (kg — 1) (T + mo + iogld), (A7)
where
L =log|(8+ke)/(Bke + kE)] . (A8)

This zeroth-order problem (in V) has been examined by
[25]. An explicit solution for mg exists and is given by
(45).

To proceed with higher order terms, it will be of use
to note the form of the zeroth-order perturbed vertical
velocity and solutal concentration fields, which are given
by

wig(z) = Aye” RHA2)2/2 4 goemaz (A9)
Cro = Age” M HD2/2, (A10)
where
—2i77041R
1 2 _2a+)\2 +R7 ( )
26m (B + kg +ioo)

A = — , Al12

° (B+ DA + 5+ 2kg —1 (A12)

Ao = V4a? 4+ R2 + 4iwgR. (A13)

2. First order

The first-order perturbed vertical velocity wy; and so-
lutal field Cj1; satisfy the forced equations
—a® (a® +iogR) wi1(2) + ®Ruwi (2)
+ (20” +iooR) wi (2) — Ruwy1 @ (2) — w1 W (2)
= —iR (kleﬁR (a2 + R2) —a? (ky + 01)) wio(2)

— iR (o1 + k1 — kie” ") wiy(2) (A14)
and
— (a® +i09) Cin1(2) + Cpyy (2) + Gl (2) =

) (01 + k1 — k167ZR) Cllo(z) + de” ’wlo(Z), (A15)
along with the boundary conditions

wi1(0) =0, wi,(0) =0, (Al6a,b)

w1 (2),wy,(2),Cn1(2),—~ 0 as z— oo, (Al7a — c)

(1 + ﬁ)cl/ll(o) + (1 - kE) 0111(0) = in015 (A18)

where my is determined by

iBono1 L = 0111(0) (ﬁ (B + kE) — kg + 1)
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+ B+ n (kg —1) (m1 +iod), (Al9)
and wj is chosen to make &(mq) = 0.
The solutions w1 and Cjq1 are of the form
wi1(z) = Lie”®* + Lyge *BRTA2)/2
+ (L1z + Logz)e *(RHA2)/2 L ) e=#(@FR) - (A20)
Olll(z) — Pll€7z(a+1) + P12672(A2+R+2)/2
T Pge 2 H2R+D)/2
+ (Pry + Pyyz)e”M1tD=/2, (A21)
The constants are given by
Lo :2_1A1a1 (—i)\g + 200 +iR) (6@2
+4R? + X2 (4R +i0g) + TiogR) ™", (A22)
L23 :(—ZA1R2 (041 =+ 0'1) ()\2 =+ QiUO =+ R))(R
(4a? + R? + 4iogR) + MaR(R + 2i0p)) ', (A23)

P12 :2A15(/\2(R + 1) + 220’0(7?, - 1)

+R(R+1)7! (A24)
L14 :iAQOqR((a — iO’Q) (26! + R))_l, (A25)
P11 =A25(a — iUQ)_l, (A26)
Pz =— iA3a1(R()\1 + R))il, (A27)
Py = —iA3 (a1 + 0'1)/\Il, (A28)
L11 :(2L12R + 2L14R - 2L23)(—2OZ + AQ (A29)
+ R)_l — L4, (A30)
L13 :(—2L12R - 2L14R + 2L23)(—206 + )\2
—I—R)_l — L9, (A31)
Py=—P3+ { —2idnoy +2(8+1)Poy
— 2Py + Pray2 — 2(8 + 1)P13R} :
-1
JB+OM B2k —1] (A32)
where
7 =aB+1)+(B+ke), (A33)
Y2 = =B+ 1A +R)—2(8+kg). (A34)

Noting that Cj11(z) is pure imaginary if wy = 0, we
deduce from the real part of (A19) that mqy = 0. If
wo # 0, then we deduce from (A19) that m4 is given by

E(B-f—kE 1—kE
n(B+1)(1—kg) ;%P“

my = (A35)

3. Second order

It is necessary to examine second-order asymptotics
to determine the influence of flow on the leading-order
steady branch.



The governing equations for the perturbed vertical ve-
locity and solutal fields, wi2 and Cj12, are given by the
forced differential equations

w12 (2) + Ruwia® (2) — (2042 +iooR) wiy(2)
P Rul(e) + (o + o) wia(s) =
= Hype *0F2R) 4 [ 3¢ (04 R)
+ H1116_2(>\2+5R)/2
+ (Hip + 2Higy)e >R T3R)/2

+ (Hys + 2Hygs)e P2t RI/2 0 (A36)

Clia(2) + Clia(2) — (& +i00)Chiz(z) =
= Hope #@+RHD 4 [, pe= (@t D)2
4 Haypge— 20 t+3R+2)/2
+ (2Hagr + Hoyq)e M1 H1=/2
+ (2Hagq + Hopq)e 22 tRA2)/2

+ Hyyge—*QataR+1)/2

+ (2Hao + Hapg)e "M T2RAD/2, (A37)

The forcing terms involve lower-order solutions and can
be succintly given in terms of the following constants

1
H111 =§a1R2L12(—3M2 + 200 - 31R),

Hi1s = — 2iccy R? Laa,
Hii3 :i’R2(L14(a1 + 0’1)(20& + R) + OleLll),

1.
H114 —§’LR<>\2(3R(OZ1 + 0’1)L12 — OélRng
+ 2a1L23) + R((al +o01)(BR + 2i00)L12

+ 041(7?, — QiUo)ng + 20[1[423)) y

1
Hiis 252R2 ()\2 + 2109 + R) (ng (a1 + 01)
+ Alo'g) — 1R Lo3 (041 + 0’1) (/\2 + R) R

1
Hioy 250417321)23(—1'/\2 + 209 +iR),

1
H125 :51'732L23(041 + 0'1)(>\2 + 2i0’0 + R),

H11 =0L14 — iy Pry,

Hyip =0L11 +iPrii(a1 + 01),
H13 =0L12 — iy Py,

Ho14 =0L13 + iP1a(a1 + 01),
Hazq = 6 L3,
Hoi6 =i(P13(o1 + 01) — a1 Pra),
Hy7 =i(Pra(oy + 01) + Azoz),

Ho15 = — 101 P13,

Hoos = —ian Pay, Haar = iPay(0n + 01). (A38)
The corresponding boundary conditions are
wi2(0) =0, w),(0) =0, (A39a, b)
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wi2(2), wis(2), cn2(z) = 0, as z— oo, (Ad0a — c)

(1 — kE) 6112(0) + (B + 1)0212(0) — i5770'2 =0. (A41)

The solutions are given by

wia(z) = Jire TR 4 Jpppem#@F2R)
+ Jiize #P2HRIZ 4 1 e
+ (Ji1a + 2J1ag)e 02 43R/
+ (Ji1s + 2J125 + 22 J135) e P2 FRI2 0 (A42)

Cha(z) = Jopre”@FTV= 4 Jype (@t RAD
4 Jypge—FAARED)/2

F Jypge—ZRat3RA2)/2

+ (2225 + Jars)e” 25 A2tRA2)

+ (2226 + Ja1g)e” FFMTIRAL

+ (Ja17 + 2Joar + 2% Jas7) emMFD2/2 - (A43)
We note that both of these satisfy the required decay
conditions despite the polynomial terms, owing to the

sign of the exponential decay constants. The remaining
constants are given by

Jii1 =Hi13(R*a(2a+ R)) ™,
Ji12 =H112(4R2(a +R)(Ba+ 2R))_1,
Jiiz =H111(R? (200 + 31R? + 23RA;))
Ji2a =H124(R? (60° + 4R* + 4RA5)) ",
Jiia = {H114 (2R (6a* + 4R?) + 8X2R?)
+ Hiza (2002 +19RA; + 21R?) |-
-1
[2R? (602 +4R2 +4RN2) 2|
Jios = { (2R (4O‘2 + RQ) - 2732)\2) Hiis
+ (~6AaR — 2 (802 + 3R?)) Hizs -
-1
: {RQ (40% + R* + RX;) 2} :
Jiss = — Hi25(R (40® + R?) + R*X2) 7,
Jo11 =Haa ™,
Jo12 =Ha11(a+ R* +20R + R) ™,
Jo13 =Ho15(2R (A + 27?,))71,
Jora =2H213(A2(3R + 1) + R(5R + 3)) 7",
Jo1s =4Haoa(Mg + (R +1)) (M2 + R) 3 (R +1)72
+2Ho14(M2 + R) TN R+ 1),
Joos =2Hao4(Ao +R)H(R+1)71,
Jogr = — 27 Hoor AT



Jo16 =Ha16(R (M +R)) ™
+ Hazg (A1 4 2R) (R? (A + R)H) !
Jase =Hazg(R (M +R)) ™!

Joor = — Hoypr AT — Hoor [ 2, (A44)

and

Ji1s :[ — 2R J111 — 4R J112 + 2J124 + 2J125
(20— 5R — Aa)Ji13 + (20 — 3R — Ag)Jm]
(—2a+ X+ R)

Ji16 = [(20& +R = A2)J111 + (2 + 3R — A2)J112
+ AR + 2R — 2121 — 2125 |
(—2a+ XA +R)!

Jor7 = [ (1 = kg) (J213 + J216) — (B + kE) (2J211
+ 2J212 + Jo13 + 2Jo14 + 2J015 + Ja16)

+ B+ 1)( —2ad211 — 2(a+ R)J212

— (M +4R) Ja13 — (A2 + 3R) Ja14
— ()\2 + R)J215 — (/\1 + QR) Jo1g + 2J2925

+ 2J226 + 2J227) - 2i57702} .

A(B+DM+B+2kp—1)7, (A45)

For brevity, we have set wyg = 0, corresponding to the
leading-order steady branch.
The second-order correction ms is determined by

iBdnos L = 0112(0) (ﬁ (B + kE) +1-— kE)

—’I](B-ﬁ-l) (1 —kE) (m2+i0'21/{), (A46)

once the solutal field Cj15 is known and the value of o9
is determined by requiring that $(mg) = 0. This gives

7
L(B+ke)+(1—kg)
" B ) (1 kp) )

j=1

(A47)

thus determining the influence of weak flow on the steady
branch.

Appendix B: Singular perturbations
1. Zeroth order in V'/3

The governing equations for the perturbed vertical
velocity and solutal fields correspond to those of the
zeroth-order regular expansion in Sec. A1, in which it
is taken that wp = 0 and o = a1 = ajg. The solu-
tion for the two fields is given by (A10), where the con-
stants Ay, As, Az, A1, A2 are modified in that wg = 0 and
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a = a1 = ajig. The zeroth-order contribution to the
inverse morphological number may be simplified to

5(1—ke) + L (8 + ki)
B+1)(1—kg)

2(B+kg)
'(1_<ﬁ+1)A1+ﬁ+2kE—1)' (B1)

~ 2
mo = — ajl +

2. First order in V'/3

At first-order in V/3| the governing equations reduce
to

“711(4)(2) + R Y (2) = 2a%0u~/1’1 (2) — Q%OR@/M(Z)

+ afgin1 (2) = —iatgRan o (2) + iRO1wy(2), (B2)
& (2) +an(z) - aioélll(z) = iW16110(2), (B3)

and are subject to the boundary conditions

@11(0) = 07 wil(o) = 07 (340’7 b)

w11 (2), w1 (2),¢n11(2) 20 as z— o0, (Bba-—c)

(B+1)¢1,(0) + (1 — kg) én11(0) —idnwy =0,  (B6)

iponLar = ¢n1(0) (L(B+kgp) + (1 —kg)) (B7)
+ ([‘3 + 1) (kE — l)inL{c:Jl. (BS)

This is a forced system of differential equations, where
the forcing term is given in terms of the zeroth-order
solutions. Its solution is given by

Wy = Ly ge” 107 4 (Ziz,l + Ll,l) 6_%2(:\2+R)7 (B9)

G = (2P2 L+ P 1) e QZ(:\IH)a (B10)
where
5 s 2URALG
Li1=—L1s=—— Askiad —, (B11)
(/\2 - 20[10 + R) /\2
Lo1 = — iRA1&1 /g, (B12)
By 1)As/\
Py = 2ipy —GTDAM v on gy
B+ +8+2kg—1
Py = —idzin /M, (B14)
and
M =/4a3y+1, Ay =4/4a}, +R2.  (Bl5a,b)



We find the first-order restriction on the inverse morpho-
logical number is given by

Py (L(B+kg)+ (1 —kg)) —iBénLin
(B+1)(1—ke)n '

W, =
(B16)
Noting that Aj is real, and hence that Pl,l is pure imag-
inary, it must be that all of the terms above are purely
imaginary. This ensures that the first-order contribution
to the inverse morphological number is real, which we
expect on physical grounds. This relation gives that ei-
ther w; = 0, which we exclude as it corresponds to the
regular expansion away from the singular root, or that
the wavenumber a1 satisfies the relation (63).
Higher orders need to be considered to restrict w;. We
will find that examining the third-order in V'/3 is suffi-
cient.

3. Second order in V'/?

The governing equations at O(V2/ 3) are

w12 (2)+Riin2®) (2) — 203005 (2) — aFg R, (2)
+a‘110u]12(z) = —afouilo(z) (404106!11 + i'R(Dg)
+ 20411(1107?,’(1}/10(2) + 46!110410’[17’1/0(2)

+ iRy (2) — i3 R11011(2)

+ R0 (2), (B17)
for the vertical velocity, and
F12(2) + G12(2) — afolna(z) = i@r1éni (2)
+ (2ag0011 + i@2) é10(2), (B18)

for the solutal field. The boundary conditions reduce to

1[}12(0) = 0, ’UNJIH (O) = i?]Oé11R, (Bl9a, b)

Wi2(2), W] 5(2), n2(z) = 0, as z— oo, (B20a — c)

(B+1)15(0) + (1 — kp) ¢112(0) = idns, (B21)
c2(0) (L(kg + B) + 1 —kg) /n = iB6 Lo
- (ﬂ + 1) (kE - 1) (ﬁ”LQ + ’L'UCZJQ + 2F04100111) . (B22)

The solution is given by
Wi2(z) = (22j1,3,1 + Zjl,z,l + j1,1,1) e*Z(S\2+R)/2
+ (Zj1,2,2 + j1,172) e~ X10Z,

na(z) = (Z2j2,3,1 + zjz,z,l + jz,l,l) e_z(’—\lﬂ)ﬂ7
(B23)
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where
Jiog=— 2[5\2731511,1,1 +(2X + R)ﬁm,l]
[RR2Ge +R)
j1,2,2 :2711?1,1,2041_0273717
j2,2,1 =— gQ,l,lj\Il - ﬁ2,2,1:\f2,
Jag1 =—2""Hao1A ",
Jign =— Hi21(RA(R+ X)L,
j1,1,1 =— j1,1,2 = 2(j1,2,1 + j1,2,2 —ina11R)-
(A2 —2a10+R) 7,
Jo11 22{(5 +1)Jo91 — i577<7d2}'

. —1
JE+0h e -1, (B2
and
Hii1=R(A2+R) {2a100411f~11 +i(RénLyq
+ R/il(bz — 2(:)1i/2)1):| /2,

Hi o1 =iR*01Lay(Ae +R)/2,
ﬁ1,1,2 = — 2a10R(arpai; Ag + id}1i2,2),
H2,1,1 =2a10a11 A3 + i(@1151,1 + Azin),
ﬁ2,2,1 =i®1p2,1= (B25)

from which we deduce that
ﬁ’LQ = —2FO&100&11 — ’LZ/{(:JQ — |:j21171(£(kE + ﬂ) + 1
-1
— k) — iBENLE [(B+1) (ke — )] . (B26)

Requiring o to be real, we find that mq satisfies (67)
and @y solves

BéLnws —UB +1) (kg — 1) niz =
S(Jo11) (L(kp + B) +1—kg). (B27)

Since mo depends on @y through R (j2)171>, we note that

we have insufficient information to compute the value of
ms, as no information about @; is revealed up to the
current order in V'/3. Tt is necessary to examine the
next higher order for this.

4. Third order in V'/?

The governing equations at third-order in V'/? are

21713(4)(2) + Rﬁ/l?»(g) (2) — 26@0“%3 (2) - Q%OR@/B(Z)
+ afgtins(2) = iR WYy (2) — ia2 Rt (2)
+ (404106!11 + ZR(:JQ) ’U~)I1/1 (Z) + 20411(1107?,’(1}/11(2)



— adtin (2) (dajoarr + iR@2) + iRWY(2)-
(a0l —e ) +@3) + z‘((o[f’o + R¥)e R
— (2@11@1 + aqp (@10 + 03)) )041073,2[}10(2’), (B28)

for the velocity field and

~I!

Fhs(2) + E13(2) — afplns(z) = de 1o (2) (B29)
+ iéllo(z) ((:)3 + a19 (1 - €_ZR))
+ (2a10a11 + i@g) Ci1 (Z) + i@léllg(z), (B?)O)

for the solutal field. The boundary conditions reduce to

w13(0) =0, wi5(0) =0,

wW13(2), Wi5(2),éns(z) =0 as z— o0

(1 —kg) cns(0) + (B +1)é115(0) —idnis =0,  (B31)
en3(0) (L(ke + B) +1—kg) /n=iB6Lws
+(B+1)(1—kg) (M3 +ildws). (B32)

The solution is forced by the solutions corresponding to
the three lower orders and is given by

12(5\24-37{) z(a10+R)

wiz(z) = Xi1a€ 2 + X1,1,2€"

. . . . _1.(5
+ (23X1,4,3 +2%%1,3,3 + 2X1,2,3 + X1,1,3) e 37 (AR

+ (2*X1,3.4 + 2X1,24 + X1,1,4) €107, (B33)
cus(z) = )2271)16—%2(5\1-1-27{4-1)

+ (2° X244 + 2°X2,3,4 + 2X2,2.4 + X2,1,4) e 37(Mit1)

+ )2271)26—%2(5\24-734-2) + )22)17367(a1o+1)z, (B34)
where,

X111 =R111(2R* (2R A + 302, + 2R?)) 71,
X112 =Ri19(a10R? (2010 +R)) 7Y,
X123 = 2R113((A2 + R)RX2) ™! — 2Ry 25(202 + R)-
(A2 +R)R*A3) ™! — 4Ry 33(200 + R)-
222+ MR+ RORPA (e + R)H) L,
X133 =—2R133(R +2X0)(RPA3(R + X))~
— Ri23(RX\(R+X2))7 1,
X143 =—2R1333RA2(R+ X2)) 7",
X124 =(2010RR11.4 + (3R — 4a10)R12.4)-
) (40&07%2)717
X134 =Ri24(403)R)™Y,  Xou3 = Rojis0ay,
X211 =Ro13(R(M +R)) ™,
X212 =2R011(R+1)(A2 +R)) 7,
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X224 = — (401%01{32,1,4 + 5\11:32,2,4 + R2,1,4
+ 2Ry 5 )N,

X234 =—2 "Ro A" — Rogali?,

Xo4=— 3 "Ro34\[2, (B35)

and

X1,1,3 =(2X1,2,3 +2X1,2.4 — 2RX1,1,1 — 2RX1,1,2)"
(Mg — 2010 +R) L = X111,

X1,1,4 =(2RX1,1,1 +2RX1,1,2 — 2X1,2,3 — 2X1,2,4)
(A2 — 2010+ R) " — X112,

X2,1,4 = — X2,1,1 + [((ﬁ +1)(co+ 1)+ ke —1)x213
+ ((ﬁ F 1) +R+2)/2+ ke — 1)5@,1,2
+(B+1D)RX211 — (B+ 1) V04 + i577(1;3} :
(I—kp— B+ +1)/2)7", (B36)

and
. 1 o
Riii= — 5204107321410\2 -R),
Ry = iaigR? As,
N 1 - . L
R11173 = 57?,(/\2 + R) |:’LRW1J11171 — 2%01(]11271
+ (204100411 + ’LRCZJQ) f/l,l] + QiRd)legJ
— 1’3271 (R(20&100&11 + ’LR(:}Q) + 5\2(40[100&11
1 .
+ Z'R,(I)g)) + §ZRA1 (alo(R2 - 40411(:)1)
+ RXa (@3 + a1g) + R25J3),
N 1 - . L
R11273 = 57?,(/\2 + R) [’LRwleQJ — 42601(]11371
+ (2ago01 + iR5J2)l~/2,1},
N 1 o -
Ry33= 52R2w1(>\2 +R)J13.1,
Riia= —2ia10R&1J1 29 + 2iR&1 1 3,2
+ 2019 Lo o(R(a11 — i) — 4apanr)
— 2(11104%0Ri/172 — 2ia11a107€f12d}1,
R1,2,4 = — 20&11C¥%0Ri2,2 — 4i0¢1073@1j1,3,2,
Roq1 =06A1, Ropo=04A,,

Ry 1.4 =tw1J21.1 + P11 (2aip0q1 + i@2)

+ ’L/ig (C:)g + 0110) y

Ry 1,3 = —iaipAs,

R2,2,4 = Z'6711j2,2,1 + 162,1 (2a100011 + iw2) ,
Rysa =it oz (B37)
From this, we deduce the relation

~ 1B L3

N R N =



4

L(B+ke)+1—kg
(B+1)(1—kg)n Z

+ X2,1,n- (B38)

n=1

for m3. Requiring that (m3) = 0, as expected on phys-
ical grounds, yields a condition for @& (the prefactor of
w3 vanishes by definition of the wavenumber a;q specific
to the singular root). Specifically, we obtain the cubic
equation (68) for wi. The coeflicients ~; for j = 1,2,3
that appear in (68) are given by

vi = B (8kg +3) (2k% + kp + 1) k® (2kp + 1)

— (2kp + Dk32 + 082, U),
—28Y2(2kg + 1)2k*? + O(8%,U),
BR(2kpR + 2kp + R+ 1)~ + O(8%,U).

72
3

(B39)

5. Fourth order in V3

The governing equations become

iy (2) + Rw14(3)(2) - 2a%0u]'1’4(z) - Q%ORWM(Z)
+ afoiina(z) = iR W5 (2) — ialyRan s (2)
+ (204 + iR@s) @y (2) + of | Ry (2)
— a0 (2011 R@s + iR + 6aipad; ) wio(z)
+ iR (@3 + 10 — aroe” *®) @l (2) + ia10R((ad,
+ R?)e™ ™R — (201101 + a10(@3 + a10)))wi1(2)
+ 201110 RWY 5 (2) + (oo + iRW2) Wiy (2)
— ady (dajgarr + iR@s) W12(2), (B40)
and
A4(2) + Ea(2) — afplia(z) = i@réna(z)
+ (200001 + iW2) En2(2)

) ana(z)
+ (a%l + 7;(:)4) 5110(2’) + 66_'2@11(2),

+1 (513 + ajp — ajee
(B41)

subject to

w14(0) =0, wi,(0) =0,

Wi4(2), W4 (2),n4(2) = 0 as 2z — oo,

(1 - kE) 5114(0) + (ﬂ + 1)5{14(0) —10ny = 0, (B42)
&n4(0) (L(kg + B) + 1 —kg) /n = iB6 Ly

+(B+1) (1 —kg) (M + o} T + ildd,) . (B43)

The solution is of the form

17
2 ~
~ 1
+ Z ¢17n)22n—167§z()\2+373)
=1

4
+ E P1,n32" teT @074

n=1
2
+ E ¢17n)42n—le—z(a10+72)7

n=1

(B44)

5
ena(z) =Y Gonaz e 3 (0H)
n=1
2
+ Z ¢2,n,22’n71€7
n=1
2
+ Z ¢2,n,32n7167
n=1

2
+ E ¢21n74zn7167(a10+1)27
n=1

1z(A+2R+1)
1z(A+R+2)

(B45)

where the coefficients (;3”1C are given in Appendix C.
Equation (B43) restricts the morphological number to
satisfy

(B+kg)?

iy = —Tai, + ~——=—= e

Z¢21j5

(B46)

which depends on ws through ¢Z2)17j. Precisely, the form
of my is given by

Ty = pri] + p2an@F + psin + pacdy + psios@n, (B4T)

where p1, ..., ps are numerical constants that depend on
a19 and the physical parameters. To determine ws, it is
necessary to consider the next highest order.

6. Fifth order in V'/3

The governing equations at O(Vl/ 3) are

B3 (2) + Rayy () — 20355 (2) — afyRaii5 (2)
+ adyins(2) = iR& (04(2) — afgia(2))
+ (darpann + iR@2) (073(2) — afgra(2))
+ 2a11010RWY5(2) + iR ((:)3 + aqg — aloe_ZR) .
- (Wy(2) — afoiz(2)) + i Rady (2)
—ia1oR (2a11@1 — RPe™ ") 12(z)
+ (201, + iR@4) WY (2) — c10(2ic11R@:
+ia1gROs + 6aroa’; )1 (2) + iR(Ds
+ai1 — ane” F) (W (2) — 3atydio(2))

. 2 ~ 2 ~
+iR(2a5,ws — 20011001003 — QW1



+ a1 R2e™ )iy (2), (B48)
5l15//(z) + &;15(2) — 04%05[15(2) = Z'C:J15114(Z)

+ (2a10a11 + i@’g) 5113(2’) + Z'((Dg + oo
727%)5112(2’) + (Oz%l + 7;@4) 5111(2’)

) Eno(2)

— (1p0€
+i (@5 + 11 — axre

+ 56_2@12(2), (B49)

subject to

W15 (2), W5 (2),en5(2) = 0 as 2z — oo,

(1 = kg) éns(0) + (B + 1)&15(0) — idnws =0, (B50)
cus(0) (L(ke + B) +1—kg) /n = iB6Lws

+(B+1)(1—kg)(ns +ildws). (B51)

The solution is of the form

6
W15 (2 E 01,n,12"
+ E 91)71722"716_
n=3

5
4 E 91)%32717167&102

n=1

3
+ Z 91 n. 42’" 1 7z(a10+73)

z(S\g-i-R)

12(A2+3R)

(B52)

6
5115(2:) _ Z é21n712n7167%z(A1+1)

~ 7l Y
+ Z O 22" e Lz(A+2R+1)

n=1

Z9zn32" 1,—1z(A24+R+2)

le—(er0t1)z (B53)

+ Z é2,n,4Z
n=1

where the coefficients ;. j.k are given in Appendix C. The
relation (B51) gives that @3 must satisfy

- [3—|—kE
"= B Dk ; 21,3

iﬂ5£W5

T EEDGe - 1) (B54)

— Uws.
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Requiring the morphological number to be real yields
that ms = 0 and noting that oy = «j¢ corresponds to
the triple root eliminates ws. The equation for w3 then
reduces to the form (70), where pg, ..., p12 are numeri-
cal constants that depend on the parameters. With ws
known, the relation (B47) is sufficient to determine m.,
and hence the inverse morphological number is known to
the required order in the inner region.

Appendix C

The coefficients ¢; j 1 are given by

b121 =R™INg* {2732&3(4@‘;‘0 —3X3)J1.2.3 + 16RA3-

(=22 — R334+ a2yR?)§1.3.3 + 24(—40a7 A3
+ 150503 — 503 — 4oy (4ady + 3R?))g1,43

- 27335\%@1,1,3] ,
b131 =R3N3° {12(80@0:\3 — 322 — 202,(8a2, + R?))-
G143 — R®N2G1.03 + 2RA3(4a?, — 3:\3)§1,3,3} ,

P41 = {%,4,3(2404?0 — 18X3) — 2735\3@1,3,3} (3R?A3)
P51 =— Gr432RAs) 7,
b11.2 =201.1.1(R*(A2 + R)(3X2 + 5R))
+ 241,21 (19RAe + 2003, + 21R?)-
(R3EM2 +R)2(3BAy 4+ 5R)?) !
$1.2.2 =231.21(R*(A2 + R)(3X2 + 5R)) 1,
b12,3 =(1603) + TR? — 16010R)§1,3,4(4atyR?) 7!
+ [2a1073§1,1,4 —4a1001,2,4 + 373@1,2,4} :
) (40‘:150732)71
b1,33 =(a10RG1,2,4 — 40107134 + 3RG1,3,4) (40 R?) ™!
b1,43 =G1,3.4(6a3)R) !
b1.1.4 =31,1.2(010R? (2010 +R)) ™! + (6argR + 603,
+R*)g1,2,2(03 R (2010 +R) %)~}
b1,2.4 =G1,2.2(a10R? (2010 + R)) 7,
&2,2,1 =— (4a3yGo1a + 5\192,2,4 + G214+ 292,3,4)5\17
— 62,440,
$a31 = — (4a30G2.0.4 + 2N G234 + G2,2.4 + 672,4.4)-
(207,

G241 =—3 G230 " — G2a4N 7
Po51=— 4" G2 aaN ",
G212 =0211R (M +R) T+ Ga1 (A1 +2R)-



R +R)?,

~ - - -1

$2.22 =G22.R (M +R) ,

<Z>2,1,3 =2g21,2(R + 1)71(:\2 +R)t+ 4@2,2,2(:\2
+R+DR+1)2A+R)2,

$a23 =2G222(R+1)" 1A +R) 7,

bt - - - )
$2.1.4 =(@10G2,1,3 + 20110G2,2,3 + §2,2,3)¥1¢ »

$2.2.4 =02,2,3000 (C1)
and
951,1,1 =2 (Ei:ﬁf;l,z,n - Réf;l,u - Réf;l,m)'
(A2 —2a10+R) ™ — 112, (C2)
O3 == 2(Thorbrom — Rraz — Rovia):
(A2 = 2010 +R) ' — b114, (C3)

$2,11 = { —-2(8+1) (Ei:ﬁfgz,z,n — (a10 + 1)@32,1,4)
+2(kg — 1) do1m+ (B+1Dda1o(h
+2R+1) + (B + D232 + R +2)+
. 1
+2ionn) 200 — kg) = B+ DGu +1)]
(C4)
The g;, ;1 are given by
§11171 :ialoRizyl(:\Q + R) - iOélOR2E1,1(5\2 - R)/2
+iR201%1.1.1(3h2 + 5R) /2,
Jro1 = —ia1gR?*La1(Aa — R)/2,
G112 =ioR3 Ly o + 2i02 R Lo
+ iR*@1 (2a10 + R) X1,1,2,
1,22 =ia1gR3 Lo o,
91,1,3 204100411Rj1,1,1(5\2 +R)— 20410011j1,2,1(2:\2
- 1. o ~
+R) + 8aipar1J1,31 + 51R2W1X1,1,3(/\2
+R) — iR X1,2,3(A\2 + R) + 2iR&1%1,3.3
ol AR (5\2 n R) —8a2)/2 +iRL1 .
(10 (R? — 4an1@1) + Rz (@3 + aio)
+ R2@3)/2 — iRLgJ ((:13 + 0410) (5\2 + R) s
G123 =011 RI12,1(A2 + R) — darpars J1,3,1(2Xe
1 -
+7R)+ EiRQCJl)Zl,g,s()Q +R) + 6iRO1X1,4,3
— 22'7?/@1)217313(:\2 + R) + Z'Rizyl(alo(,}??
- 40411(:)1) + 'R,j\g ((:)3 + alo) + 'R,2(:)3)/27
91,3,3 :'le)&l (5\2 + R)(2a10011 + 2'7?,(:)2)/2 +iR%
c01X133(2 + R)/2 — 3iR1X143(A2 + R),
g1,43 =iR*1X1,43(M2 + R)/2,
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G114 =—2011030RJ1 1.2 + 2011000 (R — 4aig) Ji 22
+ 80411a10j1,3,2 - 22'041104107347J11~/1,2
— 2ia10R L2 2 (&3 + ai0) — 2ia10RG1X1,2,4
+ 2iR&1X1,3,.4 — 10031 Az (darg + R),
gi2,4 =— 20&11OZ§ORJ~1,2,2 + 4daria10 (R — 4aqo) j1,3,2
— 2iay1 10RO Lo g — 4ia10RO1X1,3.4
+ 69 RW1X1,4,4,
G134 = — 2011020 RJ1 3.2 — 6i10RO1X1,4.45
G211 =i01X2,1,1 — ia10Pr 1,
g221 = — Z'04101’52,1,
§2.1,2 :5131,1 +i01X2,1,2,
G222 :5E2,1,
g2.1,3 :5l~?1,2 + 1W1X2,1,3,
G223 =0La 3,
G214 =J21.1 (2000011 + i@) + i P11 (O3 + a10)
+ i1 X214 + Asad,
§2.2.4 :j2,2,1 (210011 + iw2) + iPQ,l (W3 + a10)
+ 1W1X2,2,4,
§2.3,4 :j2,3,1 (2a100111 + i02) + i01X2,3 4,
92,44 =1W1X2,4,4 (C5)

The coefficients éuk are given by

§172)1 =| — 1673,2(4&%0 + R2)f173,3(24a‘110;\3 - 13(1%05\5

+3\3 — 16a%)) — 24R f1 4.3(—3225) A3
+46a19A3 — 150203 + 5A3 + 2408, (40,
+R?) — 8R*(4afy + R?)* fris(—4aiohs

+ A2 4 4al,) — 4811 5.5(—384a8,As + 25203, A3
— 5002003 + 1504 + 160, (1502, R? 4 600,
+RY) — AR3\3(4aty + R?) f12.3(—10a% A

+3)2 + 80/1*0)} (R°A3)L, (C6)

§173)1 = |:4R2(4Oé%0 + R2)f1)373(10a%05\3 - 3/~\§ — 8(14110)

—12R f1.43(8a g A3 — Ta2A3 + 3X3 + 4oy
(402, + R?)) — 481 5.5(40a% A3 — 1503, \2
+ 53 + 4at, (403, + 3R?)) — 2R3 \3(4a?,
+ R?) fr23(RAa + 203, + R?) | (R*A4) L,
(C7)

0141 =| — AR*(402) + R?) f1.33(RAs + 202, + R?)

- 48];1)573(35\3 - 804%05\3 + 204%0(&@0 + R2))



— 6RA3f1.43(303 — 402)) | (3R3AD) L, (C8)

51,5,1 =- (Rf1,4,35\3 + 4f~1,5,3(3R(5\2 +R) +8a3y)):

C(2R2A2) 7, (C9)
0161 =—2f153(5R\3)", (C10)
0112 =f1.11(2R%*(2RXa + 302, 4+ 2R?)) !

+ fr21(19RXg + 200, + 21R?)(8R?(2R A2

+ 302, 4+ 2R%)%) 7 + f1.3.1(25802, Rz

+ 255R3 Ny + 74402 R? + 15204, + 257TRY).

C(8RY2RAg + 302, + 2R?)%) L, (C11)
0192 =f121(2R?(2RAs + 302, +2R?) ™1 + fia1-

(19R A2 + 2002, + 21R?)(4R3 (2R X2

+3aj, +2R*?) 1, (C12)
0132 =f1.31(2R%*(2RX\2 + 302, + 2R?)) L, (C13)
0123 =(2010Rf1.1.4 — 410 fr04 + 3R f10.4)-

(403, R + f13.4(1603, + TR?

—16a19R) (40t R?) ™ + 3f1.4.4(8002 R

—48010R? — 640, + 15R?) /(85 R?Y), (Cl4)
0133 =3f1.4.4(1602) — 16010R 4+ TR?)(8a,R?)

+ (a10R f1,2.4 + 3R f1 3.4 — 410 fi3,4)-

(43 R, (C15)
51,4,3 :(20410Rf1,3,4 - 120&10f1,4,4 + 9Rf1,4,4)'

(1203, RH) 7, (C16)
0153 =f1.44(803,R)"1, (C17)

0114 =f1.1.2(10R?* (2010 + R)) ™ 4 (6aroR + 602,
+ R?) fi22(a3,R? (2a10 + R)?) ™ + 2(R*+
9a19R? + 3323 R? + 5005 R + 28a):
- fr32(a3RY (2000 + R)P) 7L, (C18)
0124 =f1,22(10R* (2010 + R)) ! + 2f1 32(6a10R

+ 602, + R?) (a3 R3(2a10 + R)H) ™, (C19)
01,34 =f132(a10R? (210 + R)) 7, (C20)
0221 = — f2,1.4M " — f2240 2 — 6faa a0

— 2fa 340 % = 24 0 540", (C21)
O2,310 = — f224207" — fa3aly? — 12fa 540"

— 3fa44N 2, (C22)
0241 = — fo3430" — faua % — 4fa5aNT7, (C23)
Os51 = — fou4dM" — fas40] 2, (C24)
0261 = — fo545M1 %, (C25)
02,12 =2f231(3R\ + 403, + 3R + 1)-

S(REM +R)) T+ fapi (M + 2R)(R*

M +R)) T+ foaai(ROL+R) T, (C26)
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0220 =2f231(M + 2R)(R*(M + R)*) !

+ fo21 (RO +R)) 7, (C27)
0232 =fa31(R(M +R))7L, (C28)
0213 =8f2,32(3(R+1)(A2 + R) + 8ad, + 2)-
AR+ A +R)P) ™ +2f210
(R4 +R) ™ +4f222(
+RA1D((R+1)%(2 +R)?)7L, (C29)
0225 =2f222(R+1)(A2 +R)) ™! +8f232(N2
+R+AD((R+1)*(A +R)?)7H, (C30)
0235 =2f232((R+1) (A2 +R)) "1, (C31)
O21.4 =fon3010 + (arg + 2079 foz.3
+2f2,3,3(40%y + 3aig + 1)agg, (C32)
0224 =f223000 + f2,3,3(4a0 + 2)oiy, (C33)
92,3,4 =f2,3,3041_01, (C34)
and
0111 =2 (Eizlél,zn —Rb12 — R§1,1,4) ‘
(A2 —2a10+R) " — 0119, (C35)
0113 =— 2(231:191,2,71 ~RO112 — Rél,lA)'
(A2 —2a10+R) ™" — 114, (C36)

52,1,1 = [Q(ﬁ + 1)( — Ei:lélln + (0410 + 1) 52)174
+ R§2,1,2) 4+ 2(kg — 1)(02.1.3 + 02.1.4)

: [2(1 —kg) — (B+1)(\1 + 1)} o

- 52,1,27 (037)

where
fiin = —ia1oR*J111(A2 — R)/2 — 2icioRJ1 3.1
+ ’L'Oélole_Q’l(:\Q + R) + R)Ncl)l_’l(j\z'
. (100&100&11 + 317?,(:}2)/2 + R(14O[100411
1 . -
+ 5iRE)) + 5iR*B161,12(3% + 5R)
— ’L.'R,(I)l(l;l’g)g(;\z + 3R) + iallRfll (R
(R = X2) +40a3))/2,
fl,z,l =-— iOéloR2j1,2,1(5\2 -R)/2+ 2i010Rj1,3,1'
(A2 4+ R) + iR%*01h1.22(3\2 + 5R) /2,
fian = —ia10R*Ji31(02 — R)/2,
fiae =ia1oR3 110 + 2102 RJ1 20 — 2ia10RI1 3.2

+ iR (2010 + R) d1.1.4 + RX1.1,2(2010011 -
- (3arp + R) + im2(20610 +R)) — 2iRwr-

(C38)

(C39)
(C40)



(10 + R)P1,2,4 + i1 RA2 (203, + R?),

(C41)

fro0 =ia10R3 Ty 2.0 4+ 4ia3RJ 3.2
+iR*@1 (2010 + R) P1.2.4, (C42)
fra,2 =ia10R*J1 3.2, (C43)

fia3 =iRJ11(a10(R? — 4an1@n) + RAa (@3 + i)+
R%3)/2 — iRJ1 2,1 (@03 + a10) (A2 + R)
+ 2R Ty 3.1 (@3 4 a10) + L1 (R(A2 + R)(a%
+ iRQy) — dicgon 1 Rie — 8atyad;)/2
+ Lo (Mo (=202, — iR@4) + R(—a2, — iRQ4))
+ R¥113(02 + R) (2010011 + 7R@:)/2
+ X1,3,3(8ccipa11 + 2iRw2) + X1,2,3(—R (20100011
+iRWa) — Ag(darpany + iRdg)) + iRA; (RA2:
(@5 + 0n1) /2 — RP@s011 (200161 + oo (@s
+ 1) — R?)) +iR*D1¢1.1,1 (A2 + R)/2
— iR@1$121( A2 + R) + 2iRD161,3,1, (C44)
f1,2,3 :ile,z,l(alo(R2 — 4ay101) + Ra (03 + aio)
+ R%@3)/2 + Lo (R(A\2 + R)(ad) + iRi)
— diaipa11R@2 — 8a3ad;)/2 + RX1,2,3°
(A2 + R)(20m0011 + iR@2)/2 — 2iRJy 31
(@3 + a10) (A2 + R) + ¥1,3,3(—2 2 (4agoan;
+iR®@2) — 2R(2a10011 + iR@W2)) + X1,4,3°
- (2410011 + 6iR@s) + %m%léu,l(& +R)
— 2R d1,31 (Ao + R) + 6iRD1p1,41,  (C45)
fr33 =RJ1 3,1 (a10(R? — da11@1) + RAe(@s + a10)
+ R%@3) /2 + Rx1,33(\2 + R) (2010011
+iRD2) /2 4 X1.4,3(—3X2(4arpary + TR@s)
— 3R(2a10011 + iR@s)) + iR*@161.3.1 (A
+R)/2 - 3iR1pra1 (N2 + R)

+12iR&1p1 5.1, (C46)
f1,4,3 :R(:\z +R) ()21,4,3(204100411 + iR@2)

+ iR@1 14,1 — Sidnbisa ) /2, (C47)
fiss =%iR2@1é1,5,1(X2 +7R), (C48)

f1,1,4 =-— 22'04116Y1073<7J1j1,1,2 + 2iR(D3 + a10)-

(J1,32 — a10J1,2,2) — a1110L1,2 (4o

21

+ R(a11 + 2i@9)) — 2ia10RG1 12,3 + Lo o-
. (—22'(11073,(:)4 + Oé%lR — 40(10(1%1) — 20411(1%0-
“RX1,1,4 + X1,3,4(8aioa11 + 2iRw2) — i1 R-

. AQ(allajl + 2a10(@3 + a10)) + 20110X1,2,4°
- (R(aq1 —iw2) — danoair) + 2iR01¢1 3,3,
(C49)

fioa = — 2ic1010RI1 12,0 — 4iaigR 1 3.2(@3
+ aig) — 010011E2,2(4a10011 + R(a11
+ 2i9)) + 61RD1$1,4,3, +410%1,3,4 (R0t

.~ 2 ~ ~
— 1W9) — daronr) — 2011079 RX1,2,4 + X1,4,4°

- (24a10a11 + 6iRD2) — diagRingrzs  (C50)
fiza = — 2iana10RO1J1 3.2 + 6010X1.4.4(—4a10001

+ R(ar — i@2)) — 6ia1gRO1d1,4,3

— 2011030 RX1,3,4, (C51)
fraa == 22501 R 4.4, (C52)
fora = —iai0da11 + Xo1.1 (2010001 + i@n)

+ i@1h21 0 — i1 As, (C53)
fo2,1 =i@1¢o2,2 —ic10d2,2,1, (C54)
foz1 = —iaiodas, (C55)
f2,1,2 =5j1,1,1 + X2,1,2 (210001 + @)

+ 012,13, (C56)
fono =0J1 21 +id1d20.3, (C57)
fo2 =6J13.1, (C58)
f2,1,3 :5j1,1,2 + X2,1,3 (2argoin + iw2)

+ i@1h2,1.4, (C59)
fo23 =0J1,22 + 116224, (C60)
fos3 =0J13.2, (C61)
f2,1,4 =ij2,1,1 (W3 + ap) + Pl,l (04%1 + i<7J4)

+ X214 (2010011 + i) 4 i@1da,1 1

+iAz (@5 + a11), (C62)
fooa =idJooi (@3 + a10) + Pay (af) + id4)

+ X2,2.4 (2010011 + i@2) + i@1h,2.1, (C63)
fo3.a =idaz1 (@3 + a10) + Xo.3.4 (2010011 + i@o)

+ i1 62,31, (C64)
foa.4 =X2,4.4 (2010011 + i@2) + i@12.4,1, (C65)
fo5.a =i@1025,1. (C66)
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