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Abstract

We use the “caterpillar” hydrodynamic model for accurately calculating the hydrodynamic fric-

tion force on microscopic slender cylindrical filaments using Oseen level hydrodynamics. The

methodology is applied to study the motion of a flexible filament in a circularly polarized field.

Our results predict that in dilute solution alignment occurs along the axis of the field. For electric

fields, the strengths and frequencies required are deduced. These are experimentally accessible.

We therefore propose that this is a practical method for aligning filaments such as microtubules

and functionalized carbon nanotubes.
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I. INTRODUCTION

Many slender microscopic filaments display remarkable properties. Notable examples

are carbon nanotubes and biological fibers, such as actin and microtubules. In cells, the

latter provide both strength and a means of intracellular transport. They act as “tracks”

along which nano-scale motor proteins process, transporting cargo such as vesicles and large

proteins. An intriguing possibility is that of mimicking this system for use in microfluidic de-

vices [1]. With the emergence of engineered devices at microscale and nanoscale dimensions,

there is a need for controlled transport at these length scales and the kinesin-microtubule

system provides a highly evolved biological transport system well adapted for these tasks [2].

The ability to manipulate their orientation is a fundamental requirement for this. That is,

imparting directionality to an otherwise disordered system. This is not straightforward.

Focusing on microtubules, their electrostatic/dynamic properties can be exploited for align-

ment. In experiments using AC fields with high strengths and frequencies, induced dipole

alignment (parallel to the field) has been demonstrated [3, 4]. The magnitude of the in-

duced dipole, and hence susceptibility to alignment, depends on the ionic strength, pH, and

field frequency and magnitude. On surfaces, alignment can be achieved by using kinesin and

polarity-specific antibodies for immobilization prior to the application of external fields [5, 6].

Alternatively, as well as the fact that they are charged, one can also exploit the fact

that filaments are normally dispersed in a viscous environment. Moths and Witten [7, 8]

showed that for rigid asymmetric colloidal particles this can lead to alignment. Flexibility

also influences their behavior [9–12]. Notably, if slender filaments are subject to a force that

generates translational motion (gravity or an electric field, for example) they will tend to

orientate in a plane perpendicular to that force. The origin of this effect is the interplay

between hydrodynamic friction, which varies along the length as a function of distance from

the ends, and bending elasticity. In short, when one allows for the force mediated by the

fluid on different parts of the filament, the friction it experiences is higher towards the ends,

causing it to bend. This bending in turn introduces a force anisotropy in the form of a torque

leading to rotation and a re-orientation into the perpendicular plane. Note that this differs

from the effect described in references [7, 8] in that, unlike the asymmetric rigid model, in

the rigid limit the variation of the friction along the filament here is symmetric. It is the

bending that breaks the symmetry so in the limit of a rigid filament there is no asymmetry
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and the reorientation time tends to infinity [11]. Within the plane there is no alignment and

uniform translational motion will also induce significant inhomogeneity in the system. The

question we address here is: is there some other way of exploiting this flexibility effect that

can actually align filaments to a particular direction? Specifically, we consider a filament

in a circularly polarized field. Such a field conveniently avoids net translation, but does

the elasto-hydrodynamic aligning effect persist? If so, how does the filament quantitatively

respond to such a field? To answer these questions we use computer simulation. Our first

requirement is a numerical model that accurately captures the relevant effects.

II. DESCRIPTION OF THE MODEL

Given the complexity of the interplay between varying hydrodynamic forces and the defor-

mation of even a single flexible filament, analytic solutions are few [13]. This is particularly

true outside the linear regime. We have therefore constructed a tractable but sufficiently

sophisticated numerical model to solve the problem by firstly considering a filament of length

L discretized into n beads. The distance between neighboring beads is fixed, meaning that

the model filament is inextensible, and the bead separation is given by b = L/(n − 1). As

the filament deforms elasticity will penalize deviation from the lowest energy conformation.

The Hamiltonian of our model system is derived by introducing a bending potential be-

tween all sets of three consecutive beads and assuming that there is no intrinsic curvature

(see Ref. [11, 14]). The inextensibility constraint is imposed using the MILC SHAKE algo-

rithm [15]. Filaments of fixed length are effectively infinitely stiff while retaining flexibility.

The reason we chose this approach is that the type of filaments we consider cannot accommo-

date significant axial extension. Experiments support that this is a reasonable description

of force-extension behavior [16, 17]. The most technical part of the problem is determining

the force exerted on the filament by the surrounding fluid, given that the movement of the

filament itself perturbs the fluid. Since the filaments we are considering are microscopic in

length, it is reasonable to neglect inertial effects. In this limit the fluid flow equations are

linear. An approximate approach couples the filament and fluid motion by requiring that

beads in the model act as Stokeslets (point forces acting in the fluid)[18]. They experience

a hydrodynamic frictional force given by

FH = −
(

γ⊥
0 n̂n̂+ γ

‖
0p̂p̂

)

· (v − vH) (1)
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where v is the velocity of the bead and vH is the induced fluid velocity at its location. The

vector n̂ (p̂) is the unit vector normal (parallel) to the axis. The parameters γ̂0 are then the

bead friction coefficients. In this model the local fluid velocity vH is now a linear combination

of the velocity fields generated at that point by each of the Stokeslets [11, 19, 20], leading

to a hydrodynamic force on bead i given by

FiH = −
(

γ⊥
0 n̂n̂+ γ

‖
0 p̂p̂

)

·
(

vi −
1

8πη

∑

i 6=j

(

Fj

|rij|
+ Fj ·

rijrij

|rij|3

)

)

. (2)

The constants γ̂0 can also be written in terms of the friction exerted by a sphere of radii

â, γ
⊥(‖)
0 = 6πηa⊥(‖), where the constant η is the viscosity. Note that â are not “real” radii,

in that the beads in the model have no spacial extension. Rather, they are parameters

determining the friction strength. The question is now, what values to take for â/b? One

choice is the “shish kebab” model, where a⊥/b = a‖/b = 1/2. However, Bailey et al. [21]

showed that for this model the friction coefficient of the filament for motion perpendicular

and parallel to the axis (γ⊥ and γ‖) are

γ⊥ =
4πηL

ln (L/βb) + 2b
3a⊥

− 1
+O

(

ln−3(L/βb)
)

(3)

γ‖ =
2πηL

ln (L/(βb)) + b
3a

− 1
+O

(

ln−3(L/βb)
)

(4)

where β = e−k and k is the Euler-Mascheroni constant. The theoretical result from slender

body theory is also of this form, but the constants in the denominators depend on the

shape of the filament [22]. Only when the perpendicular hydrodynamic radius is chosen to

be a⊥/b = 4/(3(2 ln(2) + 1)) ≈ 0.559 is this model in agreement with theory to the order

of error in the equations. This value is close to, but not equal to, the shish kebab value.

Similarly, the parallel friction coefficient matches theory when the parallel hydrodynamic

radius is chosen to be a‖/b = 2/(3(2 ln(2) − 1)) ≈ 1.73 (still with r/b = β). This differs

more significantly from the shish kebab value and also differs from the perpendicular radius.

The agreement of the Stokeslet (or “caterpillar”) model with theoretical results is thus

conditional upon choosing the hydrodynamic radius, and hence bead friction coefficient, to

be the tensor

γ⊥
0 = 6πηa⊥ = 8πηb (2 ln(2) + 1)−1

γ
‖
0 = 6πηa‖ = 4πηb (2 ln(2)− 1)−1 . (5)
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We also note that this methodology is equally applicable to match to numerical expressions

for the friction, instead of slender body theory results. These may be preferable for filaments

with lower aspect ratios. Here we restrict ourselves to slender filaments. In this limit, a

similar analysis shows that only with these choices of hydrodynamic radii is the correct

variation of the friction coefficient along the length of the filament recovered to O(ln−3 (ǫ))

in the slenderness parameter ǫ = r/l. This is crucial, because it is this variation in friction

along the length that causes a flexible filament to bend when it is set in motion and this is

the origin of the effect we are considering here. Higher order hydrodynamic approximations

are possible for modeling a filament. For example, the Rotne-Prager (RP) tensor [23]. These

have the advantage of removing singularities in the Oseen tensor that give rise to large errors

when two beads come into close contact. For the work reported here we do not consider the

close approach of two filaments. The divergence in the Oseen tensor causes no problems, so

using a higher order tensor would simply introduce an unnecessary computational overhead.

III. RESULTS

We now turn to investigating the possibility of aligning filaments using a circularly polar-

ized field. This could be a gravitational field or an electric field. As discussed in ref. [11], it

is difficult in experiments (although not impossible) to access the regime where gravitational

fields are high enough to induce significant bending. Consequently, we restrict ourselves to

analyzing regimes easily accessed using an electric field. Microtubules are charged biofil-

aments that have been shown to respond to moderate, experimentally accessible electric

fields [9, 12]. Carbon nanotubes, on the other hand, are uncharged but can be functional-

ized to give an effective electrical charge [24]. One could question whether a hydrodynamic

model based on the Oseen tensor is valid for the particular case of a charged filament be-

cause there exists the possibility that the presence of counter ions screens this tensor [25].

However, the experiments of van den Heuvel et al. [12] convincingly showed that for mi-

crotubules the induced bending followed scaling behaviour consistent with a hydrodynamic

mechanism. Because this mechanism is itself a consequence of the long range nature of the

hydrodynamic propagator, this observation strongly suggests that for filaments any such

screening is either absent or incomplete.

We carried out a series of simulations using the model described above in experimentally
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FIG. 1: A trace of the ends of the filament during alignment process after subtracting the center

of mass motion for three different field frequencies (B = 1.2).

accessible regimes of parameter space. The purely dissipative equations of motion were

solved in the limit of negligible inertia. We apply an electric field of the form Ex = 0,

Ey = E cos (2πft) ŷ, Ez = E sin (2πft) ẑ, where E and f are the field magnitude and

frequency, respectively. In all cases we set L = 1 and the number of beads in the model

to 80. In the caterpillar model the number of beads fixes the aspect ratio. For this value,

its accuracy is shown in [21]. Following the argument above, we are then considering a

cylindrical filament with aspect ratio L/d ∼ 80 (although the effect considered here only

depends logarithmically on the aspect ratio [21]). For a microtubule (diameter 25 nm), this

would typically correspond to a length of a couple of microns. We define a dimensionless

force B = L3Eq̃/α that characterizes the magnitude of the electric forces to the elastic

forces. Here, q̃ is the charge density of the filament, and α is the flexure. The effect of

flexibility enters through B. When B ≫ 1, significant deformation is expected, whereas

when B ≪ 1 elastic forces dominate and the filament will remain predominantly straight.

The rigid case is the limit B → 0. We can estimate experimentally accessible values of B

for microtubules. From Ref. [9], the average length L was 5 µm, the flexure α is of the order

10 pNµm2, and the effective linear charge density was measured to be q̃ = 280 e/µm. The

microtubules remained stable in a field of 20 V/cm. Using these values, we calculate that

B ∼ 1 is easily achieved experimentally. Experiments carried out by van den Heuvel et al.

actually achieved much higher values, and pronounced bending was indeed observed [12].

In our simulations B is near the modest value of unity. We also define a characteristic time

τT = γ̄⊥/Eq̃, which is the amount of time it takes the filament experiencing an external field
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of magnitude E to translate transversely a distance of its length.

The simulations predict that a charged body placed in circularly-polarized field gyrates

in the yz-plane following the direction of the applied field. The center of mass motion occurs

concurrently with a hydrodynamic re-orientation due to bending of the filament. Traces of

the location of the endpoints of the filament after subtracting the center of mass motion for

representative simulations are shown in Fig. 1. Here, the filament is initially tilted at an

angle of 45 degrees in the xy-plane, but in time it aligns itself with x̂, perpendicular to the

plane of the polarized field [26]. There is also an azimuthal angle to consider, but this only

influences the initial direction of motion (i.e. rotates results shown in Fig. 1). Our results

suggest that circularly polarized electric fields are a indeed a possible means for aligning

charged filaments. Before we can propose that the method is also practical there are other

things to consider.

The filament motion resembles sedimentation constrained to the surface of a cylinder. If

the radius of this cylinder is too large then there is pronounced rotational motion, which is

undesirable. The magnitude of this steady state gyration radius R can be estimated using

simple scaling arguments. We expect 2πR ∼ ω/f , where ω is the tangential velocity. When

the frequency of the electric field is chosen to be f = τ−1
T and ω = L/τT , R ∼ L/2π,

independent of B the field strength. This expression is exact for B → 0, where bending

is insignificant. We further confirmed from simulations, with a dimensionless force ranging

from B = 0.08 − 1.6, that the expression for R remains sufficiently accurate for values of

B around unity to provide a reasonable estimate for the spatial extension of the rotation of

the filament during the alignment process. From this we can conclude that, so long as the

frequency is around τ−1
T or higher, the rotation can be localized to lengths of the order of

the length of the filament.

To now quantify the time scale of re-orientation, we define the hydrodynamic alignment

time τH as the time taken for the angle between the filament axis and x̂ to decrease by ten

degrees. This is somewhat arbitrary, but one would reach the same conclusions for the scaling

behavior with a different definition of the change required to define τH . The first parameter

we consider is the magnitude of the frequency of the applied field. In the limit where

f ≪ τ̄−1
H , where τ̄H is the hydrodynamic alignment time in a static field (f = 0), we recover

the results discussed in Ref. [11]. As we increase the frequency while keeping B constant,

the alignment time increases. This dependence is shown in Fig. 2. The filament spends an
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FIG. 2: Hydrodynamic alignment time, τH , as a function of frequency (B = 0.8).
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FIG. 3: Hydrodynamic alignment time, τH , as a function of the dimensionless field strength, B.

increased amount of time changing orientation to adjust to the alternating direction of the

field. The result is that when the frequency is too high, the filament takes an impractically

long amount of time to align. So long that the effect of diffusion cannot be ignored and a

deterministic simulation is no longer valid (see below). When the frequency is approximately

τ−1
T then, for B ∼ 1, the alignment time is (using values for microtubules reported in Ref. [9])

a modest τT ∼ 1 s.

The dependence of τH on the dimensionless field strength B is shown in Fig. 3. One can

observe two scaling regimes. For low B’s, the observed relationship is τH ∼ γ⊥/F̃B, which

is consistent with that observed in Ref. [11] for alignment in a static field. One can predict

this by noting the analytical expression for the torque from Ref. [27] scales with ∼ F̃B.

Since the rigid case is the limit B → 0, we see that, as for the case of sedimentation, the

alignment time in this limit approaches infinity. For high B’s, the hydrodynamic alignment

time obeys a different scaling relationship: τH actually increases with B. This is because
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the frequency for these simulations is chosen to be proportional to τ−1
T , so as B increases, so

does the frequency and therefore the alignment time, as discussed in the previous paragraph.

The crossover of scaling behavior therefore occurs when f ∼ τ̄−1
H . Using the shish kebab

parameterization leads to qualitatively the same conclusion, but differs quantitatively by

some 30%. So for a direct comparison with possible experiments the difference between the

shish kebab and caterpillar is significant.

Other forces are present that will compete with the hydrodynamic forces driving align-

ment. As long as τH is shorter than all other time scales, hydrodynamic re-orientation

will dominate these effects. First, thermal forces act to randomize its orientation. The

time scale for rotational diffusion is roughly τD ∼ γ⊥L2/kT . We can neglect this when

τH/τD ∼ L/B2λ ≪ 1, where λ is the persistence length (λ = α/kT ). For a 5 µm micro-

tubule, this condition is satisfied as long as B > 0.1. Additionally, under certain condi-

tions microtubules in solution have an induced dipole moment along their axis [3, 4, 9].

The time scale associated with the alignment of the dipole with the field can be es-

timated by τd ∼ γ⊥L2/delE. To ensure that this process is negligible requires that

τH/τd ∼ del/q̃BL2 ≪ 1, where del ∼ ᾱEL and ᾱ is the effective polarization coefficient per

unit length of the microtubule [4]. This leads to the condition that for B ∼ 1, ᾱE/q̃L ≪ 1.

Therefore, the influence of the induced dipole can be minimized by increasing the filament

length and by changing the solvent conditions and external field parameters to minimize

ᾱ [3, 4, 12]. I

A final complication is the presence of other filaments. We considered the scenario of

two filaments separated by a distance h, exposed to the same field described above. At the

start of the simulation, one filament is aligned with the x̂ direction, and the second is tilted

at an angle of 60 degrees in the xy-plane. The alignment time was measured for multiple

separations. In the regime where h/L > 1, the filaments behave as isolated entities. This

is consistent with the results from studies of cooperative motion in a static field carried

out by Llopis et al. [28]. For h/L < 1, a more complicated dynamic is observed that is

strongly dependent on the initial conditions. Therefore we cannot immediately conclude

whether alignment is hindered or assisted in concentrated solutions, given the wide range

of parameter space. It suffices to say as that as long as the solution is at a low enough

concentration, neighboring filaments should do not inhibit alignment.

9



IV. CONCLUSIONS

To conclude, our simulations predict that it is practical to align flexible charged filaments

in dilute solution to a prescribed direction using a circularly polarized field. For the case of

an electric field we delineate the window of parameter space for achieving this alignment.

These predictions assume that the hydrodynamic interaction of the filament with itself is

not screened. Any deviations from the predictions of the simulations would therefore shed

light on the important open question as to how the presence of counter ions influence the

forces acting on a charged filament. We hope that this will motivate experimental studies

and ultimately provide a useful tool for technological applications.
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