
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Two-step relaxation mode analysis with multiple evolution
times applied to all-atom molecular dynamics protein

simulation
N. Karasawa, A. Mitsutake, and H. Takano

Phys. Rev. E 96, 062408 — Published 15 December 2017
DOI: 10.1103/PhysRevE.96.062408

http://dx.doi.org/10.1103/PhysRevE.96.062408


APS/123-QED

Two-step relaxation mode analysis with multiple evolution times

applied to all-atom molecular dynamics protein simulation

N. Karasawa,∗ A. Mitsutake,† and H. Takano‡

Department of Physics, Faculty of Science and Technology, Keio University,

Yokohama, Kanagawa 223-8522, Japan

(Dated: November 18, 2017)

Abstract

Proteins implement their functionalities when folded into specific three-dimensional structures,

and their functions are related to the protein structures and dynamics. Previously, we applied a

relaxation mode analysis (RMA) method to protein systems; this method approximately estimates

the slow relaxation modes and times via simulation and enables investigation of the dynamic

properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple

evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a

single [n]polycatenane. This new method can be applied to more complex heteropolymer systems,

i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step

RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then,

we apply RMA with multiple evolution times to a small number of the slowest relaxation modes

obtained in the previous calculation. Herein, we apply this method to the results of principal

component analysis (PCA). First, PCA is applied to a 2-µs molecular dynamics simulation of

hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple

evolution times is applied to the obtained principal components. The slow relaxation modes and

corresponding relaxation times for the principal components are much improved by the second

RMA.
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I. INTRODUCTION

Biopolymers have flexible structures and various functions, which are derived from both

the biopolymer structures and the structural fluctuation dynamics. Therefore, knowledge

of the dynamic properties of the structural fluctuations of a biopolymer is important for

understanding the interrelation between its movement and functions. Thus, many methods

to analyze the dynamics and kinetics of protein simulations have been developed [1–31]. In

particular, the Markov state model has been presented (see Refs. [1–7, 9, 15, 18, 19, 21–

23, 28–31] and references cited therein) and applied to many protein systems.

Further, relaxation mode analysis (RMA) has been developed to aid investigation of the

dynamic properties of spin systems [32] and homopolymer systems [33, 34]. In addition,

this technique has been applied to various polymer systems in order to investigate their slow

relaxation dynamics [35–37]. Recently, RMA has also been applied to biomolecular systems

[13, 16, 24].

The relaxation modes {Xp} satisfy

〈Xp(t)Xq(0)〉 = δp,qe
−λpt. (1)

Here, 〈A(t)B(0)〉 denotes the equilibrium correlation of A at time t and B at time 0:

〈A(t)B(0)〉 =
∑

Q,Q′

A(Q)Tt(Q|Q′)B(Q′)Peq(Q
′) , (2)

where Tt(Q|Q′) is the conditional probability that the system is in state Q at time t, given

that it is in state Q′ at time t = 0. Further, Peq(Q
′) denotes the probability that the system

is in state Q′ at equilibrium. The relaxation rate of Xp is denoted by λp. The relaxation

modes and rates are given as left eigenfunctions and eigenvalues of the time-evolution op-

erator of the master equation of the system, respectively [24, 33, 34]. RMA approximately

estimates the slow relaxation modes and rates from a simulation and decomposes the struc-

tural fluctuations into the slow relaxation modes, which characterize the slow relaxation

dynamics of the system.

In conventional RMA, {λp} and {Xp} are estimated by solving the generalized eigenvalue

problem of the time correlation matrices of coordinates for two different times, C(t0+τ) and

C(t0) (see Section 2). Recently, dynamical analysis methods for molecular simulations of

biopolymer systems have been developed to investigate slow dynamics. In these techniques,
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which include time-structure-based independent component analysis (tICA) [14, 17, 19],

time-lagged independent component anlysis (TICA) [18], and dynamic component analysis

(DCA) [25, 27], time correlation matrices of certain physical quantities or states are used.

(Note that tICA, TICA, and DCA are mathematically equivalent [18, 25], and tICA is a

special case of RMA with t0 = 0. See Refs. [13] and [14] for more details on the differences

between tICA and RMA. Further, the relationships between the Markov state model, tICA,

TICA, and RMA are explained in Refs. [18, 19, 24]. From the perspective that the relaxation

modes and rates in RMA are given as left eigenfunctions and eigenvalues of the time evolution

operator of the master equation of the system, respectively, RMA is related to the Markov

state model. The extension of a regular Markov state model by introducing t0, which is

referred to as Markov state relaxation mode analysis, is explained in Ref. [24].) In tICA,

TICA, and DCA, the time correlation functions, C(τ) and C(0), are used. In practice, the

relaxation times obtained from these analysis methods depend on the selection method for

the physical quantities (or states) for the time correlation functions and the values of the τ

parameter [2, 18, 24]. When physical quantities (or states) with slow behaviors are used to

construct the time correlation functions, the slow relaxation behavior of the simulation can

be investigated. The difference between RMA and the other dynamical analysis methods

is introduction of the evolution time t0; however, introduction of this parameter increases

the difficulty in solving the generalized eigenvalue problem. Despite this, RMA has an

advantage in that the obtained slow relaxation modes and times are improved by choosing

the appropriate τ and t0 (two adjusting parameters).

RMA requires relatively high statistical precision of the time correlation matrices because

the generalized eigenvalue problem is treated; thus, it is difficult for RMA to handle a large

number of degrees of freedom directly. We must reduce the number of degrees of freedom

automatically. Therefore, to reduce the degrees of freedom, we previously proposed princi-

pal component RMA (PCRMA) using two evolution times [16]. In the proposed technique,

principal component analysis (PCA) is first implemented. Then, RMA is applied to a small

number of principal components with large fluctuations. (Note that PCRMA using all prin-

cipal components is mathematically equivalent to RMA.) This method can systematically

reduce the degrees of freedom. Recently, we also developed a new RMA, which is referred

to as “two-step RMA with multiple evolution times” [41]. We have applied two-step RMA

using multiple evolution times to a single [n]ploycatenane, which is a homopolymer system
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consisting of n ring polymers topologically interlocked with neighboring rings, in order to

investigate its dynamics. This technique uses a similar approach to PCRMA.

In this Rapid Communication, we have applied this new method to a protein, i.e., a

complex heteropolymer system. The effectiveness of the method was first demonstrated for

a single homopolymer system, as mentioned above. However, its effectiveness for a protein

system is not trivial at all, because the structural fluctuations of proteins are considerably

more complex than those of single homopolymers. A process chart of the method is shown

in Fig. 1(a). In this method, RMA with a single evolution time using small t0 and τ

is first implemented and the relaxation modes and times are roughly estimated. Then, we

again apply a second RMA to a small number of the obtained slowest relaxation modes. This

approach not only reduces the number of degrees of freedom automatically, but also uses the

physical quantities that exhibit slow relaxations to construct time correlation functions in the

second RMA. For the second RMA, we also use the recently presented RMA with multiple

evolution times [41], because the relaxation modes obtained from the first RMA each have

different relaxation times. The evolution times for the second RMA can be estimated from

the relaxation times obtained from the first RMA. Hence, we can automatically determine

the evolution times. Using the new method, the estimation accuracy of the relaxation modes

and times can be improved.

In this Rapid Communication, we briefly describe the new method for the case of a

molecular dynamics (MD) simulation satisfying the detailed balance condition and consid-

ering position coordinates only (for details, see Ref. [24]). In order to compare the results

of the present method with those yielded by the PCRMA [16], we apply this two-step RMA

method to PCA results. First, PCA of a 2-µs MD simulation of hen egg-white lysozyme in

aqueous solution is conducted. Then, the two-step RMA method with multiple evolution

times is applied to the obtained principal components. (This means that, in Fig. 1(a), R

is replaced with principle components, i.e., the Φc of Eq. (24) in the present work.) The

slow relaxation modes and corresponding relaxation times for the principal components are

much improved following use of the second RMA.

4



FIG. 1. (a) Process chart of two-step RMA with multiple evolution times. (b, c) Schematics

showing t0, τ , and ti selection using semilog plot of time-displaced autocorrelation function C(t)

versus t.

II. METHODS

A. Conventional RMA

We consider a biopolymer composed of N atoms. Further, we assume that R is a 3N -

dimensional column vector that consists of a set of atomic coordinates relative to their

average coordinates

R
T = (r′

1

T
, r′

2

T
, . . . , r′

N

T
) = (x′

1, y
′
1, z

′
1, . . . , x

′
N , y

′
N , z

′
N), (3)

with

r
′
i = ri − 〈ri〉 , (4)

where ri is the coordinate of the ith atom of the biopolymer in the center-of-mass coordinate

system and 〈ri〉 is its average coordinate. In conventional RMA, Xp is approximated by a

trial function, which is constructed as a linear combination of relevant physical quantities

that are time-evolved for t0/2:

Xp(Q) =
3N
∑

i=1

fp,iRi(t0/2;Q), (5)

with

Ri(t;Q) =
∑

Q′

Ri(Q
′)Tt(Q

′|Q). (6)
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Here, Ri(Q) is the ith component of R in state Q. The quantity Ri(t;Q) is the expectation

value of Ri after a period t, starting from state Q. The evolution time t0/2 is introduced

to reduce the relative weight of the faster modes contained in Ri, and to estimate slow

relaxation times with greater precision.

For this trial function, we consider the variational problem:

δR = 0, (7)

with

R[Xp] =
〈Xp(τ)Xp(0)〉

〈Xp(0)Xp(0)〉
, (8)

where the stationary value ofR gives the value exp(−λpτ). The variational problem becomes

a generalized eigenvalue problem of the time correlation matrices of the physical quantities

for two different times, t0 and t0 + τ . In practice, the time correlation matrices for the

two different times are calculated through simulations. Then, by solving the generalized

eigenvalue problem, the {λp} and {Xp} are obtained from the eigenvalues and eigenvectors,

respectively. In order to examine the validity of the present analysis, the autocorrelation

functions Ci,i(t) are reproduced from the estimated eigenvalues and eigenvectors and com-

pared with those directly calculated via simulation. We refer to this method as the “RMA

method with a single evolution time,” which is t0/2.

The relaxation times {1/λp} and the {Xp} obtained via RMA depend on the manner in

which t0 and τ are selected in practice. For simple understanding, we consider the case of

one physical quantity, R. From the variational problem of Eqs. (7) and (8), the relaxation

time, 1/λ, is obtained from the gradient of the straight line connecting two points at t = t0

and t = t0+τ in the semilog plot of the correlation function C(t) = 〈R(t)R(0)〉−〈R〉2 versus

t, as shown in Fig. 1(b). If the time correlation function of the physical quantity contains

several {1/λp}, and if we choose t0 = 0 (tICA case) or small t0 and small τ as shown in

Fig. 1(b), the obtained 1/λ does not correspond to the slow relaxation behavior of logC(t)

at long times. To investigate the slow relaxation, we wish to choose values of t0 and τ that

are as large as possible. On the other hand, the choice of longer t0 and τ is also limited,

because of the decreasing accuracy of the time correlation function at long times. Therefore,

we must choose the appropriate t0 and τ .

When the relevant physical quantities {Ri} in the trial function exhibit different relax-

ations, it is preferable to use different evolution times for the different physical quantities, as
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shown in Fig. 1(c). That is, if we know the characteristic time scales of the relevant physical

quantities, we can choose a specific evolution time ti for each relevant physical quantity Ri

based on its characteristic time scale. This RMA method is referred to as the “RMA with

multiple evolution times,” and we describe its formulation in the next subsection.

B. RMA with multiple evolution times

In this subsection, the RMA with multiple evolution times {ti/2} is explained. We use

the following function as an approximate relaxation mode:

Xp(Q) =

3N
∑

i=1

fp,iRi(ti/2;Q). (9)

The parameter ti is introduced in order to reduce the relative weight of the faster modes

contained in Ri. Further, it is expected that Eq. (9) yields a superior approximation for

larger ti.

We now consider the variational problem of Eqs. (7) and (8). Then, the variational

problem becomes a generalized eigenvalue problem:

3N
∑

j=1

Ci,j

(

ti + tj
2

+ τ

)

fp,j = exp(−λpτ)

3N
∑

j=1

Ci,j

(

ti + tj
2

)

fp,j . (10)

Here, Ci,j(t) = 〈Ri(t)Rj(0)〉 and the orthonormal condition (8) for Xp is expressed as

3N
∑

i=1

3N
∑

j=1

fp,iCi,j

(

ti + tj
2

)

fq,j = δp,q. (11)

Equations (9, (10), and (11) determine the relaxation rates, λp, and the corresponding

relaxation modes. We choose the indices of λp such that 0 < λ1 ≤ λ2 ≤ · · · holds. The

inverse transformation of Eq. (9) is given by

Ri(ti/2;Q) =

3N−6
∑

p=1

gi,pXp(Q), (12)

with

gi,p =

3N
∑

j=1

Ci,j

(

ti + tj
2

)

fp,j. (13)

Note that the number of meaningful relaxation modes is 3N − 6, because we remove the

translational and rotational degrees of freedom in the calculation of {〈ri〉} [13]. The time
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correlation functions of Ri are given by

〈Ri(t)Rj(0)〉 =
∑

p

∑

q

gi,pgj,q

〈

Xp

(

t−
ti + tj

2

)

Xq(0)

〉

,

≃
∑

p

gi,pgj,p exp

[

−λp

(

t−
ti + tj

2

)]

,

=
∑

p

g̃i,pg̃j,p exp(−λpt),

(14)

for t ≥ (ti + tj)/2. Here,

g̃i,p = gi,p exp(λpti/2). (15)

Because we are considering position coordinates only, the detailed balance condition[40]

yields the following consequences: C(t) is a symmetric matrix, Ci,j(t) = Cj,i(t); the {λp} are

real and positive, which corresponds to pure relaxation.

C. Two-step RMA with multiple evolution times

In this technique, RMA with a single evolution time using small t0 and τ is first im-

plemented and the {Xp} and {λp} are roughly estimated. Note that all the {ti} in the

previous subsection are set to t0/2. Then, we apply the second RMA to a small number of

the obtained slowest {Xp}. We denote the number of {Xp} used in the second RMA as Nm.

In the second RMA, we use the previously presented RMA with multiple evolution times

technique, because the characteristic time scales of the {Xp} obtained from the first RMA

are known to correspond to their {1/λp}. We use the following trial function:

X ′
u(Q) =

Nm
∑

p=1

f ′
u,pXp(t

′
p/2;Q). (16)

Here, Xp(Q) is the relaxation mode obtained from the first RMA. Then, the generalized

eigenvalue problem (10) becomes

Nm
∑

q=1

C ′
p,q

(

t′p + t′q
2

+ τ ′
)

f ′
u,q = exp(−λ′

uτ
′)

Nm
∑

q=1

C ′
p,q

(

t′p + t′q
2

)

f ′
u,q, (17)

where

C ′
p,q(t) = 〈Xp(t)Xq(0)〉 =

3N
∑

i=1

3N
∑

i=j

fp,iCi,j(t0 + t)fq,j (18)
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is the time correlation matrix of the relaxation modes obtained from the first RMA. The

orthonormal condition (11) becomes

Nm
∑

p=1

Nm
∑

q=1

f ′
u,pC

′
p,q

(

t′p + t′q
2

)

f ′
v,q = δu,v. (19)

The original time correlation matrix Ci,j(t) is reconstructed from the results of the second

RMA as

Ci,j(t) ≃
Nm
∑

u=1

γ̃i,uγ̃j,u exp(−λ′
ut), (20)

with

γ̃i,u =
Nm
∑

p=1

exp[λ′
u(t0 + t′p)/2]gi,pg

′
p,u, (21)

where

gi,p =
3N
∑

j=1

Ci,j(t0)fp,j (22)

and

g′p,u =

Nm
∑

q=1

C ′
p,q

(

t′p + t′q
2

)

f ′
u,q. (23)

The evolution times t′p for the second RMA are estimated from the {1/λp} obtained from

the first RMA. The relaxation modes {X ′
u} and times {1/λ′

u} are improved in the second

RMA.

III. COMPUTATIONAL DETAILS

In this study, an MD simulation is performed using the AMBER package (AMBER

14.0) with GPU, along with the ff14SB force field and TIP3P model [42]. A hen egg-white

lysozyme, which consists of 129 amino acid residues, is considered. The lysozyme (Protein

Data Bank (PDB) identification (ID): 6LYZ [43]) is solvated with a 10-Å buffer of TIP3P

water around the protein in each direction. The numbers of atoms in the lysozyme and

water molecules are 1,960 and 28,923 (9,641 water molecules), respectively. Eight chloride

ions (Cl−) are also included in the system, yielding a net-neutral system. Thus, the total

number of atoms in the system is 30,891. After energy minimization and heating, with

equilibration at a constant pressure (1 atm) and at 298.15 K, a 2-µs MD simulation is

performed at 298.15 K. A 2-fs time step is employed. Further, for the production run, a
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Berendsen thermostat is used to generate a constant-pressure, constant-temperature (NPT)

ensemble. The cutoff is 10 Å, which is used to limit the direct space sum for the Particle

Mesh Ewald (PME) method of AMBER. For the equilibration and production run, the

pmemd code with GPU for MD simulations is used [44–46]. For analysis, the coordinates

are saved in 1-ps intervals. The number of samples is 2,000,000. We use the coordinates of

the heavy atoms, and the number of the degrees of freedom is 3,003 (= 1,001×3). While

a few months are required to implement several microsecond MD simulations in aqueous

solution on GPU, the simulation time is shorter here, because the large conformational

changes of the protein systems occur on the millisecond time scale. However, many MD

simulations of protein systems are conducted on the microsecond time scale and the rare

events occurring during the limited simulations are interesting. In the authors’ experience,

even when RMA is applied to a limited-time simulation, the rare events occurring during

the simulation are extracted. In the simulation, a few conformational changes are observed.

Thus, we can show the effectiveness of the new improved analysis method in the simulation

system.

The first RMA is applied to the principal components with large fluctuations Φc reported

in Ref. [13], instead of R. Here, Φc = (Φ1, Φ2, . . . , ΦNc
)T and

Φn = F
T
n R =

3N
∑

i=1

Fn,iRi, (24)

where Fn is the orthonormal eigenvector of the correlation matrix (〈RiRj〉), with the eigen-

value Λn obtained via PCA. We set the eigenvalue indices such that the relation Λ1 ≥ Λ2 ≥

· · · holds. Note that C(t) in the previous section now represents the Nc×Nc time correlation

matrix 〈Φc(t)Φ
T
c (0)〉.

IV. RESULTS AND DISCUSSION

After removing the translational and rotational motions from the coordinates [47, 48],

PCA is first implemented for the heavy atoms. The number of total modes yielded by the

PCA is 2997 (= 3003 − 6). Further, the relative contributions of the variances of the first

10, 30, and 100 principal components to the total variance are approximately 30%, 60%, and

80%, respectively. The normalized time-displaced autocorrelation functions of the principal

components with the ninth-largest fluctuations are shown in Fig. 2. Note that each of the
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principal components includes different relaxation processes. In particular, for a short time

region, we observe fast relaxation processes, and the principal component with the largest

fluctuation does not correspond to the mode with the slowest relaxation. From Fig. 2, the

seventh and ninth principal components seem to have slow relaxations at long times.

The first RMA is applied to Nc principal components with larger fluctuations, with Φc

in place of R in Eq. (9), where Nc = 100. The number of degrees of freedom is then

reduced from 3N − 6 to Nc. Here, we set t0 = 0 ps and τ = 700 ps for the first RMA

(This corresponds to tICA because t0 = 0). The {Xp} and {1/λp} are obtained from the

generalized eigenvalue problem of principal components Φc (instead of R) of Eqs. (10) and

(11), where all evolution times {ti/2} are set to t0/2. The 10 slowest {1/λp} are listed in

the second column of Table 1.

In the authors’ experience, the slow {Xp} obtained from the conventional RMA with

small t0 and τ contain the true slow {Xp} [13], although the {1/λp} are underestimated.

This can be seen by calculating the time-displaced autocorrelation function C ′
p,p(t) of the

pth slow relaxation mode Xp directly from simulations. The autocorrelation C ′
p,p(t) exhibits

slow relaxation at long times. The relaxation time estimated from the long-time behavior

of C ′
p,p(t) is usually significantly longer than 1/λp, which is estimated from the short-time

behavior of C ′
p,p(t), as C

′
p,p(τ) = exp(−λpτ) with small t0 and τ . The time-displaced C ′

p,p(t) of

the nine slowest Xp obtained from the first RMA are directly calculated from the simulation

and shown in Fig. 3(a). Note that C ′
p,p(t) is calculated from Ci,j(t0 + t) using Eq. (18) and

FIG. 2. Normalized time-displaced autocorrelation functions of Φn(t), 〈Φn(t)Φn(0)〉/〈Φ
2
n(0)〉 (n =

1, . . . , 9), obtained via PCA.
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TABLE I. 10 slowest relaxation times obtained from first and second RMAs.

Mode number Relaxation time Relaxation time

p or u 1/λp (1st RMA) (ns) 1/λ′
u(2nd RMA) (ns)

1 2.8 × 10 4.1 × 102

2 2.5 × 10 1.5 × 102

3 2.1 × 10 8.3 × 10

4 1.5 × 10 6.9 × 10

5 1.4 × 10 5.0 × 10

6 1.0 × 10 3.6 × 10

7 8.1 3.1 × 10

8 7.5 2.5 × 10

9 6.5 2.4 × 10

10 4.7 1.8 × 10

that C ′
p,p(0) = 1 is obtained from the orthonormal condition (11) with ti = tj = t0. These

C ′
p,p(t) exhibit slow relaxation processes at long times. The relaxation times estimated from

their long-time behavior, which, for example, can be the time at which C ′
p,p(t) becomes 0.5,

are significantly longer than the 1/λp values shown in Table 1. For the first mode, the time

at which C ′
1,1(t) becomes 0.5 is approximately 200 ns (data not shown), while 1/λ1 is 28 ns,

as shown in Table 1. The slow {Xp} yielded by the first RMA indeed contain the true slow

{Xp}, even if we choose small t0 and τ .

To improve the relaxation mode accuracy and to obtain more accurate relaxation times,

the second RMA is applied to Nm of the slowest {Xp} obtained from the first RMA. Here, we

set Nm = 20. The number of degrees of freedom is reduced to Nm. The evolution times {t′p}

are estimated from the results of the first RMA and chosen as t′p ≃ rt/λp with rt = 0.03. Note

that we can also estimate {t′p} from the long-time behavior of the autocorrelation functions

of {Xp}, C
′
p,p(t), directly calculated from the simulation. The time interval τ ′ is chosen to

be τ ′ = 10, 000 ps. Note that we can select a τ ′ that is longer than τ , because the number

of degrees of freedom is reduced and the physical quantities {Xp} exhibit slow relaxations.

The relaxation times 1/λ′
u obtained from Eq. (17) are listed in the third column of Table 1.

By comparing the second and third columns of Table 1, we find that the relaxation times are
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improved significantly. The time-displaced autocorrelation functions of the relaxation modes

yielded by the second RMA {X ′
u} are shown in Fig. 3(b). The relaxation of 〈X ′

u(t)X
′
u(0)〉

gradually accelerates as u becomes large. The second RMA also improves the relaxation

mode accuracy.

In order to examine the validity of the RMA techniques, the time-displaced autocorre-

lation functions of principal components reproduced from the first and second RMAs are

shown in Fig. 4. We also show results yielded by the PCRMA, which was previously in-

troduced in Ref. [16]. Here, the PCRMA parameters are chosen to be Nc = 20, t1 = 40

ps, t2 = 1, 000 ps, and τ = 350 ps. Note that the time-displaced autocorrelation func-

tions reproduced from the first RMA are in disagreement with those obtained from the

simulation directly, because the {1/λp} are underestimated, as seen previously. However,

the time-displaced autocorrelation functions reproduced from the second RMA are in good

agreement with those obtained from the simulation directly. In particular, the slow relax-

ation processes of the seventh and ninth principal components are also well reproduced by

the second RMA. The {X ′
u} and {1/λ′

u} obtained from the second RMA are more accurate

than those yielded by the first RMA. Comparison of the results of the PCRMA presented in

Ref. [16] and those of the present method (two-step RMA) indicate that the present method

can better reproduce the long-time behavior of the time-displaced autocorrelation functions.

These results demonstrate that we obtain relatively accurate relaxation modes and times

from the simulation using the two-step RMA.

In Fig. 5, the time series and probability density function (PDF) of the first slowest

relaxation mode for the PCRMA, the first RMA, and the second RMA are shown. The

fluctuations for the second RMA are reduced to a greater extent than those for the PCRMA

FIG. 3. Time-displaced autocorrelation functions (a) 〈Xp(t)Xp(0)〉 (p = 1, . . . , 9) obtained via first

RMA and (b) 〈X ′
u(t)X

′
u(0)〉 (u = 1, . . . , 9) obtained via second RMA.
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FIG. 4. Time-displaced autocorrelation functions of 〈Φn(t)Φn(0)〉 for n values of (a)–(f) 1, 2,

3, 4, 7, and 9, respectively, calculated directly via simulation (circles) and reproduced by first

RMA (dashed lines), second RMA (solid lines), and PCRMA (dash-dotted lines). The values for

the seventh and ninth principal components are shown, because they exhibit slower relaxation

processes. For the PCRMA introduced in Ref. [16], we set Nc = 20, t1 = 40 ps, t2 = 1, 000 ps,

and τ = 350 ps.

and first RMA. The second RMA clearly extracts a rare event during the simulation. The

large change near 1,200 ns relates to local structural changes of Arg73 and Asn103. The dy-

namics of proteins on the microsecond time scale usually corresponds to local conformational

changes of the residues [49]. The second RMA extracts the rare conformational changes of

these residues during the simulation.

V. CONCLUSIONS

In this Communication, we have demonstrated the effectiveness of two-step RMA with

multiple evolution times for a protein system. In this method, RMA with a single evolution

time using small t0 and τ is first implemented, yielding rough estimates of the relaxation

modes and rates. Then, the second RMA is applied to a small number of the slowest relax-
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FIG. 5. Time series and probability density function (PDF) of (a) 1st relaxation mode for PCRMA,

(b) first RMA, and (c) second RMA.

ation modes obtained in the previous stage. In the second RMA, we use RMA with multiple

evolution times, because the relaxation modes obtained from the first RMA each have differ-

ent relaxation times. Herein, we applied this method to the results of a PCA. That is, PCA

was first applied to a 2-µs MD simulation of hen egg-white lysozyme in aqueous solution.

Then, the two-step RMA method with multiple evolution times was applied to the principal

components obtained via that method. The time-displaced autocorrelation functions of the

principal components reproduced from the second RMA were in good agreement with those

obtained from the simulation directly. Further, the slow relaxation modes and correspond-

ing relaxation times for the principal components were much improved by the second RMA.

Note that, if the slow modes and times are not sufficient to represent the dynamics of the

system, we can also repeat the RMA, i.e., implementing three-step RMA, and so on. We

can calculate the motions of proteins along the obtained modes using the relations between

the modes, R, Φc, {Xp}, and {X ′
u}. The free energy surfaces obtained using the relaxation

modes can also be calculated, in the same manner as in Ref. [13]. The directions of the

slower relaxation modes will reflect the transitions between the free energy minimum states.

A combined method featuring the Markov state model and tICA or TICA was proposed in

Refs. [18, 19]. In that approach, a Markov state model is constructed from clustering in the

subspace determined by the tICA or TICA. For a simulation of a 10-residue small protein,
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chignolin, near its transition temperature, Markov state relaxation mode analysis, which is

the extension of a regular Markov state model obtained by introducing t0, was also applied

to several characteristic states: native, misfolded, intermediate, and unfolded states. These

states were classified by an original RMA [24]. The refined slow relaxation modes obtained

via the present method can be also used to cluster states in order to construct several kinetic

models, such as Markov state models and milestone methods [50]. This method is a powerful

technique for investigating the dynamics and kinetics of a system through long simulations.
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[44] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, R. C. Walker, J. Chem. Theo.

Comput. 8 1542-1555 (2012).
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