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Previously we reported that requiring that the systems regarded as lifelike be out of chemical
equilibrium in a model of abstracted polymers undergoing ligation and scission first introduced by
Kauffman implied that lifelike systems were most probable when the reaction network was sparse.
The model was entirely statistical and took no account of the bond energies or other energetic
constraints. Here we report results of an extension of the model to include effects of a finite bonding
energy in the model. We studied two conditions: 1) a food set is continuously replenished and the
total polymer population is constrained but the system is otherwise isolated and 2) in addition to the
constraints in 1.) the system is in contact with a finite temperature heat bath. In each case, detailed
balance in the dynamics is guaranteed during the computations by continuous recomputation of a
temperature (in case 1.) and of the chemical potential (in both cases) toward which the system is
driven by the dynamics. In the isolated case, the probability of reaching a metastable nonequilibrium
state in this model depends significantly on the composition of the food set, and the nonequilibrium
states satisfying ’lifelike’ condition turn out to be at energies and particle numbers consistent with
an equilibrium state at high negative temperature. As a function of the sparseness of the reaction
network, the ’lifelike’ probability is nonmonotonic, as in our previous model, but the maximum
probability occurs when the network is less sparse. In the case of contact with a thermal bath at
a positive ambient temperature, we identify two types of metastable nonequilibrium states, termed
locally and thermally alive (LATA) and locally dead and thermally alive (LDTA) and evaluate
their likelihood of appearance, finding maxima at an optimal temperature and an optimal degree
of sparseness in the network. We use a Euclidean metric in the space of polymer populations to
distiguish these states from one another and from fully equilibrated states. The metric can be used
to characterize the degree and type of chemical equilibrium in observed systems, as we illustrate for
the proteome of the ribosome.

I. I. INTRODUCTION

The central problem of prebiotic evolution arises be-
cause the simplest models assuming the formation of a
genome at an early stage in the history of life encounter
formidable statistical odds, suggesting that initiation of
life starting with a genome is extremely unlikely[1] (the
’Eigen paradox’). For that reason, models [1], [2],[3] ,[4]
such as the one considered here[5],[6], have been formu-
lated in which the initial events do not involve an infor-
mation carrying genome. Instead, a system of polymers,
possibly proteins or a collection of proteins and RNA, are
postulated to form a metastable, autocatalytic chemical
state which grows and evolves and incorporates an infor-
mation carrying genome as an evolutionary adaptation at
a later stage. Such a picture acquires some support from
phylogenetic analysis of protein structures, which sug-
gests that biologically relevant proteins may have been
present on earth hundreds of millions of years before the
appearance of the ribosome[7].

Using an adaptation of such a model due to
Kauffman[3], we recently showed numerically [5],[6]
that, under certain conditions, one was more likely to
find nonequilibrium dynamic steady states in such a
Kauffman-like model if the reaction network was sparse.
In the model by Kauffman[3] and here, a system of poly-
mers interacting chemically by ligation and scission is
simulated stochastically. Starting such simulations from
a population of short polymers (the ’food set’, here
dimers and monomers whose population is maintained

constant during the simulation) one explores the distri-
bution of steady states achieved at long times. Sorting
these final states according to whether they have prop-
erties deemed to be lifelike, one then obtains estimates
of the likelihood that systems with those properties will
emerge. Our work in [5],[6] was distinguished from that
of [3] by exploring the likelihood that the resulting final
states will be out of chemical equilibrium, whereas the
earlier work imposed only the requirement that the sys-
tem of polymers grows to large populations of lengthy
polymers. With this change, which may regarded as the
use of a more restricted definition of ’lifelike’, we found
that the likelihood of such ’lifelike’ states was much re-
duced. In terms of the control parameter p of the model,
defined to be the fraction of possible ligations and scis-
sions which actually occur, we found that p was required
to be very small (about .005) if a substantial likelihood
of lifelike states was to be achieved. Small p describes
sparse networks of reactions, thus the result gave lifelike
systems only for sparse reaction networks. Both models
grossly simplify the chemistry relative to real systems, re-
ducing the description of the polymers to strings of digits
representing monomers. However, within the model, our
result in [5] suggests that life might be more likely to
originate in desert-like conditions or in a very dilute gas
such as might be found in the upper atmosphere of a
planet, rather than in a pond or ocean trench where the
reaction network is dense and many paths to chemical
equilibrium are open. We explored a further extension of
the model in [6] in which a spatial dimension was added,
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but in the present paper there is no spatial dimension
and the reactants are regarded as ’well-mixed’.

The model used in [5] was purely entropic and did not
take any account of bond energies. In a sense, that ne-
glect corresponded to assuming an infinite temperature,
although that description is imprecise. It is unlikely that
an abstracted model of the chemistry like that in [5] can
capture all the relevant qualitative features of the prob-
lem of the emergence of lifelike properties in nonbiological
chemical systems without including some account of the
energetics. Therefore, we here report results from an ex-
tension of the model of references [5],[6] which includes
bond energies. We include only the largest energy in the
problem, namely the bond formation energy associated
with the bonds between monomers which are formed dur-
ing ligation and broken during scission. (If our polymers
were proteins, then the associated bond energy would be
of order of 0.1eV.) We take the bond energies to be in-
dependent of monomer type , with the view that the dif-
ferences between bond energies are usually smaller than
the average bond energy so that we are taking account
of the biggest energy in the problem and neglecting the
rest. Of course, smaller energy scales associated, for ex-
ample, with hydrogen bonding and folding are known
to be enormously important in terrestrial biochemistry
so such effects should eventually be taken into account.
In the implementation reported here, the bond energies
only enter the computations in the dynamics, where they
determine appropriate reaction rates consistent with de-
tailed balance as described in the next section. As in the
earlier work, the goal is to determine the nature of the re-
sulting final steady states and to determine the likelihood
that they will have various ’life-like’ characteristics. We
find here that when bond energies are introduced, sev-
eral kinds of nonequilibrium states may emerge and we
numerically estimate their likelihood.

The introduction of energy into the problem requires
specification of the degree of energetic isolation which will
be imposed on the system during the simulated dynam-
ics. Our earlier model was already open with respect to
polymer and monomer number, because we maintained
a constant population of ’food’ (monomers and dimers)
throughout the simulation and, for numerical reasons,
limited the total number of polymers to a maximum.
Once we introduce a bonding energy and start the sys-
tem from a population of only food, one sees that we
have started the system near its maximum energy and
at a very low entropy, because the entropy is associated
with the fact that there is a number of possible poly-
mers which increases exponentially with polymer length.
Bonding (ligation) results in lowering of the net bonding
energy and scission raises it. At the same time, as bonds
are introduced, the polymers grow longer and the en-
tropy rises. As the population grows, more high energy,
low entropy ’food’ is added to maintain a constant ’food’
supply until the system reaches an entropically steady
state. If that state has maximized the entropy, then we
deem it ’dead’. Otherwise, we call it ’life-like’ , subdivide

the life-like systems into various categories and determine
their frequency of appearance, as discussed below and in
[6],[5]. Since we are interested in systems not in chemi-
cal equilibrium, the polymer systems of interest will not
be characterized by a temperature, because temperature
is only defined for systems in local thermal equilibrium.
However, the rates of reactions, (if they are allowed at
all by the small p) will act to drive each system toward
maximum entropy consistent with its coarse grained de-
scription.

If the system is in thermal contact with a reservoir
characterized by a positive temperature, then we assume
that the rates of reaction have a dependence on the reser-
voir temperature given by the usual detailed balance con-
dition as described in more detail in the next section..
Under conditions in which such a reservoir does not exist
or is sufficiently weakly coupled to the system, then we
can also define a maximum entropy state toward which
the reactions are driving it, provided that the total en-
ergy and polymer number are slowly varying relative to
the reaction rate. We term these two conditions ther-
mally connected and thermally isolated. The thermally
connected case is intended to roughly model situations,
as in aqueous solvent in an ocean trench, in which a ther-
mal bath is strongly coupled to the system. We envision
the thermally isolated case as a rough approximation for
situations, such as those in the upper atmosphere of early
earth, where an ambient temperature might not even be
well defined and the system is weakly coupled energeti-
cally to its surroundings.

In the thermally connected cases we impose a finite
positive temperature in the detailed balance condition
but we compute the chemical potential µ on the fly from
the polymer number N , taking account of bond energies
in the expression for N . We find that in this thermally
connected case, we can define and study three kinds of
nonequilibrium (deemed lifelike) steady states and mea-
sure their properties and likelihoods within the model as
a function of p. If no account is taken of the nature of
the collective dynamics in the metastable final state, then
the probability of occurrence of nonequilibrium entropi-
cally steady state systems mainly increases with decreas-
ing ambient temperature (increasing β) However when
we select as lifelike only those systems which remain dy-
namically active by a criterion based on the time fourier
transform of a polymer- polymer time correlation func-
tion as defined earlier [5] we find that the probability
of producing systems which are both dynamically and
entropically lifelike is nonmonotonic in the temperature
variable with peaks in the neighborhood of an ambient
temperature equal to the bonding energy.

In the thermally isolated case, we determine, at each
reaction step, an instantaneous value of the inverse tem-
perature β and chemical potential µ from the instanta-
neous values of the energy and polymer number and use
those to fix the detailed balance conditions for the next
step. In those cases, we have often found that the iso-
lated equilibrium (not reached in the states of interest)
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is characterized by a negative temperature.
In each case, we explored another lifelike property by

selecting those systems generated by the model that were
growing exponentially in population while remaining dy-
namically active and out of equilibrium entropically. Im-
posing that constraint with the others discussed above
resulted in a diminution of the number of dynamical
states which satisfied all the criteria. However statis-
tically significant numbers of such states appeared and
further study of their nature will be a subject of future
work.
We have found in all cases that the likeliest nonequi-

librium states are closer to, though separated from, the
corresponding isolated equilibrium state characterized by
a negative temperature than from a thermal equilibrium
state characterized by a positive temperature of the order
of the bonding energy. The same analysis used here to
measure the separation of the nonequilibrium states from
the corresponding equilbria can also be used to charac-
terize living biological systems of proteins as we illustrate
for the ribosome. We discuss the possible usefulness of
this method of analysis for studying nonequilibrium sys-
tems in extraterrestrial environments to determine if they
have lifelike characteristics.

II. II. DESCRIPTION OF THE MODEL

As in [5] and elsewhere[3],[4], artificial chemistries as-
sociated with abstracted polymers consisting of strings
of binary digits undergoing scission and ligation are gen-
erated. The parameter p controls the probability that, in
a given realization, any reaction possible involving poly-
mers up to a maximum length lmax is included in the
network. From the resulting chemical networks we se-
lect, as we did previously [5], those which are ’viable’ by
which we mean that there is at least one reaction path
from a ’food set’ of small polymers to at least one poly-
mer of maximum length. The probability that a network
is viable is then found as the ratio of the number of re-
alizations of the network which are viable divided by the
total number of realizations. As in [5] but differently
from the model described by us in [6], we assume here
that the system is ’well mixed’ and no effects of spatial
diffusion are considered . (The study could be extended
to include spatial variations of local temperature as well
as population. )
The difference between the model used here and that

used in the work reported in [5] is in the simulation of
population dynamics in the generated networks. Previ-
ously, we selected fixed rates for each reaction from a
uniform distribution between 0 and 1 (in units of the
inverse time step) and left them invariant as we imple-
mented the reaction model using the Gillespie algorithm
[8] as described in more detail in [5]. Such a proce-
dure took no account of any difference in energy be-
tween reactants and products. Instead, in the work re-
ported here, to any ’polymer’ (binary string) of length

l we attribute an energy −(l − 1)∆ where ∆ is a pos-
itive real number which is the bonding energy between
two monomers. The total energy E of any population
{nm} of polymers in which nm is the number of poly-

mers of type m is E = −∑lmax

L=1 (L − 1)NL∆. Here the
NL =

∑

m of length L nm is the same set of macrovari-

ables used in [5] and [6]. The total number of polymers

N is N =
∑lmax

L=1
NL.

We first describe the method used to take account of
the energy in the case that the system is isolated except
for the addition or removal of polymers to the food set to
keep its total population fixed and the removal of poly-
mers to keep the total number below a fixed maximum
value. We consider the configurational entropy associ-
ated with a coarse grained prescription of the state given
by the number of molecules NL for each length L be-
tween L = 1 and L = lmax. Using the fact that, in the
model, there are 2L possible molecules of length L, count-
ing possible states for a given state specification {NL}
is the same problem that occurs in the boson statistics
problem[9] (though of course this is not to imply that
this model has any quantum features). The result is

S/kB =
∑

L

[

ln((2L +NL − 1)!)− ln(NL!)− ln((2L − 1)!)
]

(1)
For fixed E and N , it is a standard textbook exercise
to write down the values NL of the populations which
maximize this entropy giving

NL =
2L − 1

exp(−β(E,N)µ(E,N)− β(E,N)∆(L − 1))− 1
(2)

in which the parameters β(E,N) and µ(E,N) are deter-
mined from the total energy E and polymer number N
by the implicit equations (with (2))

E = −
lmax
∑

L=1

(L − 1)NL∆ (3)

and

N =

lmax
∑

L=1

NL (4)

and Stirling’s approximation has been used. (In the simi-
lar case in references [5] and [6] ∆ = 0 and the remaining
equation for the chemical potential is trivial to solve.) In
this model the equilibrium population nm of any polymer
of length L is NL/2

L.
Though we are interested in dynamical states which do

not reach such an equilibrium state, the chemical dynam-
ics will drive any reaction toward it. (In Kauffman-like
models, such equilibrium states are not always achieved
because many of the reactions have zero rate, so that
equilibrium distributions cannot always be reached.) To
describe how we take account of this, we recall the Mas-
ter equation used earlier to describe our implementation
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of the polymer dynamics:

dnl/dt =
∑

l′,m,e[vl,l′,m,e(−kdnlnl′ne + k−1
d nmne)

+vm,l′,l,e(+kdnmnl′ne − k−1

d nlne)]. (5)

where nl is the number of polymers of species l, vl,l′,m,e

is proportional to the rate of the reaction l + l′ e
→m, e

denotes the catalyst, l and l′ denote the polymer species
combined during ligation or produced during cleavage,
and m denotes the product of ligation or the reactant
during cleavage. (In terms of this description, kinetic
blocking can occur because some of the rates vl,l′,m,e and
vm,l′,l,e are set to zero when the network is formed.)
The parameter kd was described in references [5] and

[6] as ’a rough proxy for temperature’ and was set to 1 in
the reported simulations. From the form of equation (5)
one sees that, in general, kd parameterizes the difference
between the forward and reverse reactions. For example
in the first line of (5) k2d is the ratio of the rate of the
reaction l+ l′ → m to the rate of the reaction m → l+ l′‘.
Here we do not regard kd as a parameter, but recompute
it on the fly at each time step in the dynamical simulation
so that the rates implied by the Master equation would
drive the system to equilibrium at the current value of E
and N in the absence of kinetic blocking and if E and N
were not changing in time. The latter condition is not
trivially satisfied in our simulations. Both E and N are
changing as we start the simulations from a food set of
small polymers, so the assumption that they are approx-
imately fixed during many reaction steps is an adiabatic
approximation which can be checked as discussed in Ap-
pendix A. Given those assumptions, our condition is re-
lated to the condition of detailed balance: If the system
were to achieve equilibrium, the summand of the first line
in the last displayed equation, for example, would have
the form

−kdnl nl′ ne + k−1
d nm ne (6)

where the overline on the n′s indicates equilibrium values
and the standard detailed balance condition (which is
sufficient but not always necessary for achievement of
equilibrium in the absence of kinetic blocking) requires
that this be zero giving

k2d = nm/(nl nl′) (7)

Within the framework just described, kd is therefore a
function of the current values of E and N through the
solution of the implicit equations 2-4 for β and µ as well
as of m, l and l′. The dependence on m, l and l′ is simpli-
fied by the fact that the equilibrium populations depend
only on polymer lengths. However the implicit equations
are not analytically soluble and we solve them numeri-
cally on the fly during the dynamical simulations.
In the thermally isolated case in which the dynam-

ics are driven through equations (3), (4),(5) and (7) by
quantities depending on β(E,N) and µ(E,N), there is
only one equilibrium state of interest, namely that which

maximizes the entropy at the system’s total energy and
polymer number. In this isolated case of a thermally iso-
lated system, a consequence of equation (7) is a strong
dependence of the results of the dynamics on the detailed
composition of the food set which was not present in our
previous simulations. Previously [5],[6], and following [3]
the boundary condition on the food set was set to be
N1 + N2 = Nf . (In the single site simulations reported
[5], Nf was set to 500.) However with the running value
for kd given by 7, if only the sum N1 +N2 = Nf in the
food set is fixed, then the number of dimers N2 is rapidly
depleted to zero so that there are only monomers in the
food set (see Appendix D). Here we report simulations
in which the ratio of N1 to N2, as well as their sum, is
fixed at various values, to explore the dependence of the
resulting systems on that effect.

In the thermally connected case, the formulation is the
same, but, instead of treating the inverse temperature β
as a Lagrange multiplier to be determined from E, we
treat β as a (positive) parameter. This corresponds phys-
ically to the assumption that the network is in contact
with a thermal bath which exchanges energy rapidly, on
the reaction time scale, with the polymers in it. (The
latter condition can be satisfied even if the total energy
E is changing slowly, because the net interchange of en-
ergy with the ambient environment can be small even
though many small interchanges of both signs are oc-
curring. However we do not need to assume that E is
changing slowly in the second case.)

We have only one implicit equation (4), to solve for
the chemical potential in the thermally connected case,
and it is a function of N and β . However the equi-
librium population depends on the bonding energy and
the implicit equation must still be solved numerically for
µ(β,N) at the current value of N and the fixed value
of β. The results are strikingly different from the iso-
lated case, because we find that, using the usual Kauff-
man initial condition of a population of food polymers,
the assumption of thermal isolation leads in most cases
to a dynamics driving the more isolated system not in
contact with a thermal bath toward an equilibrium char-
acterized by large negative temperatures (small negative
β. The relevant parameter is actually β∆. If we measure
energies and temperatures in units of ∆ then the ∆ dis-
appears from the formulation but we have kept it here. )
In the thermally isolated and thermally connected cases,
the numerical solution of the implicit equations is car-
ried out on the fly using Newton’s method as described
in Appendix B.

When the dynamics are driving the system through
equations (2)-(7) toward a predetermined temperature
in the connected case, there are two macrostates of inter-
est in determining whether the system is behaving in a
lifelike manner or not. The first of these occurs when the
populations {NL} maximize the entropy in steady state
at values of energy E and polymer number N in the
steady state. The second state of interest occurs when
populations {NL} maximize the entropy associated with
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the assigned ambient temperature 1/(kBβ) and polymer
number N . If the system is found in the first state but
not in the second, it means that it has attained a lo-
cal thermal equilibrium different from that it would have
if it were in equilibrium with the external thermal bath
parametrized by β. We term this ’locally dead but ther-
mally alive’ (LDTA). There are two relevant tempera-
tures in that case: one associated with the local equilib-
rium and the other associated with the ambient bath. As
noted earlier, in that case the local temperature can be
negative and we find such cases. Once the system is in the
equilibrium state associated with the externally applied
temperature, the internally equilibrated state will be the
same as the externally equilibrated one and we judge such
a state both locally and thermally dead (LDTD).

States in which neither type of equilibrium has been
reached are termed locally and thermally alive (LATA).
In such states, three entropies can be calculated, namely
the i)instantaneous entropy S computed by inserting the
instantaneous values of the quantities {NL} into equa-
tion (1). , ii) the local equilibrium entropy Sloc computed
from the current N and E by solving (3) and (4) for β∆
and µ and inserting the result into (2) and the resulting
values of {NL} into (1) and iii) the thermal equilibrium
entropy Sth computed in the same way from the fixed β
and N and the solution to (4). The relation S < Sloc

is always obeyed but there are no general inequalities
relating S to Sth or Sth to Sloc. In practise, because
the temperature associated with Sloc is usually large and
negative, whereas the temperature associated with Sth is
chosen to be positive and moderate (eg β∆ ≈ 1), it is
frequently the case that Sloc > Sth and S may be larger
than Sth. Negative temperatures associated with Sloc

arise because, with the Kauffman-like initial conditions
which we use in the dynamics, the system starts in a
state of very high energy and very low entropy, associ-
ated with maximum entropy characterized by a negative
temperature near infinity. Instead of using entropy ra-
tios, we determine how close each simulated steady state
is to each of these possible equilibria by computing the
Euclidean distances RL and RT of the steady state from
the corresponding equilibrium states in the macrospace
{NL} as described in the next section (equations (8), (9)
).

To determine whether the states resulting from simu-
lation using the dynamics algorithms we have described
have lifelike properties we successively apply the follow-
ing selection criteria to the simulation results. First,
we require that the final state be an entropically steady
state. For thermally isolated simulations, instantaneous
entropy is computed from equation 1 using the instan-
taneous values of the quantities NLand the history of
that entropy over 10000 time steps into the past is used
to determine if the system is in a steady state as de-
scribed in [6]. Next we determine , for isolated systems,
whether the ratio of the average entropy to the maximum
entropy (determined by inserting (2) into (1) ) is suffi-
ciently below 1 to be deemed lifelike. For the systems

simulated with an ambient positive temperature we de-
termine how close they are to the two described equilib-
rium points by use of the normalized distances RL and
RT ( defined in equations (8) and (9)in section III be-
low ) in the macrospace {NL} and classify the state as
LATA, LDTA or LDTD. Third, both in thermally iso-
lated and thermally connected simulations, we apply a
dynamics criterion to determine whether the steady state
is showing any chemical activity over the time scale of the
steady state period. The criterion is based on the time
fourier transform of a population correlation function as
described in [5] and is reviewed in Appendix C. The crite-
rion is parametrized by a frequency ωm. Large ωm means
that the system is more dynamically active than small
ωm. The dynamics criterion turns out to be significant
in excluding states associated with low ambient temper-
ature, because many of those, though out of equilibrium,
turn out to be dynamically quite inert and ’glasslike’. Fi-
nally we here introduce a fourth criterion, namely that
the population continues to grow, though the normalized
distance of the state from the entropic equilibria is not
changing in time as described in Appendix A. We report
results of succesively imposing these four criteria.

III. III. SIMULATION DETAILS AND RESULTS

A. Thermally isolated systems

To carry out meaningful simulations in the thermally
isolated case described in the last section, in which the
dynamics is driven toward the equilibrium associated
with the current values of the total energy and poly-
mer number, we find that, beginning, as we do follow-
ing the literature on these types of models, with a set
of monomers and dimers (the ’food set’), that the very
high initial energy leads through equations (2),(3) , (4)
and (7) , to driving the system toward negative tem-
peratures. Because the model’s energy is bounded from
above (by zero), negative temperatures are well known to
be thermodynamically consistent in the system when it
is thermally isolated[9]. One may think of this as arising
because the thermal distribution of polymers requires an
energy near its maximum. We illustrate in Fig. 1 with a
display of the instantaneously determined values of β∆
in such a case. The details of the dynamics vary from
run to run in such data but the temperatures are often
negative. The chemical potentials are also negative but
β∆/βµ is greater than 1 and often 10 or larger.
Note that in addition to fixing Nf = 500, we have here

fixed N1/Nf where Nf is the number of polymers in the
’food set’ taken here to be the polymers of length 1 and
2. It turns out to be necessary to fix N1/Nf in these ther-
mally isolated runs because, if we do not, the dimers are
almost immediately all dissociated into monomers and
the likelihood of finding a kinetically trapped nonequi-
librium state gets small (see also Appendix D). We il-
lustrate this in figures 2 and 3 . We see there that if
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FIG. 1: βµ and β∆ as computed ’on the fly’ during a simu-
lation of the model in which the dynamics were continuously
driven toward equilibrium determined by the instantaneous
energy E and polymer number N through equation 7. Note
that the ratio N1/Nf as well as Nf was fixed during this and
similar runs.

we do not select for nonequilibrium states, then there is
very little dependence on the ratio N1/Nf . But when
we do select for nonequilibrium steady states, then there
is a strong dependence, with the probability of finding a
nonequilibrium steady state going essentially to zero as
N1/Nf → 1.

We get some insight into the nature of the states pro-
duced from the scatter plot in Fig. 4, which shows the
standard deviation in the polymer length versus the mean
polymer length in the steady states arising from this
model for a particular value of p. The ’scars’ in this
scatter plot arise from states in which polymers of just
two lengths are active as shown in Appendix E.

B. Systems with dynamics driven toward a fixed

positive temperature

As discussed in section II, in this case there are two
possible equilibrium points of interest. To determine
whether the system has achieved either local or thermal
equilibrium with the ambient thermal bath we compute
the Euclidean distance of the final steady state popula-
tion distribution in the macrospace {NL} from the cor-

0.003

0.006

0.009

0.012

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

S
a
m
p
le

P
ro
b
a
b
il
it
y

p

N1/Nf

S
a
m
p
le

P
ro
b
a
b
il
it
y

FIG. 2: Dependence of the likelihood of producing any state
as a function of p and N1/Nf . Except very near N1/Nf = 0
and N1/Nf = 1, this essentially maps the probability of hav-
ing a viable network, with little dependence on N1/Nf . Data
from at least 809,301 simulations. More details in Appendix
F.
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FIG. 3: Dependence on N1/Nf and p of the likelihood of pro-
ducing a nonequilibrium state in a thermally isolated system.
Here we required that the steady state entropy at the end of
the run be less than 70 % of the maximum possible entropy
at the final E and N, given that the food population (N1 and
Nf ) was fixed. Data from the same set of simulations which
were used to generate Fig. 2.

resonding equilibrium points. Namely, we calculate

RL =

√

∑

L

(NL −NL(β(E,N), µ(E,N)))2/(
√
2N) (8)

for distance from the locally equilibrated state and

RT =

√

∑

L

(NL −NL(β, µ(β,N)))2/(
√
2N) (9)
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FIG. 4: Scatter plot of values of the mean and standard de-
viation of the non-food polymer length produced from 14,753
thermally isolated simulations of the model. Here p = 0.0064
and N1/Nf = 0.33.
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FIG. 5: Sample scatter plot of the distances defined in equa-
tions 9 amd 8 from the final state of runs at fixed positive
ambient temperature. The colors indicate populations. Once
sees several examples of the high population cases of LDTD
(lower left corner), LDTA (lower right corner), and LATA
(upper right corner) with high populations. Here β∆ = 50
corresponds to a relatively low temperature and it is likely
that many states are not very dynamically active. (No dy-
namics cut, as discussed below, has been made). p=.00905,
lmax = 8, data from 17,751 simulations.

for distance from the thermally equilibrated state in the
case of simulation at a fixed ambient temperature. The
numbers of polymers in the food set (here N1 andN2) are
fixed and variations in their contributions to the entropy
are small and not of interest.
We show scatter plots of values of RL and RT for a

series of runs at fixed positive ambient temperature in
the Figure 5.
Scatter plots of standard deviation of the polymer
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FIG. 6: Scatter plot of values of the mean and standard devi-
ation of the non-food polymer length produced from simula-
tions driven toward equilibrium at fixed positive temperature
for p = 0.00226, ∆β = 0.316, and lmax = 8. The colors in-
dicate the values of the distances RL (upper panel (a)) and
RT (lower panel (b)). Points which are red in both plots are
LDTD systems. Blue in both plots indicates LATA systems.
Blue in the lower panel and red in the upper panel indicates
LDTA systems. Data from 9116 simulations.

length versus the mean polymer length for this positive
temperature ensemble have a similar structure to that
shown for the isolated case in Figure 4. An example is
shown in Figure 6.
We have a large data bank of such systems. Their

properties are very diverse and the scatter plots show
structure corresponding to classes of states which have
not been fully analysed. However we note in Figure 6
that many of the nonequilibrium steady state systems
involve predominantly only two polymer lengths outside
the food set as identified (Appendix E) by the ’scars’ in
the plot. These may be less ’lifelike’ than the systems
that do not lie on ’scars’.
Here we focus on features which we deem of particular

interest for study of prebiotic evolution, namely dynam-
ical behavior and populaton growth. We proceed with
the analysis in a series of steps: As described in the last
section we first sort states into LATA,LDTA or LDTD
categories by introducing cutoffs on the values of RL and
RT . The cutoffs are somewhat arbitrary, but the results
are not qualitatively affected by the values chosen. In
Figures 7 and 8 we show probabilities of finding LATA
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and LDTA states in as a function of p and β∆. Probabil-
ities are calculated as the product of the probability that
a network at the given p is viable (as defined in section
II and [5] ) times the ratio of the number of times a final
entropically steady state of the relevant (here LATA or
LDTA) type appears divided by the total number of sim-
ulated viable systems. Probablilities of LDTD states are
not shown, since they are regarded within our definitions
as ’dead’. Locally alive and thermally dead (’LATD’)
systems do not occur (as one can see, for example, in the
scatterplot in Figure 5) because no distinct local equilib-
rium can be defined once the system has equilibrated to
an external thermal bath.
We illustrate what is happening in these simulations

with Fig. 9 showing the history of a run at ambient
inverse temperature of β∆ = 10 which resulted in a state
which passed all four criteria for ’lifelike’.

IV. DISCUSSION AND CONCLUSIONS

We have considered two conditions in this study of a
Kauffman-like model modified to take account of bond-
ing energies. In the first condition, the system is ener-
getically isolated (though it is open with respect to poly-
mer number). In that first case, the chemical dynamics
drive the system toward the equilibrium associated with
its current values of total energy and polymer number.
We find in that case, with simulations starting with only
polymers in a ’food set’ of monomers and dimers, that
the temperature equilibrium toward which the dynamics
drive the system is negative and large. Further, if the
composition of the food set is not controlled, the sys-
tem contains an instability which prevents any evolution
from occurring. Controlling the ratio of monomers to
dimers in the food set however, we find evolution to life-
like states by our previous criteria that such states be out
of chemical equilibrium, with the probability of occurence
of such states strongly dependent on the fixed value of
the monomer to dimer ratio in the food set. Analysis of
the nonequilibrium states realised in this case shows that
many of them are found to be dynamical states in which
polymers of only two lengths outside the food set are ac-
tive. (Figure 4 and Appendix E). The internal effective
temperature toward which the dynamics drive the system
remains negative in these nonequilibrium steady states.
Applying a ’dynamics cut’ to the ensemble of nonequi-
librium steady states to select those with more than a
minimal amount of dynamical activity reduces the num-
ber of surviving states by about an order of magnitude.
In the second condition, the dynamics drive the system

toward equilibrium at a fixed, positive temperature, mod-
eling a system in energetic contact with a thermally equi-
librated environment. In that case, two kinds of nonequi-
librium steady states are found: In the first, the system
is out of equilibrium both with respect to the tempera-
ture associated with its current values of the total energy
and total polymer number and also with respect to the

equilibrium associated with the fixed ’external’ temper-
ature and the current polymer number. We term such
states locally and thermally alive (LATA). We also find
states which are in equilibrium with respect to their inter-
nal temperature (as determined from their total energy
and polymer number) but out of equilibrium with respect
to the externally fixed temperature and current polymer
number. We term such states locally dead and thermally
alive (LDTA). The likelihood of LATA and LDTA states,
as a function of p and the external inverse temperature
β∆, was numerically estimated as shown in Figures 7
and 8. We found that the likelihood of both kinds of
nonequilibrium rose with decreasing external tempera-
ture (increasing β∆).

However when we applied the ’dynamics cut’ to ex-
clude systems with little dynamical activity, the ensem-
ble of surviving states was less likely to be ’lifelike’ at the
lowest temperatures. Thus we find an optimum external
temperature for appearance of lifelike states which is of
order β∆ ≈ 1. In this condition in which the system is
driven toward equilibrium at a finite fixed positive tem-
perature we again find that many of the nonequilibrium
states contain polymers of just two lengths outside the
food set. (Fig. 6 and Appendix E). We applied a fi-
nal cut (Appendix A) to this ensemble of nonequilbrium
states to select those exhibiting exponential population
growth. This final ’growth cut’ further reduces the num-
ber of surviving members of the ensemble . However we
find a significant number of such LATA states. The peak
in probablility as a function of temperature is weakened
and the peak as a function of p is quite sharp. (Fig-
ure 7 , last panel). LDTA states are found to be much
less probable than LATA states (Fig. 8. Overall, these
results show that lifelike characteristics are most likely
to emerge within the model in an ambient temperature
bath when the sparseness of the network, parameterized
by p is small ( around 1 percent, as in our previous work)
and the ambient temperature is of the order of the bond
energy.

The model provides some new insight into the nature of
nonequilibrium steady states which are most likely to be
achieved in prebiotic evolution. In particular it is note-
worthy that in the thermally isolated case, the finite up-
per bound on the energy results in dynamics which drive
the system toward a large negative temperature. We see
in data like that in Fig. 9 that the polymer distributions
in LATA states are in fact far from either the population
distribution toward which the dynamics are driving the
system (shown in green) or the distribution which would
maximimze the entropy associated with the total energy
and polymer number (shown in blue and associated with
a negative temperature).

The measures used here to evaluate the degree to which
the simulated systems are lifelike can also be determined
from data on real living, nonliving and indeterminate
polymer systems. In preliminary work, for example, we
found the chemical potential and temperature associated
with the isolated equilibrium of a system with the pro-
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FIG. 7: Probabilities of producing an entropically steady state at the indicated values of the Kauffman parameter p determining
the reaction network sparseness as defined in the text and the ambient inverse temperature β∆. Here lmax = 8 and states were
deemed LATA if RL and RT were both greater than 0.35. . In panel (a), no cut was made to exclude states with no dynamic
activity or which were not growing exponentially in population. In panel (b) the result of subjecting the states counted in the
data of panel (a) to the ’dynamics cut’ described in Appendix C is shown. Here we required that ωm > 10( 2π

δtgillespie
). In panel

(c) the result of requiring that the states counted in panel (b) also have exponentially growing populations is shown. Here
we required that the final states be exponentially growing at a rate of 1 inverse Gillespie time steps or greater (see Appendix
A.). All probabilities shown take account of the probability that an artificial chemical network generated by our algorithm as
described in [5] is ’viable’ as defined there and in section II.

tein distribution found in the ribosome[10] in E. Coli.
We solved equations (2-4), suitably modified to take ac-
count of the fact that 20 monomers, rather than 2 are
available in the proteins. Using the observed fact that
there are N = 52 proteins in the ribosome, the value
of −E/∆ = 6561 obtained from within the model from
the observed population distribution and the observed
lmax = 393 we found βµ = −4.09 and β∆ ≈ −3.00
. Evaluating the Euclidean distance RL from the local
equilibrium point gave RL = .01 and an entropy value
of S = 19806 compared to the locally equilibrated en-
tropy of SL = 19918. On the other hand, we also evalu-
ated the chemical potential for the thermally equilibrated
state associated with a temperature of 20oC , assuming

∆ = 0.1eV and the same value of N giving βµ = −2725
and β∆ = 3.958, RT = .70 and ST = 61067. Thus,
somewhat unexpectedly, the protein distribution in this
ribosome is much closer to isolated chemical equilibrium
associated with a high energy initial state than to chemi-
cal equilibrium expected from equilibrium with an ambi-
ent temperature of the order to be expected at the surface
of the earth. The three population distributions for the
ribosome are shown (with a histogram bin size of 10) in
Fig. 10.

We plan further studies applying these measures to ex-
perimental and natural systems to evaluate their useful-
ness in determining the extent to which a system of un-
known provenance (for example on an exoplanet) might
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FIG. 8: Same as figure 7 except that RL < 0.35 and RT > 0.35 which we here term LDTA states. Data from at least 1,101,877
simulations. More details in Appendix F.

be regarded as lifelike.
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VI. APPENDIX A: TESTS OF THE ADIABATIC

APPROXIMATION AND SELECTION FOR

EXPONENTIAL POPULATION GROWTH

The use of detailed balance as expressed in equation
(7) can only be approximately correct in the isolated case
if the rate of change of the total energy E and the total
polymer number N is much slower than the rate of indi-
vidual reactions. (The latter is of the order of the inverse
of the time step.) In the case of contact with a thermal
bath, the approximation is justified if just the rate of
change of N is much slower than the reaction rate. To
check if these conditions are satisfied we estimated the
logarithmic time derivatives of the polymer number N
and system energy E by sampling their values every 1000
simulation steps over the entire run , (typically at least
105 simulation steps). We calculatedN(t) and E(t), and,
from them, the average of the discrete logarithmic time



11

-50.1
-50.09
-50.08
-50.07
-50.06
-50.05
-50.04
-50.03
-50.02
-50.01

-50

0 3 6 9 12× 104
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

β
µ N

Reaction Steps

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12× 104

R

Reaction Steps

(b)

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

N
L

L

(c)

βµ
N

RL
RT

Sim. Data
Loc. Equil.

Therm. Equil.

FIG. 9: History of a run which produced a ’lifelike’ state
according to the criteria applied. Panel (a) shows the com-
puted value of the chemical potential βµ and the total poly-
mer population N as a function of simulation time. Panel (b)
shows the values of RL and RT as a function of simulation
time. The final panel (c) shows the macrospace polymer dis-
tribution for the final state (red), the population distribution
of a locally equilibrated state at the same energy and total
polymer number (blue), and the population distribution of a
globally equilibrated state at the ambient temperature used
in the dynamics algorithm (green). This was a single run with
lmax = 6, p = 0.00226, and β∆ = 10.

derivative of N and E.

(1/N)dN/dt = (1/N )
N
∑

τ=1

(Nτ+1 −Nτ )

(1/2)(Nτ+1 +Nτ )
(10)

(1/E)dE/dt = (1/N )

N
∑

τ=1

(Eτ+1 − Eτ )

(1/2)(Eτ+1 + Eτ )
(11)

in which τ labels data every 1000 reaction steps and
N is the number of data points..
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FIG. 10: Polymer length distribution for the proteins in the
ribosome of E. Coli (red) compared with the local equilib-
rium distribution associated with the energy of those proteins
within the model (blue) and with the thermal distribution
associated with the same number of polymers at an ambient
temperature of the order of that to be expected at the surface
of the earth (green). In the thermal distribution, all the 52
polymers are in the largest bin, so the number of monomers is
much larger and the height of the green peak is not to scale.
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FIG. 11: The logarithmic reaction time derivative of the poly-
mer number and the energy for isolated systems during the
entire run. p = 0.00226 and N1/Nf = 0.33. Data for 7174
systems.

Figure 11 is a scatter plot showing the average logarith-
mic reaction time derivatives for 7,174 thermally isolated
systems. Note that the fastest change in polymer num-
ber or energy is of the order of 10−5, giving a time scale
of variation of both quantities of order 105 reaction steps
, satisfying the adiabatic condition.
Figure 12 is an example scatter plot of the logarith-

mic reaction time derivatives of the energy and polymer
number for systems coupled to a positive temperature
heat bath. As noted, only the logarithmic derivative of
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FIG. 12: The logarithmic derivative of the polymer number
and the energy for systems coupled to a thermal bath with
for p = 0.00226 and β∆ = 3.16. Data for 9,343 systems.

N is relevant in this case. It is also generally less than
or of order 10−5 inverse reaction time steps, again giving
a time scale of 105 reaction time steps which is >> 1 as
required. For both N and E there are large variances
about the average values of the logarithmic derivatives
with respect to reaction time indicating that exponen-
tial growth is not a good model for these quantities as
a function of reaction time. However these derivatives
do give an estimate of the numbers of reactions required
to change N and E which is what is required for the
adiabatic approximation.
Further evidence for the validity of the adiabatic ap-

proximaton is provided by the actual computed values of
kd for which we supply an example in Figure 13.Though
details of the time dependence of E and N vary widely
from run to run, we consistently find the type of slow
variation of kd shown there. Here kd(L : M) is the value
of kd used for ligation of polymers of lengths L and M .
To test whether the systems generated are exponen-

tially growing in time, the relevant measure of time is
not reaction step time, as it is for evaluating the validity
of the adiabatic approximation, but our approximation
to real experimental time, which is given by the Gille-
spie algorithm as reviewed for this application in [5]. In
Figure 13 we show an example of the average values of
the logarithmic derivatives of N and E calculated as be-
fore, but with the Gillespie time interval between each
step in the denominator of the summand in equations
(10) and (11) for a run at ambient temperature given
as β∆ = 3.16. Characteristically we find variances which
are large for small logarithmic derivatives, indicating that
the log derivative is measuring noise and not actual ex-
ponential growth, but much smaller variances at larger
growth rates, indicating systematic exponential growth.
In those cases in which exponential growth emerges from
the noise, the difference between Gillespie time and re-
action step time is usually large, with each unit of Gille-

spie time including many reactions steps. In the selec-
tion for exponentially growing systems (constraint four)
which gives the frequencies of exponentially growing sys-
tems in Figures 7 and 8 (in the rightmost panel in each
figure) we counted systems with an average logarithmic
N derivative with respect to Gillespie time greater than
1 as exponentially growing.

VII. APPENDIX B: DYNAMICS ALGORITHM:

COMPUTING µ AND β ON THE FLY

Before a simulation is started a coarse-grained table is
made so that for given N and E values the values of µ
and β can be quickly determined by linear interpolation
from the values in the table. To construct the table, we
use Newton’s method to solve the equations (3) and (4)
as follows. Let ~v be the two dimensional vector

~v =

(

βµ

β∆

)

(12)

Let N(~v) ,E(~v) be the values of the righthand sides of (4)
and (3) for that value of ~v and N and E be the values
of the lefthand sides of (3) and (4) . Define the two

dimensional vector ~F by

~F =

(

N(~v)−N

E(~v)− E

)

(13)

Consider a small variation δv from an initial guess for ~v
and expand to first order about ~v giving

~F (~v + δ~v) = M · δ~v + ~F(~v) (14)

where the matrix M is the Jacobian

M =

( ∂N
∂βµ

∂N
∂β∆

∂E
∂βµ

∂E
∂β∆

)

(15)

Set ~F (~v + δv) to zero and solve for δv giving a first cor-
rection to the initial guess for ~v of

δ~v = −M
−1 · ~F(~v) (16)

Iterate by evaluating M at ~v + δ~v and getting a further
correction until the corrections are sufficiently small and

the components of ~F are sufficiently close to zero. The
inverse M

−1 of the matrix M is evaluated as

M
−1 =

(

h− 2g + f g − f
g − f −f

)

× (
1

g2 − hf
) (17)

in which , with xl = −(l− 1)β∆− µβ

f =

lmax
∑

l=0

(2l − 1)/(4 sinh2(xl/2)) (18)

g =

lmax
∑

l=0

l(2l − 1)/(4 sinh2(xl/2)) (19)

h =

lmax
∑

l=0

l2(2l − 1)/(4 sinh2(xl/2)) (20)
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FIG. 13: Example of time variation of N , E , S ,β∆, βµ and kd during an isolated run ending in a nonequilibrium entropically
steady state.

VIII. APPENDIX C: COLLECTIVE DYNAMICS

AND DYNAMICS CUT:

To characterize the collective dynamics of states in the
model, we used, as in [5], the correlation function C(τ)
defined as

C(τ) = (1/(Nst − τ))× (21)

Nst−τ
∑

t=1

∑

m

(nm(t)− nm)(nm(t+ τ)− nm)

Here τ and t are integers numbering successive reac-
tions, Nst is the number of time (event) steps used to
characterize the dynamics and nm is the time average of
nm over the Nst reaction steps.
The time Fourier transform, with ωl = 2πl/(Nst) is

(,with i =
√
−1),

S(ωl) =

Nst
∑

τ=1

exp(−2πilτ/Nst)C(τ)F (τ) (22)

in which F (τ) = (Nst − τ)/Nst is a weighting function
which takes approximate account [11] of the fact there are

fewer data points in the sum for C(τ) leading to larger
uncertainties in C(τ) as τ increases. The power spectrum
is

P (ωl) = |Re(S(ωl))|2 + |ImS(ωl)|2 (23)

We characterize the scale ωm of the frequencies in the
power spectrum by approximately solving the implicit
equation

∑l=m−1

l=−m P (ωl)
∑Nst/2−1

l=−Nst/2
P (ωl)

= 1/2 (24)

Over the relatively short steady state period of 10,000
reactions steps we showed in [5] that the shape of the
fourier transform is not sensitive to choice of event time
or Gillespie time. The Fourier transforms are numerically
much quicker to evaluate using event time so we have cho-
sen to use event time in the computation of the Fourier
transform and correct the values of ωm to Gillespie time
after ωm is determined by dividing by the average Gille-
spie time δtgill between reactions during the steady state
interval. We then choose a cutoff frequency ωc and deem
states with ωm > ωc to have ’passed’ the dynamics cut
and to be considered dynamically alive.
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fixed ambient temperature given by β∆ = 0.1. p = .00226,
lmax = 8. Data for 9600 systems. Right: The same quantities
for the energy E.

We show some examples of the correlation functions
and power spectra in Figures 15. and 16 (in units of in-
verse reaction time). With our parametrization, the re-
sults fall into two, fairly distinct, dynamic classes: In one
class, the power spectrum is dominated by a very strong
peak around the highest possible frequency, obtained by
setting l = Nst/2 so that ωl = π (the ’zone boundary’).
These states easily pass any dynamics test of the sort de-
scribed, but it is not clear that they are intuitively very
lifelike. The other states have quite symmetrical peaks of
various shapes around the origin in the power spectrum.
Many of these Fourier transforms have a shape reminis-
cent of a Drude or Debye spectrum characterized by one
or a few dissipatively damped modes, while some oth-
ers show evidence of underdamped modes as well. The
time scale of this second class of dynamic states is much
longer, usually roughly 104 event time steps. We do not
have a detailed theory to account for this time scale but
find that it is of the order of the number of reactions in
the networks, (about 2500 for typical values of lmax = 8
and p = .005).

IX. APPENDIX D: FOOD SET INSTABILITY IN

ISOLATED DYNAMICS

We hold the total food set population of dimers and
monomers at a fixed value Nf (= 500 in the simulations
reported here.) The simulations start with finite popu-
lations only in the food set. Nf = N1 +N2 and , from 7
the rate of dimer scission to monomer monomer ligation
is

2 → 1 + 1

1 + 1 → 2
= n1

2/n2 (25)

for any pair of monomers. At the beginning of the sim-
ulation, there are only dimers and monomers and the
instantaneous equilibrium values of the populations are ,
using the relations N = 2n1 + 4n2 and n2 = −E/4∆,

n1 = (N + E/∆)/2;n2 = (−E/4∆) (26)

Express this in terms of f = N1/N = (1+E/∆N) giving

2 → 1 + 1

1 + 1 → 2
= Nf2/(1− f) (27)

The forward and reverse rates are equal when this is 1
giving a quadratic equation for f with positive root

fc = (1/2N)(−1 +
√
1 + 4N) ≈ 1/

√
N (28)

because Nf = 500 >> 1. The critical value of N1/N is
thus about .05 and if we populate the food set with a
1/6 probability for each species, 95% of the time we will
drive all the dimers to monomers.
This accounts for the observation that in the simu-

lation, uncontrolled equilibration of the food set to the
instantaneous values of E and N drives the dissolution
of dimers into monomers. But then the evolution can-
not start, because in order to get a nonfood polymer (of
length 3 or larger) from a collection of only monomers
one must first make a dimer and, by the previous argu-
ment, the dimer will immediately be dissociated back to
monomers.

X. APPENDIX E:’SCARS’ IN MEAN LENGTH

VERSUS LENGTH VARIANCE SCATTER PLOTS

We consider the case in which there are non zero popu-
lations of nonfood polymers of just two types with lengths
l1 and l1 and populations n1 and n2 and a constant total
nonfood population N = n1 + n2. The mean length is
then

x = l = (l1n1 + l2n2)/N (29)

and the variance in the length is

y2 = l2− l
2
= (l21n1+ l22n2)/N−((l1n1+ l2n2)/N)2 (30)

Rearranging these relations we obtain

y2 = (l1 − x)(x − l2) (31)

which describes the loci of the ’scars’ in Figures 4 and 6
very well. We show an example of the result of equation
31 compared with scatter plot data from a thermal run
in Figure 18.

XI. APPENDIX F. SIMULATION DETAILS.

For the data in Figures 2 and 3 the number of gener-
ated networks (including those discarded as not viable)
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p number of networks

.00226 10,000

.00320 10,000

.00452 10,000

.00640 5,000

.00761 1,000

.00905 1,000

.01280 1,000

TABLE I: Numbers of networks generated to produce the re-
sults shown in 2 and 3. For each viable network, 50 dynamics
simulations were produced.

p number of networks dynamics runs per viable network

.00226 10,000 50

.00320 10,000 50

.00452 5,000 25

.00640 2,000 25

.00761 1,500 25

.00905 1,250 25

.01076 1,000 25

.01280 1,000 25

TABLE II: Numbers of networks generated and numbers of
dynamics runs per viable network used to produce the results
shown in figures 7 and 8.

was as shown in Table 1. For each viable network, 50 dy-
namic simulations with different random number seeds
for initiation were generated. For the data in figures 7
and 8, the number of networks and the number of sim-
ulations per network are shown in Table 2. For larger
p, a larger number of generated networks are viable, so
that a smaller number of starting networks is required to
generate statistically significant data. Also, at larger p it
takes more reactions to reach steady state, so longer runs
are required and fewer dynamics runs per viable network
are computationally affordable.
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FIG. 15: Fourier transforms and the power spectrum of C(τ ) of a run at fixed infinite ambient temperature (β∆ = 0). Panel
(a) and (b) shows the values of N , E, RL, and RT over the entire history of the run and indicate that it is rather close to
equilibrium. Panel (c) shows C(τ ) calculated for the last 105 steps of the run. Panels (d)-(f) show the real and imaginary parts
and the power spectra of the fourier transform of C(τ ), with point weighting as described in the text, near the origin. Here
p = 0.00226 and lmax = 6.
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FIG. 16: Fourier transforms and the power spectrum of a run at fixed ambient temperature β∆ = 1. Panels are defined as in
the previous figure 15. This system is classified as LATA based on the R values. Its population grew rapidly and its dynamic
spectrum is qualitatively similar to the previous, equilibrium example. p = 0.00226, lmax = 6. The same network that was
used to generate the data in the previous figure 15 was used here.
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FIG. 17: Fourier transforms and the power spectrum of a run at fixed ambient ∆β = 1 but exhibiting a sharp peak in its the
power spectrum iof C(τ ) around the maximum frequency ω = π. Panels as defined as in previous two figures 15 and 16 except
that the last three panels (d)-(f) have been centered around ω = π. This system would qualify as LDTA on the basis of the R
values but its population is not growing and its dynamic spectra is very different from the previous two examples. For this run
p = 0.00226, lmax = 6, and the network is different from that used to generate figures 15 and 16.
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FIG. 18: Scatter plot of values of the nonfood mean poly-
mer length and its standard deviation produced by 41,667
simulations driven toward equilibrium at fixed positive tem-
perature with β∆ = 10, p = 0.01280 and lmax = 6. The
dashed curves show the results of equation 31 for the cases
l1 = 6 and l2 = {3, 4, 5} with no adjustable parameters.


