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We study the connection between multi-fractality and crucial events. Multi-fractality is frequently
used as a measure of physiological variability, where crucial events are known to play a fundamen-
tal role in the transport of information between complex networks. To establish the connection of
interest we focus on the special case of heartbeat time series and on the search for a diagnostic pre-
scription to distinguish healthy from pathologic subjects. Over the last twenty years two apparently
different diagnostic techniques have been established: the first is based on the observation that the
multi-fractal spectrum of healthy patients is broader than the multi-fractal spectrum of pathologic
subjects; the second is based on the observation that heartbeat dynamics are a superposition of cru-
cial and uncorrelated Poisson-like events, with pathologic patients hosting uncorrelated Poisson-like
events with larger probability than the healthy patients. In this paper, we prove that increasing the
percentage of uncorrelated Poisson-like events hosted by heartbeats has the effect of making their
multi-fractal spectrum narrower, thereby establishing that the two different diagnostic techniques
are compatible with one another and, at the same time, establishing a dynamic interpretation of
multi-fractal processes that had been previously overlooked.

PACS numbers: 89.20.-a,89.70.Cf,89.75.-k,89.75.Da,87.19.Hh,87.19.X-,05.45.Df,05.45.Tp,05.40.-a

I. INTRODUCTION

The hypothesis that multi-fractality is a significant
property of physiological processes gained attention in
the literature of the last 20 years. Ivanov et al1 initiated
this interest using wavelets to analyze the heartbeat data
of several patients, some healthy and some affected by
congestive heart failure. They determined that the main
difference between the healthy and non-healthy is that
the healthy subjects have a significantly broader multi-
fractal spectrum. The multi-fractal approach1 is an effi-
cient way to measure cardiovascular variability2 , referred
to as heart rate variability (HRV), the proper treatment
of which is still the object of intense discussions3.

The statistical analysis of heartbeat sequences, as well
as that of other physiological processes, is carried out by
properly processing suitable time series. Each time series
corresponds to a single individual who is unique, thereby
raising the challenging problem of determining how to
establish a connection with the Gibbs ensemble perspec-
tive, which requires averages to be taken over identical
copies of the same system. This dilemma is settled by as-
suming that different portions of the single time series can
be interpreted as identical copies of the same process, cor-
responding to different initial conditions. A well known
analysis technique of this kind is Detrended Fluctuation

Analysis (DFA),4,5. Due, in part, to the growing interest
in multi-fractality6, Kantelhardt et al.7 extended DFA so
as to make it possible to extract from it multi-fractal in-
formation, through the spectral density f(α) which often
has the form of a broad inverted parabola that is expected
to become very narrow and centered on the scaling in-
dex α = 0.5 in the ordinary Poisson case. We refer to

the algorithm developed in7 as Multi Fractal Detrended
Fluctuation Analysis (MFDFA). MFDFA is adopted to
discuss the transmission of multi-fractality from a com-
plex network stimulus to another complex network8, both
being characterized by a broad f(α) spectrum.

The main purpose of the present article is to uncover
the dynamical origin of a broad f(α) spectrum by moving
from the specific case of HRV to the general properties
of non-Poisson time series. To achieve this, we follow
the search for a diagnostic distinction between healthy
and pathological subjects. The goal, however, is to ob-
tain a better understanding of the dynamical origin of
multi-fractal variability. Significant insights about this
dynamic origin would attract general interest to the im-
provement of diagnostic techniques. One possible road
to the solution of this problem can be found by noticing
that in 2002 Allegrini et al9 used the detection of cru-
cial events as the main criterion to distinguish healthy
(with a broad f(α) spectrum) from unhealthy (with nar-
row f(α) spectrum) patients. For a proper definition of
crucial events we adopt the theoretical perspective es-
tablished in earlier work, see for example10, defining the
crucial events on the basis of the time interval between
the occurrence of two consecutive events. The time in-
terval between two consecutive events is described by a
waiting time probability density function (PDF) ψ(τ). In
the case of crucial events ψ(τ) has the asymptotic inverse
power law (IPL) structure:

ψ(τ) ∝
1

τµ
(1)

with µ < 3. The time intervals between two different
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pairs of consecutive events are not correlated:

〈τiτj〉 ∝ δij . (2)

The occurrence of crucial events plays an important role
in the transport of information from one complex network
to another11.

A. Updating the definition of crucial events

It is important to discuss the dynamical origin of
events of this kind. Crucial events are a manifesta-
tion of cooperative interactions between the units of a
complex network that is expected to lead to a spon-
taneous organization process, usually called Self Orga-
nized Criticality (SOC). Significant progress has been
made in understanding SOC since the original work of
Bak et al.12. The emergence of SOC is signaled by the
births of anomalous avalanches, see13,14 for recent work
along these lines. There exists a new approach to SOC
emphasizing temporal rather than intensity anomalous
distributions15,16. The authors of Ref.16 defined their
approach to self-organization as Self-Organized Tempo-

ral Criticality (SOTC). According to SOTC the crucial
events defined earlier with the help of Eqs. (1) and (2),
namely the events that the authors of9 were able to find
in heartbeats, occur on an intermediate time scale, after
an initial transient regime to the condition of intermedi-
ate asymptotics. The IPL nature of crucial events is tem-
pered by an exponential relaxation in the long-time limit.
This interpretation allows us to facilitate our approach to
the connection between the diagnostic techniques of Ref.1

and of Ref.9. In fact, the three time regimes of SOTC
are a form of variability that we subsequently connect to
the physiological variability that led the authors of Ref.1

to their diagnostic insight.
In summary the crucial events are responsible for the

complexity of the intermediate asymptotics regime, as it
will be more extensively pointed out in Section III. Fur-
thermore, we have to take into account that according to
Ref.9 the definition of crucial events must be extended to
consider the case where the time interval between the oc-
currence of the crucial events defined by Eq. (1) and Eq.
(2) is filled with events with memory. The first crucial
event activates the generation of the filling events and
the occurrence of the next crucial time event ends this
sequence and activates a new sequence of strongly corre-
lated filling events. The events filling the time interval
between two crucial events must not be confused with
the Poisson-like events disturbing the healthy physiolog-
ical function of the heartbeats. In Ref.9 the events filling
the time distance between two consecutive crucial events
were responsible for a phenomenon calledmemory beyond
memory effect. The intuitive interpretation of this effect
is that the crucial events with µ < 3 are responsible for
slowly decaying correlation functions, thereby implying
a form of memory. The filling events have an additional
memory preventing them from disturbing the healthy

physiological function signaled by the crucial events. The
real heartbeat process is a superposition of two time se-
ries, the former corresponding to the healthy function
and the later being given by a sequence of totally uncor-
related events.

In this paper the surrogate time sequences are gener-
ated adopting for the healthy time series two different
prescriptions. The first prescription fits the direction
of Ref.9. For simplicity’s sake, we establish the highly
correlated nature of the filling events by making the as-
sumption that time distance τ between two consecutive
pseudo events is constant. The distribution of τ is an
inverse power law with µ significantly larger than 3 in-
cluding µ = ∞, namely an ordinary Poisson process.
Of course, in this case the crucial renewal condition of
Eq. (2) is violated. The later time series, of perturb-
ing Poisson-like events, is generated by deriving the time
distance between two consecutive events from a distribu-
tion density with µ > 3 identical to that of the filling
events of the former. As we shall see, these perturb-
ing Poisson-like events reproduce very well the disturb-
ing process responsible for heart failure. We adopt also
the second prescription, where the healthy time series
hosts only crucial events and the wide laminar region be-
tween two consecutive crucial events is left empty. This
simple prescription makes it possible for us to illustrate
the efficiency of the method of Diffusion Entropy Anal-
ysis (DEA)17 to determine the scaling generated by the
crucial events, but it cannot be used to explain how to es-
tablish the percentage of disturbing Poisson-like events.
The simple prescription, however, is convenient to show
that crucial events alone can generate the multifractal
distribution. We shall refer to the first prescription as
generating dressed crucial events and to the second as
generating bare crucial events.

B. Outline of the paper

The outline of this paper is as follows. We devote Sec-
tion II to a short review of the earlier attempts at finding
a connection between multifractality and crucial events.
Section III affords intuitive arguments on the importance
of intermediate asymptotics for the analysis of heartbeats
illustrated in this paper. Section IV shows why DEA
works without being limited to the Gaussian condition.
In Section V, we show that the use of DEA adopted in
earlier work9 corresponds to the observation of the inter-
mediate asymptotic region. Section VI reviews the pro-
cedure adopted in Ref.9 to process the heartbeat data
for the purpose of revealing, with the help of surrogate
data, to what extent this is a genuine way of disclosing
the contribution of uncorrelated Poisson-like events to
the reduction of HRV. Section VII illustrates the joint
use of DEA and the evaluation of the percentage of un-
correlated Poisson-like events. Finally, Section VIII is
devoted to concluding remarks.
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II. SCALING AND MULTIFRACTALITY

The search for crucial events is made difficult by the
fact that crucial events are often imbedded in clouds
of uncorrelated and irrelevant events. The authors of9

used a technique of statistical analysis, called DEA17, to
detect the anomalous scaling index δ, which these cru-
cial events would generate were they not imbedded in a
cloud of non-crucial events, namely, when they are vis-
ible. However, to establish a connection with the re-
sults of Ivanov et al1 it is necessary to address a problem
that goes beyond the merely diagnostic goal of both1

and9. The problem is to uncover the physical mecha-
nism producing the multifractality revealed by MFDFA.
This problem has been the subject of many research pa-
pers and we devote this Section to a short review of the
results of that research.
A key element of this debate is the DEA, which was

shown to be the correct way to determine the scaling gen-
erated by crucial events while DFA is not18–20. This is
a consequence of the fact that DFA determines the scal-
ing of the second moment of a distribution that can be
divergent for non-Gaussian distribution densities. For
this reason many attempts have been made to com-
bine the correct scaling evaluation with the evaluation
of multifractality19–24. However, these interesting papers
leave unanswered the central question of the multifractal
significance of crucial events, since these authors applied
the new technique of analysis to real data with no dis-
cussion of surrogate data hosting only crucial events.
It is convenient, for the sake of clarity, to mention some

papers from the field of experimental psychology25–28.
For our purposes, the merit of these publications is that
they establish, through their analysis of real data, a
connection between multifractality and the transport of
information. In this way they imply a connection be-
tween multifractality and the crucial events revealed by
the proper use of DEA, in accordance with the obser-
vation that crucial events play an important role in the
transport of information from one complex network to
another11.
Finally, it is important to mention that29 and30 exam-

ine a non-stationary human network by means of DEA
that enables them to reveal the existence of periodic-
ity and complexity simultaneously. Sarkar and Barat30

adopt DEA to examine heartbeats before and after med-
itation, with the surprising discovery of a distinct oscil-
latory behavior of diffusion entropy. We shall come back
to discuss the results of Ref.30 in section VIII. Here we
limit ourselves to properly addressing the connection be-
tween crucial events and multifractality by adopting sur-
rogate sequences with a mixture of Poisson-like and cru-
cial events, including the case where only crucial events
are hosted in the sequence. Such surrogate sequences
enable us to assess how crucial events are perceived by
MFDFA. This is the case where it is useful to use the
prescription for bare crucial events.
According to the statistical analysis of9 the distinc-

tion between healthy and pathologic subjects is estab-
lished by noting that the heartbeat dynamics of patho-
logic subjects host a critically large number of uncorre-
lated Poisson-like events. An important result of this
paper is the observation that uncorrelated Poisson-like
events have the effect of reducing HRV. The largest HRV
is realized in the ideal case of cardiac dynamics uniquely
determined by the SOTC process, with its complete time
evolution including the transient regime, intermediate
asymptotics with its crucial events of Eqs. (1) and (2),
and the final tempered asymptotic regime. The dressed
crucial events are a form of randomness signaling the
healthy physiological function of heartbeats, while the
uncorrelated Poisson-like events represent a disturbance
of this healthy physiological function and for this reason
we refer to them either as randomness or strong random-
ness, when they reach the high concentration revealed by
our analysis in the case of heart failure. In addition to
results of diagnostic interest, this paper starts down the
road to a deeper understanding of the dynamical origin
of multifractality.

III. INTERMEDIATE ASYMPTOTICS

In his book on intermediate asymptotics31 Barenblatt
adopts a visual art metaphor to illustrate the concept of
intermediate asymptotics: “... We have to look at paint-
ings at a distance great enough not to see the brush-
strokes, but at the same time small enough to enjoy
not only the painting as a whole but also its impor-
tant details: think of van Gogh’s work, for example. ...”.
Goldenfeld32 illustrates the renormalization group rules
that we have to adopt to eliminate the divergences cre-
ated by the perturbation approach. This illustration is
based on the assumption that the physical condition of
intermediate asymptotics is a form of perennial transition
to equilibrium.
There is a wide conviction that this is a simplifying but

useful idealization of reality. A remarkable example is af-
forded by the work of Mantegna and Stanley33. These
authors noticed that although a finite size-induced trun-
cation is an unavoidable consequence of the dynamics of
real physical processes, the time duration of the transi-
tion to the Gaussian statistics prescribed by the central
limit theorem may become extremely extended, in line
with the idealized condition of perennial intermediate
asymptotics of Goldenfeld. However, for practical pur-
poses a complex system can also be observed on so large
a time scale as to see dynamical effects that for simplic-
ity may be interpreted as forms of ordinary fluctuation-
dissipation processes. Important work has been done to
obtain analytical results for both short- and long-time
regimes, see for instance34, which triggered significant
interest in the appropriate mathematical formalism of
transient anomalous diffusion35, including the exponen-
tial form of tempering36,37. It is convenient to notice that
tempering may be an effect of representing real physical
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processes by means of finite length time series, an un-
avoidable consequence of observation. We believe16 that
tempering is a genuine property of the process of self-
organization itself, since it emerges from the interaction
of a finite number of units and that the heartbeat process
belongs to this class of self-organizing processes, thereby
involving tempering.

IV. DIFFUSION ENTROPY

DEA makes it possible to evaluate the correct scaling
of a diffusion process, regardless of whether the Gauss
condition applies or not17. The scaling index δ of a dif-
fusing variable x is defined by

p(x, t) =
1

tδ
F
( x

tδ

)

, (3)

where p(x, t) is the PDF of the variable x at time t and
F (y) is a function that for crucial events does not have
the ordinary Gaussian form. DEA measures the Shannon
entropy of the diffusion process:

S(t) = −

∫ +∞

−∞

dxp(x, t) ln [p(x, t)] . (4)

By substituting Eq. (3) into Eq. (4), after some algebra
and replacing the integration variable x with the integra-
tion variable y = x/tδ, we obtain17

S(t) = A+ δ ln(t), (5)

where the constant reference entropy is

A ≡ −

∫ +∞

−∞

dyF (y) ln [F (y)] . (6)

Eq. (5) shows that the entropy S(t) increases linearly
with ln(t) and the slope of the resulting straight line is the
scaling coefficient δ. The numerical search for the scaling
coefficient is done with this property in mind. Changing
the unit adopted to measure time changes the value of
t, but does not affect the scaling parameter δ17. DFA is
based on evaluating scaling through the second moment
of p(x, t) and this has the effect of providing misleading
information on δ when p(x, t) has an IPL tail so slow as
to generate divergence. For this reason, Yazawa in his
recent work on the effects of emotions on HRV adopted a
modified version of DFA38. However, the MFDFA used
herein is based on the adoption of fractional moments
〈|x|q〉, thereby bypassing the problems created by slow
diffusion IPL tails with a conveniently small value of q.

V. DEA AS A TECHNIQUE TO REVEAL
CRUCIAL EVENTS

The DEA method17 was originally introduced to prop-
erly analyze time series assumed to be driven by crucial

renewal events. It is important to stress that the renewal
events hypothesized9 for the analysis of heartbeats are
the subject of an extended literature focusing on the phe-
nomenon of renewal aging39. For a friendly illustration
of the main results of this paper, we remind the readers
about an algorithm used to generate non-Poisson renewal
events. It is given by11,40

τ = T

(

1

y
1

µ−1

− 1

)

, (7)

where y is a real number selected with uniform probabil-
ity on the interval (0, 1). The times τ generated by this
algorithm are totally uncorrelated and obey the waiting
time PDF

ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
. (8)

Note that to be as close as possible to the tempering pre-
scriptions of SOTC16, we should adopt a survival proba-
bility Ψ(t) with the structure

Ψ(t) =

(

T

t+ T

)µ−1

exp(−λt), (9)

with the transient regime to intermediate asymptotics
being determined by the parameter T and defined by the
time region 0 < t < T . The time region of intermediate
asymptotics corresponds to T < t < 1

λ
and the tempered

region is given by t > 1
λ
. For simplicity’s sake the surro-

gate sequences hereby used are established using Eq. (7),
which would correspond to λ → 0, the tempered action
being exerted by the finite size of the time series, L. We
make the assumption that λ ∝ 1/L.
In this paper, following the results of earlier work9, we

limit our analysis to the IPL index range:

2 < µ < 3. (10)

It is important to stress that the Poisson events corre-
spond to µ = ∞, but events drawn from µ = 5 are suf-
ficienctly far from the crucial condition to be used as
generators of non-crucial events. The algorithm of Eq.
(7) can be used to explain in an intuitive way the differ-
ent nature of the randomness of µ < 3 as compared to
that of µ ≫ 3. The time interval between two consec-
utive choices of the random number y in Eq. 7 has the
mean value

〈τ〉 =
T

(µ− 2)
, (11)

as can be easily established using the waiting time PDF
ψ(t) of Eq. (8) to perform the average. If 〈τ〉 < ∆t,
where ∆t is the integration time step, we observe a pro-
cess that is totally random. In the limiting case of µ < 2,
〈τ〉 ≫ ∆t, since in this case < τ > is divergent; the ran-
domness is sporadic. In the region 2 < µ < 3 random-
ness is not as sporadic as for µ < 2. However, < τ2 >
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is divergent and as a consequence randomness remains
distinctly intermittent. We make the assumption that
the sporadic randomness of crucial events is good for the
healthy function of cardiac dynamics and that an excess
of randomness is risky.
To discuss the joint action of frequent and spo-

radic randomness let us create suitable surrogate
time series, namely an appropriate sequence of times
τ1, τ2, ....τi, τi+1, ..... This sequence is generated by a re-
peated random selection of y in Eq. (7) so as to create
either a sequence of crucial events, with µ < 3, or a
sequence of non-crucial events, with µ > 3. More pre-
cisely, in the applications of the present paper we adopt
3 > µ > 2 for crucial events and µ = 5 for non-crucial
events.
Each of these two time sequences has to be turned into

a corresponding suitable fluctuation ξ(t). To do that we
adopt the Asymmetric Jump Model (AJM)9. The reason
for this choice is that this random walk rule makes it
possible for DEA to reveal the correct scaling established
by the generalized central limit theorem (GCLT)41 in the
whole crucial event region µ < 3, including the region
µ < 2. This random walk rule is established by setting
ξ = 0 when there are no events, and ξ = 1 when either a
crucial or uncorrelated Poisson event occurs.
Thus we create two time series, one corresponding to

µ < 3 and one corresponding to µ > 3. The surrogate
time series used here for the statistical analysis corre-
sponds to the superposition of both time series,

ξ(t) = (1− ∈)ξµ>3(t)+ ∈ ξµ<3(t). (12)

The parameter ∈< 1 is the probability that the observed
heartbeat signal, detected according to the prescription
of the next section is generated by a genuine SOTC pro-
cess. The prescription adopted to generate the complex
time series is the prescription earlier mentioned as gen-
erating bare crucial events. In Section VI we explain
how to derive ∈ from the analysis of real heartbeat data,
with the help of surrogate time series when we adopt the
prescription to generate dressed crucial events .
In the case where SOTC events are visible, namely

∈= 1, the method of DEA leads to the detection of the
proper scaling

δ =
1

µ− 1
(13)

after an initial transient corresponding to the micro-time
regime, where the complexity of the process is not yet
perceived. Notice that the transition from the Lévy to
the Gauss regime occurs at µ = 3. However, as stated
earlier, the surrogate time series of this paper rest on
µ = 5, namely a condition well imbedded in the Gaussian
basin of attraction.
Figs. 1, 2 and 3 show the results of applying DEA to

a variety of data sets through the linear-log representa-
tion, which is used, according to Section IV, to detect
the scaling δ, the slope of the linear portion of S(t) in
this representation.

 =0.83, =1

S 
(t)

ln (t)

FIG. 1: Entropy of the time series versus the logarithm
of time from the micro-time to the asymptotic time
scale with ∈= 1. The solid line (green) is numerical.
Numerical constants are T = 0.5 and length of time

series L = 1.5(105). We use the prescription generating
bare crucial events.

Fig. 1 illustrates the case where ∈= 1, namely the
condition where the bare crucial events are fully visible,
with µ = 2.2. The corresponding crucial scaling should
be δ = 0.83. However, in the short time regime the scal-
ing has the larger value δ = 1.5 and the scaling δ = 0.83
of crucial events appears in the intermediate time regime.
For this reason, the proper scaling, as shown in this fig-
ure, is optimal in the intermediate time regime. Actually,
we see that in the region around t ∝ 105 a tempering de-
viation from the crucial scaling of Eq. (13) occurs. Note
that this is not the tempering of the SOTC defined in16.
The theoretical study of that physical tempering of the
process is outside the scope of the present paper, but we
make the plausible assumption that heartbeat dynam-
ics fit it as a consequence of being itself a self-organized
process.

Fig. 2 illustrates the more important case where the
crucial events are hidden by a cloud of noncrucial events.
In this case, too, according to earlier analysis9, the cor-
rect scaling generated by the bare crucial events ap-
pears in the intermediate time regime. However, in this
case the reason for the initial transient is quite differ-
ent from the SOTC initial transient. In this case the
initial short-time regime characterized by the conven-
tional scaling δ = 0.5, corresponds to the scaling of un-
correlated Poisson-like events. In the long-time regime,
when the SOTC intermediate asymptotic emerges, the
faster scaling of the crucial events with µ < 2 leads
them to crossover to ordinary diffusion. The overlap
of the Poisson-induced transient regime and transient
SOTC make the derivative of the diffusion entropy non-
monotonic. For simplicity’s sake we do not show this
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 =0.50 (fitted)
  =0.83 (fitted)
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FIG. 2: Entropy of the time series versus the logarithm
of time from the micro-time Gaussian basin of

attraction to the asymptotic time scale with ∈= 0.1.
The solid line (green) is numerical. Numerical constants
are T = 0.5 and length of time series L = 1.5(105). We
use the prescription generating bare crucial events.
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FIG. 3: DEA detects the scaling of invisible crucial
events in the intermediate asymptotic time. The solid
line (green) is obtained from real heartbeat data of
healthy individual. The scaling δ is the slope of the

straight line between the two vertical arrows.

complicated behavior, instead we focus on the complexity
of the intermediate asymptotics. Notice that, although
the extended transient to the intermediate asymptotic
regime induced by a large percentage of uncorrelated
Poisson-like events can be confused with the transient
SOTC regime, the corresponding physical effects are the
opposite of one another. The SOTC transient generates a
broad multi-fractal spectrum, while the long transient in-

duced by a large percentage of uncorrelated Poisson-like
events has the effect of making the multi-fractal spectrum
narrower.

To complete the discussion of this section we make
some comments concerning Fig. 3. In Section VI we
explain how to derive this figure from real data on heart-
beats. Here we limit our observation to the scaling index
δ, representing the indicator of the occurrence of crucial
events. The IPL index is evaluated by monitoring the in-
termediate asymptotics region, the short- and long-time
limit of which are denoted by vertical arrows. In this
case, the deviation from Eq. (13) of the tempering re-
gion is probably due the properties of heartbeats, rather
than to the finite size L of the sequence under study.

In summary, it is important to reiterate that on the
basis of recent advances made concerning SOTC16, the
time series generated by complex processes are character-
ized by three regimes: the short-time regime, where the
true complexity of the process is not yet perceived; an
intermediate time regime driven by the crucial events;
and a long-time regime where the process can be mis-
taken for an ordinary statistical process. The long time
regime is, on the contrary, a tempering effect generated
by self-organization.

VI. HOW TO PROCESS EXPERIMENTAL
DATA TO REVEAL THE EXISTENCE OF

CRUCIAL EVENTS

Following42 and9, we use the ECG records of the MIT-
BIH Normal Sinus Rhythm Database and of the BIDMC
Congestive Heart Failure Database, for healthy and con-
gestive heart failure patients, respectively.

The main problems encountered in proving that SOTC
is the process driving the phenomenon under study has
to do with the detection of the crucial events, namely,
events with a waiting time PDF yielding a diverging sec-
ond moment. Fig. 4 shows the approach we adopt, fol-
lowing that used in earlier9. The experimental signal is
obtained by assigning to each beat a value corresponding
to the time interval between one and the next.

We divide the inter-beat time axis into small strips of
size ∆T . We follow the results of the analysis done in43

to define ∆T . These authors suggest ∆T ∼= 30 msec and
we set ∆T = 33 msec. We define the occurrence of an
event as the experimental signal crossing from one strip
to one of the two nearest neighbor strips. We see that the
heartbeat trajectory may remain in a given strip for an
extended time, suggesting the typical intermittent behav-
ior that led to the discovery of crucial events. However,
the experimental signal crossing the border between two
contiguous strips is not necessarily a crucial event. The
crucial events are renewal and consequently the times τi
should not be correlated. To assess the breakdown of the
renewal condition we evaluate the time-average correla-
tion function, where the time average is indicated by an
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FIG. 4: Rule adopted to define events. An event is
defined as the experimental curve, thick black line,

crossing the border between two consecutive strips. The
symbols τk indicate the time distance, in terms of
number of beats, between two consecutive events,

defined as the black line crossing from one strip to one
of the neighbor strips The size of the strips is

∆T = 1/30 sec.

overbar

C(t) =

∑

|i−j|=t

(τi − τ ) (τj − τ )

∑

i

(τi − τ )
2

. (14)

This correlation function is properly normalized, thereby
yielding C(0) = 1, and in the case of genuine renewal
events should satisfy the condition C(t) = 0 for t > 0.
On the contrary we find

C(1) ≈∈2, (15)

where ∈ is the probability of selecting ξ, see Eq. (12).
This result is theoretically explained by noticing that ac-
cording to43 the correlation function C(t) should read

C(t) = (1− ∈2)δt,0+ ∈2 Λ(t), (16)

where δt,0 denotes the Kronecker unit step function,
namely a function equal to 1 for t = 0 and equal to 0
otherwise, and Λ(t) is a slowly decaying smooth function
with the property Λ(0) = 1. This theoretical prediction
yields Eq. (15).
In summary, we should use C(1) to define ∈. The anal-

ysis of real data as depicted in Fig. 5 leads to conclusions
that qualitatively agree with this theoretical prediction,
with some warming, however. Fig. 5 shows that the cor-
relation function C(t) makes an abrupt jump from 1 to
a very small, but non-vanishing value of ∈2, confirming
that the analysis we adopt to reveal events actually does
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FIG. 5: Correlation function C(t) for two typical
patients, one healthy and one pathological.

not detect only genuine renewal events, but a mixture of
renewal and non-renewal events. Furthermore, as shown
from Fig. 5, in the case of pathological individuals, C(t),
after the fall undergoes fast intense fluctuations that may
prevent us from defining ∈2 through C(1). In this case,
and in the case where C(1) < 0 as well, we alternatively
define C(1) through the mean value over the first one
hundred events. In the case of fluctuations of moderate
intensity, we use C(1) to define ∈2. We also use Fig. 5
to define the border between strong and weak random-
ness. Values of ∈2 larger than 0.05, ∈> 0.22, are referred
to as weak randomness and values of ∈2 smaller than
0.05, ∈< 0.22, are referred to as strong randomness.This
definition is suggested by the observation of the healthy
and pathological individual of Fig. 5, but this definition
must be used with caution because the distinction be-
tween healthy and pathological individuals, as shall see
with Fig. 8, requires the knowledge of the scaling index
δ as well as that of ∈2 .

To get a better understanding of the meaning of ∈2,
and to explain the theoretical reason why we can use Eq.
(15), we interrogate the surrogate sequences defined by
Eq. (12), in the case when the sequel of crucial events
is created by the prescription to generate dressed crucial
events. With the help of Fig. 6 and Fig.7 we establish
that the intensity ∈2 is the square of the probability that
an event is a crucial event. This is the reason why we
adopt the symbol ∈2 to denote the value of the correla-
tion C(t) immediately after the abrupt jump down from
C(0) = 1. Fig. 6 shows a theoretical correlation function
using a surrogate sequence for strong randomness. Fig. 7
shows a theoretical correlation function using a surrogate
sequence for weak randomness.

It is worth stressing that the choice of ∆T = 1/30 sec
is not arbitrary. In fact, investigators43 establish that the
value of ∆T leads to the maximal value of ∈2 for all pa-
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FIG. 6: Correlation function C(t) for the surrogate data
in the case of strong randomness. We use the
prescription generating dressed crucial events.
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FIG. 7: Correlation function C(t) for the surrogate data
in the case of weak randomness. We use the
prescription generating dressed crucial events.

tients, both healthy and pathological patients, except for
the transplanted hearts. This universal property seems
to imply the action of the autonomic system43.

VII. JOINT USE OF DEA AND C(t)

In this Section, we recover the central result of9, which
was based on the joint use of DEA and the correlation
function C(t). For each subject we calculate both δ and
∈2.
In fact, Fig. 8 is virtually identical to the central result

found by the authors of Ref.9, which establishes a crite-
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0.6
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0.8

0.9
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DCB

Pathological individuals
Healthy individuals

A

2

FIG. 8: Distinguishing subjects with healthy from those
with pathological HRV.

rion to distinguish pathological patients from healthy pa-
tients using HRV time series. We notice that the ideally
healthy condition corresponds to ∈= 1 and δ = 1. This
means that the crucial events should not host any uncor-
related Poisson-like event and should have µ = 2, which is
the border between the region of perennial aging, µ < 2,
and the region where the rate of randomness production
becomes constant in the long-time limit, µ > 211. The
patients’ HRVs move toward the pathological condition
as their scaling becomes closer to the scaling of ordinary
diffusion δ = 0.5, namely closer to the border between
the region of crucial events, µ < 3, and the Gaussian
basin of attraction, µ > 3.

Note that the work of10 established that the brain, gen-
erating ideal 1/f -noise, is located at the border between
the region of perennial aging and the region of crucial
events hosted by heartbeats, according to the analysis of
this paper and earlier work9.

The research work done in the new field of network
medicine44 focuses on the interaction between the differ-
ent organs of the human body, the brain and heart being
a special case of this intercommunication45. According to
the principle of complexity matching11, based on the as-
sumption that the synchronization of complex networks
is facilitated by the networks sharing the same complex-
ity, µ = 2, in the case of brain-heart communication, we
make the plausible conjecture that the right-top corner
of Fig. 8 corresponds to a convenient condition for brain-
heart communication in the ideal case of healthy patients.
However, the current literature on complexity matching
emphasizes the communication between the two complex
networks through their multi-fractal spectra8. There-
fore, establishing a connection between crucial events and
multi-fractal spectra is a goal of this paper. The most
important property of Fig. 8 is to contribute to the real-
ization of that goal by establishing a connection between9
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FIG. 9: Multi-fractal spectra of HRV as a function of ∈
(see Fig. 8) keeping constant the crucial scaling

δ = 0.79.

and1,42.
We focus our attention on the individuals labeled A, B,

C and D in Fig. 8. These patients have the same δ and
according to the earlier analysis9 the distinction between
sick and healthy patients is due to the fact that the heart-
beat of the sick patients is affected by excessive random-
ness. Furthermore, according to some investigators1,42

the distinction is due to the fact that healthy patients
have broader multi-fractal spectra.
The central result of the present paper is obtained by

applying the MFDFA to the individuals A, B, C and D
for the purpose of proving the connection between the
diagnostic recipe of9 and that of1,42.
Fig. 9 fully confirms this connection. We see, in fact,

that moving from the sick (A) to the healthy patients
(B,C,D) has the effect of increasing the width of the
multi-fractal spectrum. Note that Fig. 10 provides addi-
tional confirmation of this connection through the use of
surrogate sequences.

VIII. CONCLUDING REMARKS

The diagnostic method generated by following earlier
work9 yields additional benefits compared to the tech-
nique of Ref1. One of these benefits is that the dis-
tinction between healthy and pathologic patients is es-
tablished through the two-dimensional representation of
Fig. 8 rather than the three-dimensional representation
of1. Another important result of the present paper is
its contribution to an improved vision of variability and
multi-fractality. To appreciate this significant improve-
ment let us focus our attention on the results obtained
by applying the MFDFA to the surrogate series in the
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0.9986
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  =0.15
  =0.10
  =0.05

f 

FIG. 10: Multi-fractal spectra of surrogate data, based
on the prescription generating bare crucial events, as a

function of ∈ keeping constant the crucial scaling
δ = 0.83.

limiting case of a SOTC16 process, unperturbed by un-
correlated Poisson-like fluctuations ∈= 1, and of a mere
sequence of uncorrelated fluctuations, ∈= 0.

The result of this analysis is shown in Fig. 11. In
the top panel of this figure we adopt the prescription to
generate bare crucial events and in the bottom we adopt
the prescription to generate dressed crucial events. Of
course, in the case ∈= 0 both prescriptions generate a
very sharp multifractal distribution centered on α = 0.5.

The narrowest multi-fractal spectrum is realized by
setting ∈= 0. The broadest multi-fractal spectrum is re-
alized in the absence of Poisson-like random events, ∈= 1,
with a slight difference between mere crucial events ( top
panel of Fig. 11) and dressed crucial events (bottom
panel of Fig. 11). The dressed crucial events are shown
to yield a broader multi-fractal spectrum.

We reiterate that, according to SOTC16, crucial events
are characterized by three distinct time regimes, a tran-
sient initial regime, the intermediate asymptotics time
regime, and a final tempered time regime with exponen-
tial truncation. The transient time regime becomes more
and more extended with decreasing ∈. However, the ex-
tended transient regime generated by a very small value
of ∈ must not be confused with a wide transient regime
corresponding to the occurrence of a sufficient number of
crucial events to realize the prescription δ = 1/(µ− 1) of
the GCLT17,41. The GCLT transient regime is the micro-
evolution towards the IPL regime predicted by SOTC16.
This transient regime, the intermediate asymptotic time
regime and the final tempering time regime are the gen-
erators of the wide variability that the multi-fractal DFA
efficiently detects. The uncorrelated Poisson-like events
with µ > 3 generate an extended transient regime that
has the opposite effect of yielding an extremely narrow
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FIG. 11: Extreme cases of most narrow, ∈= 0, and most
broad, ∈= 1, multi-fractal spectra. The top panel is

based on the prescription generating bare crucial events
and the bottom panel is based on the prescription

generating dressed crucial events. Numerical constants
used in the calculation are T = 0.5, L = 1.5(105),

window sizes (500 : 500 : 30000). Other parameters are
moments range q = −0.4 : 0.001 : 0.4 for µ = 2.2 and

q = −0.02 : 0.001 : 0.02 for µ = 5.

spectrum around the ordinary scaling value α = 0.5.

In conclusion, the results of the present paper estab-
lish a connection between the multi-fractal spectrum and
SOTC fluctuations, thereby affording a promising tool to
make further progress in the field of network medicine44,
where broad multi-fractal spectra are transferred, accord-
ing to11, from one network to another via crucial events.

The research program laid out in this paper is not com-
plete, since we have not, as yet, addressed the brain-heart
communication and the influence of periodicity45. It is
important to notice that SOTC16 can be used to pro-
duce a self-organization phenomenon combining crucial
events and periodicity, so as to convert the black line
of Fig. 4 into fluctuations that under the influence of ei-
ther therapeutic action46 or meditation30 may become al-
most coherent oscillations. In the recent literature there
are conflicting statements about the analysis of the same
data, under the influence of meditation, leading some
authors47 to claim that the f(α) spectrum broadens and
the others48 to claim that it becomes narrower. We be-
lieve that these oscillations, even if distinctly coherent,
host crucial events and that the transport of informa-
tion from one coherent-like network to another, for in-
stance the alpha waves of the brain and the heartbeats,
depends on crucial events, with µ slightly larger than
2, for both networks9,10. Meditation favors coherence30

and the brain-heart communication if the unhealthy ran-
domness of uncorrelated Poisson-like events is kept un-
der control. The research work of Correll49 showed that
addressing difficult tasks has the effect of turning the
time series generated by the brain, which would yield 1/f
noise, into a generator of white noise, thereby implying
the increase of the probability of uncorrelated Poisson-
like events. This leads us to the conjecture to test with
future research work that stress has the effect of increas-
ing the concentration of uncorrelated Poisson-like events
thereby contributing to the incidents of heart failure. On
the other hand meditation30 and therapeutic action46

may have the opposite effect of reducing the unhealthy
randomness of uncorrelated Poisson-like events and of in-
creasing the healthy randomness of SOTC crucial events.
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Flight, Phys. Rev. Lett. , 73, 2946 (1994).

34 I. Koponen, Analytic approach to the problem of con-
vergence of truncated Levy flights towards the Gaussian
stochastic process , Phys. Rev. E, 52, 1197 (1995)

35 A. Chakrabarty, M. M. Meerschaert, Tempered stable laws
as random walk limits, Statistics and Probability Letters
81, 989 (2011).

36 M. M. Meerschaert, P. Roy, Q. Shao, Parameter estimation
for exponentially tempered power law distributions, Com-
munications in Statistics - Theory and Methods 41, 1839
(2012).

37 R. Uppu, S. Mujumdar, Exponentially Tempered Lvy Sums
in Random Lasers, Phys. Rev. Lett. , 114, 183903 (2015).

38 T. Yazawa, Invisible Emotion, Anxiety and Fear: Quanti-
fying the Mind Using EKG with mDFA, Systemics, Cyber-
netics and Informatics, 15, 1690 (2017).

39 S. Burov, R. Metzler, E. Barkai, Aging and nonergodicity
beyond the Khinchin theorem, PNAS, 107, 13228 (2010).

40 Eq. (7) is Eq. (180) of11 with (µ− 1 ), misprint, correctly
replaced by 1/(µ− 1).

41 W. Feller, Trans. Am. Math. Soc. 67, 98 (1949).
42 A. L. Goldberger, L. A. Nunes Amaral, L. Glass, J. M.

Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, H. E. Stanley, PhysioBank,
PhysioToolkit, and PhysioNet Components of a New Re-
search Resource for Complex Physiologic SignalsCircula-
tion, 101:e215 (2000).

43 P. Allegrini, R. Balocchi, S. Chillemi, P. Grigolini, L.
Palatella, G. Raffaelli, Short- and Long-Term Statistical
Properties of Heartbeat Time-Series in Healthy and Patho-
logical Subjects, in Medical Data Analysis, Third Interna-
tional Symposium, Lecture Notes in Computer Science,
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen,
Springer, Berlin (2002), pag. 115.

44 P. Ch Ivanov, K. K L Liu, R. P Bartsch, Focus on the
emerging new fields of network physiology and network
medicine, New J. Phys. 18, 100201(2016).

45 G. Pfurtscheller, A. R. Schwerdtfeger, A. Seither-Preisler,
C. Brunner, C. S. Aigner, J. Brito, M. P. Carmo, A. An-
drade, Brain-heart communication: Evidence for “central
pacemaker” oscillations with a dominant frequency at 0.1
Hz in the cingulum, Clinical Neurophysiology 128, 183
(2017).

46 R. McCraty, M.A. Zayas, Cardiac coherence, self-
regulation, autonomic stability, and psychological well be-
ing, Frontiers on Physiology, 5, 1090 (2014).

47 A. Bhaduri, D. Ghosh, Quantitative Assessment of Heart
Rate Dynamics during Meditation: An ECG Based Study



12

with Multi-Fractality and Visibility Graph, Frontiers in
Physiology, 7, 44 (2016).

48 R. Song, C. Bian, Q.D.Y. Ma, Multifractal analysis of
heartbeat dynamics during meditation training, Physica A,
329, 1858 (2013).

49 J. Correll, 1/f Noise and Effort on Implicit Measures of
Bias, Journal of Personality and Social Psychology, 94, 48
(2008).

.


