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A polymer repelled by unfavorable interactions with a uniform flat surface may still be pinned to
attractive edges and corners. This is demonstrated by considering adsorption of a two-dimensional
ideal polymer to an attractive corner of a repulsive wedge. The well-known mapping between the
statistical mechanics of an ideal polymer and the quantum problem of a particle in a potential is then
used to analyze the singular behavior of the unbinding transition of the polymer. The divergence
of the localization length is found to be governed by an exponent that varies continuously with the
angle (when reflex). Numerical treatment of the discrete (lattice) version of such an adsorption
problem confirms this behavior.
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I. INTRODUCTION

Absorption of polymers to surfaces is a common phe-
nomenon, manifesting a competition between energy gain
of binding and entropy loss of fluctuations in unbound
configurations. As compromise, a polymer attached
(“anchored”) by one end to the surface may decrease its
energy by staying within a finite distance ξ from the sur-
face and frequently visiting it. The reduction in entropy
of the polymer in this absorbed state is thus compen-
sated by a bigger gain in energy – the balance between
the two is determined by temperature T . Above the ad-

sorption critical temperature Ta, the polymer depins from
the surface, transitioning into a delocalized state. Such
transitions have been studied in great detail in the liter-
ature [1–9].
Polymers in the bulk also exist in different states,

with distinct universal characteristics [10]. Configura-
tions of polymers in good solvents are designated as
self-avoiding, with repulsive interactions between the
monomers paramount. If the latter can be ignored, the
polymers are called ideal and frequently modeled as ran-
dom walks on a lattice. These, and other polymer types,
each exhibit separate singular behavior near the adsorp-
tion transition, characterized by distinct exponents [11].
Transitions of ideal polymers have been extensively stud-
ied due to their analogy to well known models of quantum
particles in attractive potentials [12]. For most studies of
adsorption transitions, the analogous potential includes
both attractive areas and repulsive components, to model
solid surfaces covered by an attractive layer. (In the ab-
sence of the repulsive part, an ideal polymers is always
absorbed to an attractive layer.)
Geometry and dimensionality play an important role in

determining the unbinding transition temperature, and
its singular behavior, leading to different characteristics
for polymer adsorption to a rod [13, 14], a sphere [15, 16],
or to an arbitrarily shaped mesoscopic particles covered
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FIG. 1. Polymer (red) attached to a repulsive wedge (grey
surface) with an attractive edge (blue). The wedge is assumed
to be infinite.

by an attractive layer [17]. In many cases, the adsorbing
body introduces an external length scale to the polymer
problem, through its finite size or curvature. However,
there are also interesting cases where adsorption is to a
scale free form, such as the repulsive (infinite) wedge de-
picted in Fig. 1, with its edge covered by an attractive
layer of microscopic diameter. A polymer attached to
such a wedge is expected to undergo an adsorption tran-
sition with properties, including critical exponents, that
depend on dimensionless descriptors such as the wedge
angle. Such angle-dependence of critical exponents is not
new. The total partition function of a long flexible ho-
mogeneous polymer in a dilute solvent scales with the
number of monomers N as Ztot ∼ µNNγ−1. While the
leading (exponential) term depends on the non-universal
parameter µ, the exponent γ in the subleading power-law
is universal depending only on few major features, such
as the space dimension d, or the polymer state [10]. If
a polymer is attached to a repulsive scale-free surface,
such as plane, or the tip of a cone or a wedge, its parti-
tion function will have the same form, but with a smaller
exponent γ due to reduction in the number of possible
configurations [18–20]. Similar behavior, albeit with yet
different set of angle-dependent exponents γ, is expected
at the desorption transition from scale free surfaces [21].
The ideal polymer in the configuration depicted in
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Fig. 1 maps to the quantum problem of a particle in the
two-dimensional potential obtained from a cross-section
of the geometry. As we demonstrate in this work, this
problem is exactly solvable. While different from the
case of a realistic (hence self-avoiding) polymer in three
dimensions, we hope that the two share qualitative char-
acteristics. If the quality of a solvent is reduced, the
monomers will tend to aggregate. At the compensation
point between good and poor solvent, denoted Θ-point,
the resulting polymer configurations are called Θ poly-
mers [10]. In d = 3 in free space many of their charac-
teristics are close to ideal polymers. However, we do not
expect this similarity to extend to adsorption to a line.
(The two-dimensional problem of a self-avoiding and Θ
polymers in a similar potential does not have a bound
state due to the screening of the attractive point.) We
expect self-avoiding polymers and ideal polymers in the
setup of Fig. 1 to share the property of continuous vari-
ations of exponents of the unbinding transition with the
wedge angle, although the actual exponents will naturally
differ.
The remainder of the manuscript is organized as fol-

lows: In Sec. II we recount the analogy between a poly-
mer in the presence of a weak, slowly-varying, potential,
and the quantum mechanical problem of a particle in a
potential well. We also formulate the problem on a lattice
and point out the differences between continuous and dis-
crete systems. In Sec. III we consider a two-dimensional
problem of a circular well confined by the repulsive walls
of a wedge. We find the critical strength of the well po-
tential as a function of the wedge opening angle, and
characterize the singular behavior of the unbinding tran-
sition. The dependence on polymer length N , and the
exponent γ are detailed in Sec. IV. The discrete version
of the problem, with an attractive lattice site located
near a wedge is described in Sec. V, where we determine
numerically both the transition point and the correlation
length exponent for several wedge angles (Sec. VI).

II. ANALOGY TO QUANTUM BOUND STATES

The well-knownmapping between adsorption of a poly-
mer and bound states in quantum mechanics [12] is
briefly reviewed here. Let Z(r, r0, N) denote the par-
tition function of an ideal polymer of N -steps, of mean
squared size ℓ2, that starts at point r0 and ends at point
r. In free space the total partition function is Z0 ≡
∫

Zddr = µN , and it is convenient to define the reduced

partition function Z̃(r, r0, N) = Z(r, r0, N)/Z0. If the
potential affecting the monomers, V th(r), changes slowly,
such that at temperature T its change over the distance ℓ
is much smaller than kBT ≡ β−1, then the partition func-
tion difference Z̃(r, r0, N+1)−Z̃(r, r0, N) ≈ ∂Z̃/∂N can
be cast in the continuum form [22]

∂Z̃
∂N

=
ℓ2

2d
∇2Z̃ − βV thZ̃, (1)

supplemented with the initial condition Z̃(r, r0, 0) =
δd(r− r0). This equation can be solved by variable sep-
aration, which leads to eigenvalue equation

(

− ℓ2

2d
∇2 + βV th

)

fα = Eth
α fα. (2)

Knowledge of all the eigenfunctions fα, and their eigen-
values (“energies”) Eth

α , enables reconstruction of the re-
duced partition function as

Z̃(r, r0, N) =
∑

α

fα(r)f
∗

α(r0)e
−Eth

α
N . (3)

The analogy of the above treatment with the single par-
ticle Schrödinger equation is immediately apparent. In
this analogy, the variable N corresponds to an imaginary
time for the quantum particle, its mass m and poten-
tial V q related by βV thd/ℓ2 = mV q/~2, with the same
scaling for Eαs in the eigenvalue equation.
If the potential V th(r) includes attractive parts, it may

support bound states [23] with discrete eigenvaluesEth
α <

0. If there is a gap between the ground and the first
excited state, for large N the solution will be dominated
by the ground state (α = 0), and

Z̃(r, r0, N) ≈ f0(r)f0(r0)e
−Eth

0
N . (4)

Since Z̃ is positive, the ground state function f0(r) can-
not alternate in sign, and can be chosen as being non-
negative everywhere. (The absence of nodes in the
ground state of a quantum particle is well known.) A
bound state f0(r) will be localized within some localiza-

tion length ξ in the neighborhood of the well. Since Z̃ is
proportional to the probability to find the polymer end
at r, this implies that the polymer is also localized in the
vicinity of the attractive potential. Assuming a typical
linear size a of the potential “well,” it is convenient to
recast the equation in terms of dimensionless coordinates
r
′ = r/a, as

(

−∇′2 + V
)

fα = Eαfα. (5)

Here, ∇′2 represents the Laplacian in dimensionless coor-
dinates, Eα ≡ (2a2d/ℓ2)Eth

α are the dimensionless energy
eigenvalues, and

V ≡ 2dβa2

ℓ2
V th, (6)

is the dimensionless potential. For further reference, we
note that the N -dependent Eq. (1) in the new dimen-
sionless variables, can be expressed as

∂Z̃
∂N ′

= ∇′2Z̃ − V Z̃, (7)

where N ′ ≡ Nℓ2/(2da2). Note that EαN
′ = Eth

α N . In
what follows, we omit the prime in coordinate notation
and always measure the distances relative to the extent
of the potential.



3

It is well known in quantum mechanics that any purely
attractive potential in d = 1 dimension always has a
bound state [24], while a sufficiently deep well may have
many bound states. (There is also a slightly more relaxed
criterion guaranteeing the presence of bound states [25].)
The situation is similar in d = 2 dimensions, where a
bound state can always be found [26]. As a concrete
example, consider a circular well of unit radius

Vcirc(r) =

{

−V0, for r < 1

0, for r ≥ 1
. (8)

The above discontinuous potential was chosen for its sim-
plicity, since we expect that the universal features of
the unbinding transition are independent of its detailed
shape (as is the case in d = 1). This choice may appear to
contradict the statement at the beginning of this Section
that the analogy of the ideal polymer to the “quantum
particle” in Eq. (1) is valid only for slowly varying po-
tentials. The actual requirement is that for a potential
V th ∼ kBT the range ∆r of the change in the potential
should satisfy ℓ ≪ ∆r. The discontinuous potential in
Eq. (8) can thus be viewed as the continuum limit of the
case of ℓ≪ ∆r ≪ a = 1, and therefore represents a valid
situation for this mapping.
The eigenfunctions in both interior and exterior of the

well described by Eq. (8) are Bessel functions; in case of
the ground state corresponding to the regular and sec-
ond modified Bessel functions J0 and K0, respectively.
For a shallow well (V0 ≪ 1) the ground state energy is
extremely small (E0 ∼ e−4/V0), and the corresponding
localization length is very large [27]. In higher dimen-
sions d, the presence or absence of bound states depends
on the depth and details of the potential. In fact, if d is
viewed as continuous variable, it can be shown [27] that
the property of always having a bound state disappears
immediately above d = 2.
The above theorems do not apply to potentials that

have both repulsive and attractive parts. For instance,
a one-dimensional potential representing an attractive
layer on a repulsive wall may have no bound states if
it is shallow enough. We shall see that a similar situ-
ation appears for a two-dimensional circular well in the
presence of repulsive walls.
Many theoretical studies of polymers near attractive

and repulsive surfaces are performed on discrete lattice
models. We will consider a d-dimensional hypercubic
lattice, with lattice spacing ℓ, with polymer configura-
tions represented by N -step walks. The total partition
function of a polymer in the absence of any potentials is
Z0 = (2d)N . The potential V th is modeled by Boltzmann
weights q(r) = exp(−βV th) assigned to lattice sites. In
free space q = 1, on the repulsive wall q = 0, while for
well of depth V th = −V th

0 , v = exp(βV th
0 ). The reduced

(N + 1)-step partition function can be deduced from N -
step reduced partition function by

Z̃(r, r0, N + 1) =
q(r)

2d

∑

r′ nn of r

Z̃(r′, r0, N), (9)

with the starting condition Z̃(r, r0, 0) = q(r0)δr,r0 .
As an aside, note that hypercubic lattices are bipartite,

their sites separable into disjoint “even” (“e”) and “odd”
(“o”) subsets. A walk starting on one subset lands on
the same subset (or its complement) after an even (odd)

number of steps, with Z̃(r, r0, N) = 0 on one or other
subset. Equation (9) can be written in matrix form

Z̃N+1 =M Z̃N , (10)

where the matrix M(r, r′) connects “e” and “o” coordi-
nates. A further recursion yields

Z̃N+2 =M2Z̃N , (11)

which connects only sites of the same type. Thus the
matrix M2 can be decomposed into two completely un-
connected sub-matrices. Since the elements of each sub-
matrix are positive, the largest eigenvalue λ2 is real pos-
itive, and the corresponding eigenvector is unique. Indi-
cating by ψe(r) the eigenvector in the even subspace,

λ2ψe(r) =M2(r, r′)ψe(r
′), (12)

it is easy to see that ψo(r) ≡ M(r, r′)ψe(r
′) is an eigen-

vector (with eigenvalue λ2) in the odd subspace. The or-
thogonal states ψo and ψe are in the above sense “ground
states” of the problem, with energy E0 obtained from
λ2 = e−2E0 .
For a weak potential with small variations between ad-

jacent lattice sites, Eq. (9) coincides with Eq. (1). How-
ever, in a typical lattice simulation the geometrical fea-
tures are reduced to a bare minimum, e.g., an attractive
well near a flat repulsive surface is represented by a sin-

gle lattice layer of sites with some weight w, while a well
near a repulsive wall or wedge may be represented by a
single attractive site with a weight v. Since the width of
the attractive layer, or a well a, coincide with the poly-
mer step size ℓ, we may expect only qualitative similarity
between the solutions of Eqs. (1) and (9). Nevertheless,
we shall see that the results of continuous and discrete
problems are rather close in their numerical values.

III. ATTRACTIVE CIRCULAR WELL WITHIN

A SECTOR

We next consider a circular well, as in Eq. (8), near a
repulsive wall, either flat or forming a sector with opening
angle 2θ0 as depicted in Fig. 2. The potential will be

Vsect,θ0(r, φ) =

{

Vcirc(r), for − θ0 < φ < θ0,

∞, otherwise,
(13)

where r and φ are the polar coordinates depicting the
distance from the origin, and the azimuthal angle, re-
spectively. As before, we assume that the distances are
measured relative to the circle radius.
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(a)

(d)(c)

(b)

2θ0

FIG. 2. Circular potential well (blue area) of radius 1 and
depth −V0, confined to a sector of opening angle 2θ0 by hard
walls. The sub-figures represent examples of (a) inside a
rectangular sector (θ0 = π/4), (b) near a flat surface (line)
(θ0 = π/2), (c) outside a rectangular sector (θ0 = 3π/4), and
(d) outside a needle-like sector (θ0 = π).

In polar coordinates, Eq. (5) for potential Vsect be-
comes

−
[

1

r

∂

∂r

(

r
∂fα
∂r

)

+
1

r2
∂2fα
∂φ2

]

= ǫαfα, (14)

where ǫα ≡ Eα +V0 inside the well (r < 1), and ǫα ≡ Eα

outside the well (r > 1). The repulsive walls of the sector
are enforced by the boundary condition fα(r, φ = ±θ0) =
0. The eigenfunction fα and its derivative are continu-
ous at r = 1. To ensure that the function vanishes on
the boundaries of the sector, its angular dependence in
constrained to the forms sin(νφ), with ν = (π/θ0)n, for
n = 1, 2, · · · ; or cos(νφ), with ν = (π/θ0)(n + 1

2 ), for
n = 0, 1, 2, · · · . In general, ν is not an integer, except
at θ0 = π/2, when the sector becomes a flat surface.
Discrete eigenstates of a circular well with infinite walls,
i.e., with V = ∞ for r > 1, confined by a sector were
analyzed in detail in Ref. [28]. Our problem of a well of
finite depth admits both discrete (Eα < 0) and contin-
uous (Eα ≥ 0) spectra. For Eα < 0 the radial part of
the solution is [29] a regular Bessel function Jν(kr) with
k =

√
Eα + V0 for r < 1, and second modified Bessel

function Kν(qr) with q =
√
−Eα for r > 1. This choice

of the Bessel functions ensures regularity of the solution
at r = 0, and its vanishing for r → ∞. Since Eq. (5) is
a second order linear equation, for finite potential V , the
second derivative must exist and consequently both the
function and its derivative must be continuous. In the
presence of the finite jump in V there is a finite jump
in the second derivative, but the first derivative remains
continuous as in the case of smooth V . Therefore, the
eigenvalue Eα, should be selected to enforce continuity

0 π/4 π/2 3π/4 π

θ0

0

20

40

60

80

100

U
c

FIG. 3. Critical depth of a well Uc as a function of the half
of the central angle θ0 of the sector.

of the function and its derivative at r = 1. Thus Eα is a
solution of the equation

kJ ′

ν(k)

Jν(k)
=
qK ′

ν(q)

Kν(q)
, (15)

where prime denotes derivative of a function with respect
to its argument. For large V0 we can have multiple bound
states for several values of ν.
Since we are interested in the ground state, we will

consider only ν = m ≡ π/2θ0, since larger ν solutions
have alternating signs. Of all possible solutions for this
m we look for the smallest k. The number of bound
states will decrease with decreasing V0, and for a limiting
V0 = Uc the eigenenergy E0 of the ground state is zero,
reducing Eq. (15) to

√
UcJ

′

m(
√
Uc)

Jm(
√
Uc)

= lim
q→0

qK ′

m(q)

Km(q)
= −m. (16)

By using the recurrence relations of Bessel functions and
their derivatives [30], we find that Eq. (16) is reduced to
solving Jm−1

(√
Uc

)

= 0. Thus, Uc is simply the square
of the first zero of J(π/2θ0)−1. Figure 3 depicts the de-
pendence of Uc on the angle θ0. As expected, the crit-
ical depth Uc diverges with increasing confinement for
θ0 → 0. Since for large m the first root of Jm is ap-
proximately at m [31], for small θ0 we have Uc ≈ m2 =
(π/2θ0)

2. At the other extreme Uc(θ0 = π) = π2/4,
while the radial part of the ground state eigenfunction
at E0 = 0 inside the well becomes J1/2(πr/2), where

J1/2(x) ∼ sin(x)/
√
x. Thus Uc remains finite when the

sector becomes a needle-like insertion into the attractive
well and the eigenfunction has a very different shape from
the bound states of a circular well without the repulsive
walls. For θ0 = π/2 the sector becomes a straight line,
and Uc ≈ 5.78.
For V0 > Uc bound states are present, and the parti-

tion function at large distances is described by Km(qr) ∼
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√

π
2qr e

−qr. The exponential decay of this function im-

plies that the polymer is localized in the vicinity of the
corner over a distance of order ξ = 1/q = 1/

√
−E0. (For

long polymers, only the ground state needs to be taken
into account.) When E0 = 0 the exponential long dis-
tance decay of Km(qr) is replaced by a power law r−m.
This is different from the one-dimensional case, where
E0 = 0 corresponds to a function that is constant out-
side the well. When the depth of the well is close to Uc,
i.e. for small δV0 ≡ V0 − Uc, E0 is also small, and we
can expand the left hand side of Eq. (15) (with ν = m)
FL,m(k) = FL,m(

√
Uc + δV0 + E0) ≡ kJ ′

m(k)/Jm(k) in
δV0 + E0

FL,m ≈ −m− 1

2
(E0 + δV0), (17)

and also expand the right hand side of the same equation
FR,m(q) = FR,m(

√
−E0) ≡ qK ′

m(q)/Km(q) in (−E0).
The latter expansion has different forms depending on
the value of m = 2θ0/π [30]:

FR,m≈











−m− 1
2(m−1)(−E0), for m > 1,

−1 + 1
2 (−E0) ln(−E0), for m = 1,

−m− 21−2mπ
sin(πm)Γ2(m) (−E0)

m
, for 1

2 ≤ m < 1.

(18)
By equating FL,m = FR,m we find that, to the leading
order, E0 depends on δV0 as follows

q2 = −E0 ∼











δV0, for 0 < θ0 <
π
2 ,

δV0/| ln δV0|, for θ0 = π
2 ,

δV
2θ0/π
0 , for π

2 < θ0 ≤ π.

(19)

Since the dimensionless potential V0 depends on the phys-
ical potential V th

0 and the temperature via Eq. (6), δV0 =
(2a2d/kBℓ

2)V th
0 (1/T − 1/Ta) ≈ (2a2d/kBT

2
a ℓ

2)V th
0 (Ta −

T ), we can relate the divergence of the localization length
to the temperature difference by

ξ ∼











(Ta − T )−
1

2 , for 0 < θ0 <
π
2 ,

|ln(Ta − T )|
1

2 (Ta − T )−
1

2 , for θ0 = π
2 ,

(Ta − T )−
θ0

π , for π
2 < θ0 ≤ π.

(20)
In the above equation, Ta itself depends on θ0 due to the
θ0-dependence of the critical depth Uc. The θ0 → π limit
in the third case of Eq. (20) represents a needle-like inser-
tion into the circular well and differs from the situation
when the walls of the wedge are completely absent, since
the semi-infinite straight line presents a significant ob-
stacle for a random walk. The dependence of the critical
behavior in Eq. (20) is reminiscent of other power-law
dependencies, such as that of the density of the poly-
mer, or the pressure it exerts on walls of a wedge [32].
(Especially, see Fig. 5 in [32].) They are all manifesta-
tions of scale-invariance of the geometry, and appropriate
polymer properties. Detailed knowledge of the pressure

distribution may shed light on the non-trivial behavior
described by Eq. (20). The results in Ref. [32] are ex-
pected to be valid in the desorbed phase. The formalism
presented in this paper does not allow direct calculation
of the local pressure distribution. It is likely that other
existing analytical and numerical, continuous space and
lattice methods [32–36] can be extended to calculations
of pressure in the presence of attractive potentials.
Close to the transition point, and at very large dis-

tances r ≫ ξ, the bound eigenstate has radial compo-
nent Km(r/ξ) ∼ e−r/ξ

√

ξ/r. However, for distances
a < r ≪ ξ, where a = 1 is the well radius in our cal-
culations, the eigenstate has a simple power law depen-
dence ∼ r−m. The ‘typical’ polymer size is usually de-
termined through an average of a power of end-to-end
distance, such as Rn ≡ 〈rn〉. However, whether or not
this quantity reflects the localization length ξ depends
on the powers n and m. The value of m also determines
whether the relevant normalization is determined by ξ or
a. Thus, for various cases we find

Rn ∼



























ξn, for m < 2,

ξn/ ln(ξ/a), for m = 2,

ξ2−m+n/a2−m, for 2 < m < 2 + n,

an ln(ξ/a), for m = 2 + n,

an, for m > 2 + n.

(21)

Close to the transition, the correlation length will be very
large, and a sufficiently long polymer settles into the lo-
calized ground state, with measures of its size given by
Eq. (21). However, for moderate values of N , the parti-
tion function will evolve as a Gaussian, i.e.,it will have
width of order of

√
N . In such a case, ξ in the above

expressions should be replaced by
√
N .

IV. N-DEPENDENT SOLUTIONS INSIDE THE

SECTOR

At very high temperatures the dimensionless potential
V in Eq. (7) becomes negligible, reducing it to the simple
diffusion equation

∂Z̃
∂N ′

= ∇2Z̃, (22)

where the rescaled polymer length N ′ plays the role of
time. The required solution for Z̃ must still vanish on
the repulsive boundaries of the sector, corresponding to
absorbing boundaries for the diffusers. The exact solu-
tion to this problem depends on the initial position of the
diffuser (starting point of the polymer) r0. However, for
sufficiently large N ′ ≫ r20 , a significant portion of diffus-
ing density will reach the boundary, and the memory of
the initial condition is only reflected in the prefactor of
the asymptotic solution [32, 37]

Z̃(r0, r, N
′) = c

rm

N ′1+m
e−r2/4N ′

cos(mφ). (23)
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As before, the angle φ is measured form the axis of sym-
metry and m = π/2θ0, while the prefactor c depends on
r0. Integration of the reduced partition function leads
to total partition function Z̃tot = const · N ′−m/2, and
therefore exponent γ = 1−m/2 = 1− π/4θ0 [18–20].
The search for an N ′-dependent solution of the dif-

fusion equation in a wedge with absorbing boundaries
(corresponding to repulsive surfaces for the polymer) re-
vealed [32, 37], that besides the solution in Eq. (23) there
is a complementary solution

Z̃(r0, r, N
′) =

c

rmN ′1−m
e−r2/4N ′

cos(mφ), (24)

where the notations are the same as before. This, so-
lution is not appropriate for a purely absorbing wedge,
since it diverges as r−m for r → 0, and was thus discarded
for the repulsive boundary problem in Refs. [32, 37].
However, we note that such functional form resembles
the ground state at the transition point for a polymer in
a wedge with an attractive well. Unlike the true ground
state, this solution has an N ′-dependent prefactor and a
Gaussian function that truncates the power law behav-
ior, and is a candidate for the asymptotic N ′-dependent
solution for the reduced partition function outside the
well (valid for sufficiently large N ′, when the details of
the initial condition have been forgotten). We do not
know the continuation of this function inside the well,
but expect that it can be constructed by superposition
of states. The fact that in the small r limit the loga-
rithmic derivative d ln Z̃/d ln r → −m indicates that this
might be a general solution of a small and deep attractive
region in the wedge at the transition temperature. We
shall later verify this assumption by numerical solutions
of discrete problems.
Assuming that Eq. (24) indeed correctly represents

the reduced partition function, we can integrate the ex-
pression to obtain the total partition function Z̃tot =
const ·N ′γ−1, with

γ =











1 +m/2, for m < 2,

2 (with log correction), for m = 2,

m, for m > 2.

(25)

These exponents are larger than 1, the value for free
space, and therefore the mixture of repulsive wedge with
critical attractive point at its corner corresponds to an
overall attraction for a polymer in free space.

V. ATTRACTIVE POINT NEAR A REPULSIVE

SECTOR ON A LATTICE

For numerical studies of polymer adsorption, discrete
(lattice) models provide convenient realizations. Some
simple discrete analogs for a small adsorbing well at the
corner of a repulsive wedge are depicted in Fig. 4, with
the attractive potential acting on a single point near a
line of repulsive sites. Equation (9) provides a simple

(a) (b)

(c) (d)

1

2
2

2

2

1

1

1

FIG. 4. Illustration of a single adsorbing point (light blue
circle with Boltzmann weight v > 1), at corner of a repul-
sive sector (black full circles with weight 0) on a square lat-
tice. For each sector semi-angle θ0, two discrete variants of
the continuous geometry (corresponding pictures in Fig. 2)
are shown: “1” corresponds to straight lines along the lattice
axes, and “2” - along the lattice diagonals. The number of
repulsive sites neighboring the adsorbing site, n, varies be-
tween the two variants.: In (a) the attracting point inside the
rectangular repulsive sector (θ0 = π/4) has n1 = 2 nearest
neighbor repulsive sites in variant “1”, and n2 = 3 in “2”.
In (b), for the attracting point near a flat repulsive surface
(line) (θ0 = π/2), n1 = 1 and n2 = 2. In (c), for the attract-
ing point outside a rectangular repulsive sector (θ0 = 3π/4),
n1 = 0 and n2 = 1. In (d), an attracting point at the tip of a
semi-infinite repulsive line (θ0 = π), has n1 = 1 and n2 = 0.

recursive numerical tool for calculating Z̃(r, r0, N + 1)

in terms of Z̃(r, r0, N): Starting with Z̃(r, r0, 0) =
q(r0)δr,r0 , Eq. (9) is iterated N times for polymer length

N . The resulting Z̃(r, r0, N) is proportional to the prob-
ability of finding the end of the polymer at r. The total
reduced partition function Z̃tot(r0, N) =

∑

r
Z̃(r, r0, N)

is the normalizing factor for this probability.

The total reduced partition function Z̃tot(r0, N) is, by
definition equal to one in free space. In the absence of at-
tractive potential, a polymer near a repulsive sector will
have partition function reduced to Z̃tot ∼ Nγ−1, where
γ = 1 − π/4θ0 < 1 depends on the wedge angle [18–20].
This behavior persists for a weakly attractive potential,
with v close to 1. As v increases towards vc, this scal-
ing is delayed to larger values of N . In the adsorbed
state Z̃tot will increase exponentially with N due to ex-
tra Boltzmann weights gained upon repeated returns to
the attracting point. Again, the exponential growth, im-
mediately apparent for v ≫ vc, is delayed to larger N
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103 104

N
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10

15

20

25

30

35

40

Z̃
to
t

v = 5.774
v = 5.775
v = 5.776
v = 5.777
v = 5.778

FIG. 5. Semi-logarithmic plot of the dependence of the total
reduced partition function Z̃tot on polymer length N for an at-
tractive point located inside a rectangular wedge (θ0 = π/4),
as depicted in Fig. 4a for geometry “1”, for Boltzmann weights
v ranging from 5.774 to 5.778 (bottom to top).

103 104

N

0.1

0.15

0.2

0.25

0.3

R
2
/N

v = 5.774
v = 5.775
v = 5.776
v = 5.777
v = 5.778

FIG. 6. Semi-logarithmic plot of the scaled squared end-to-
end distance R2, as a function of polymer length N for an at-
tractive point located inside a rectangular wedge (θ0 = π/4),
as depicted in Fig. 4a for geometry “1”, with Boltzmann
weights v ranging from 5.774 to 5.778 (top to bottom).

as v is decreased towards vc. Figure 5 depicts the de-
pendence of Z̃tot for several values of v very close to vc.
Only for polymers of several thousand steps it becomes
evident that the two lowest graphs correspond to delo-
calized states, while the two top graphs, and possibly the
middle one, represent adsorbed states.
If r0 is located at or near the attractive point, we can

use the mean squared end-to-end distance

R2(N) =
1

Z̃tot(r0, N)

∑

r

(r− r0)
2Z̃(r, r0, N), (26)

as an indicator of the localization length. In the absence
of the attractive potential, the repulsive walls push away

the polymer while maintaining the scaling of the random
walk, such that for a polymer anchored close to the apex
of a wedge R2 = N(1 + π/4θ0) [32, 37]. (In this section
distances are measured in units of lattice spacing, corre-
sponding to ℓ = 1.) This is indeed the behavior observed
for v close to 1. In an adsorbed state R2 approaches a
constant as N increases, masked by crossovers close to
vc. Figure 6 depicts R2/N as a function of N for the
same values of v is in Fig. 5. The two lowest curves in
this figure, and, possibly the middle one, correspond to
adsorbed state, with the top graphs in delocalized states.
From the last two figures we estimate that vc ≈ 5.776.
Larger N will enable even more accurate determination
of vc.
The presence of an adsorption transition can easily

be detected visually by inspecting the probability of the
end-point, proportional to Z̃(r, N). In the absence of
the attractive site (v = 1), this probability density is a
Gaussian multiplied by a power law as in Eq. (23). Fig-
ures 7(a) and (c) depict such situations for geometries
of type “1” in Figs. 4(b) and (c), respectively. Even
for a weakly attractive potential, i.e., for v somewhat
larger than 1, the distribution of the polymer end-point
approaches such a form for large N . At the critical
points v = vc, shown in Figs. 7(b) and (d), the distribu-
tion is still broad but remains centered on the attracting
site to which the polymer is anchored, as expected from
Eq. (24), decaying as a power law cut-off at a distance of

order
√
N . For v > vc the distributions are still centered

on the attracting site, but the correlation length ξ which
cuts off the power-law decreases with increasing v, as will
be discussed in the next Section.
We analyzed Z̃tot and R2 for all geometries depicted

in Fig. 4, obtaining a set of critical values vc that depend
on both the opening semi-angle θ0, and on the specific
discrete realization of the wedge. The values of vc for all
8 cases are plotted in Fig. 8. We expect vc to decrease
with increasing θ0, and find results that qualitatively re-
semble that of a continuous circular well. For each value
of θ0 there is a difference between the two possible real-
izations on a lattice, in variants denoted “1” and “2” in
Fig. 4, with the variant that has more nearest-neighbor
repulsive sites, n, requiring a stronger attraction (larger
vc) to confine the polymer.

VI. CRITICAL BEHAVIOR ON A LATTICE

Figure 9 depicts on a logarithmic scale the numeri-
cally measured R2 for several values of N as a function
of v − vc close to the transition point. For each θ0 we
identify a linear segment corresponding to a power law
dependence of R2, with possible logarithmic corrections.
For large N the power law regime is broader, and is cut
off when R2 reaches values of order of N . The graphs
represent rather different geometries of the wedge, rang-
ing from a polymer confined inside a rectangular wedge
(θ0 = π/4), to outside a needle-like barrier (θ0 = π).
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FIG. 7. Probability density of a polymer end-point position
r for N = 104, near a flat surface [θ0 = π/2, pictures (a) and
(b)], and outside a rectangular wedge [θ0 = 3π/4, pictures (c)
and (d)]. [See geometries of type “1” in Figs. 4(b) and (c).]
In the absence of attraction (v = 1) the distribution is broad

with maximum at a distance ∼
√
N away from the anchor

point of the polymer [pictures (a) and (c)], while at v = vc
[pictures (b) and (d)] it is centered on the anchor point.

Dashed lines indicate the theoretically predicted forms
from the solution of the continuous potential well in
Eq. (20). Note that, as in Eq. (21), we measure R2

and not ξ. Thus for the polymer inside a rectangular
wedge with m = 2, there is a logarithmic correction to
the relation between R2 and ξ2, leading to the expec-
tation of R2 ∼ |(v − vc)[c + ln(v − vc)]|−1. The fit in
graph (a) in Fig. 9 uses c = −4.6. For the case of a
flat line, as in variant “1” in Fig. 4(b), m = 1 and the
relation between R2 and v − vc, has a logarithmic term
originating in the expression for ξ in Eq. (20), resulting
in R2 ∼ |c+ ln(v− vc)|/(v− vc). The fit in the graph (b)
in Fig. 9 uses c = −1.6. Finally, the wedges of type “1”
in Figs. 4(c) and (d) exhibit a simple power law scaling
on v−vc with exponents of −3/2 and −2, respectively, as
shown in graphs (c) and (d) in Fig. 9. The match between
the numerical results and theoretical predictions is quite
good, although the limited range of N introduces some
systematic errors: E.g., for the needle-like barrier, direct
measurement of the slope gives −1.95 rather than −2,
as the discreteness of the lattice combined with limited
N introduces finite-size effects such as a slight effective
reduction of the angle θ0, and similar corrections of order

0 π/4 π/2 3π/4 π

θ0

0

5

10

15

v c

vc(θ0)
1
2

FIG. 8. Critical attractive strength vc for four values of θ0,
and for lattice realizations “1” (squares) and “2” (diamonds)
depicted in Fig. 4. For comparison, the solid line shows the
continuum result for a circular well, with vc ≡ exp(Uc/2d).

10−2 10−1

v − vc

102

103

104

R
2 (d)

(b)

(a)

(c)

FIG. 9. Logarithmic plots of the mean squared end-to-end
distance R2 as a function of v − vc(θ0); different bundles of
graphs correspond to different θ0 realized by type “1” lattice
variants in Fig. 4 as indicated by the legends: (a) π/4, (b) π/2,
(c) 3π/4. and (d) π. Each bundle combines 4 different values
of N = 4 · 103, 7 · 103, 104, and 105 (bottom to top). The
dashed lines represent the anticipated power laws or power
laws corrected by logarithms, as explained in the text.

1/
√
N . We repeated the calculations also for variants of

type “2” in Fig. 4, and despite the shifts in the positions
of vc, the results were practically indistinguishable from
those in Fig. 9.

We further used the numerical results to check the va-
lidity of Eq. (24) for the behavior of Z̃(r0, r) at the tran-
sition point vc. Figure 10 displays the weight of polymers
ending at a distance r from the corner of a rectangular
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101 102 103

r

10−8

10−6

10−4

10−2

100

Z̃
(r
)

N = 105

N = 104

N = 103

FIG. 10. Logarithmic plot of the reduced partition function in
type “1” model of Fig. 4(a) as a function of distance r along
the diagonal, for (left to right) N = 103, 104 and 105. All

curves have slope -2 for r ≪
√
N as indicated by the dashed

line.

wedge. The expected power-law scaling with exponent
−m = −2 is clearly observed. (For proper comparison
one must replace N ′ in the exponent in Eq. (24) by N/4
where N is the number of iterations used in the simula-
tion.) However, the curves for different N do not show

an increase as Nm−1 = N , for fixed r ≪
√
N , as pre-

dicted by Eq. (24). Such power law increase is expected
exactly at v = vc, switching to a power-law decrease as
Nγ−1 = N−m/2 = N−1 for v < vc. Thus, a small shift
in v can change the behavior between power-law increase
and power-law decrease. In both cases there is no expo-
nential growth with N as occurs for v > vc. The sim-
ulations are not sufficiently sensitive to locate the exact
position of vc. Indeed, the very choice of putative vc
for Fig. 10 was guided by consideration that Z̃tot is ap-
proximately constant over the studied range of N , likely

leading to a value slightly below the true vc.

VII. DISCUSSION

In this work we studied the adsorption transition of a
(phantom) polymer to the corner of a (repulsive) wedge.
The scale free nature of the geometry leads to critical
exponents that depend on the opening semi-angle θ0 of
the wedge: At the transition point the probability den-
sity of the end point decays as a power law ∼ r−m with
m = π/2θ0. On approaching the desorption point, the lo-
calization length ξ diverges with with an exponent of 1/2
for acute and obtuse angles, then continuously increas-
ing to one with increasing θ0 for reflex angles. These
results for d = 2 are equally valid for an ideal polymer
near a wedge with an attractive edge in d = 3. Once self-
avoidance is introduced, the two dimensional solution is
no longer applicable, since a self-avoiding polymer, as
well as Θ polymer, cannot be adsorbed to a finite vol-
ume. However, in d = 3 the adsorption transition of a
self-avoiding and Θ polymer to a wedge with adsorbing
edge, as in Fig. 1, is expected to be qualitatively similar,
with albeit different θ0-dependent exponents.
The scale free geometry studied in this work combines

objects of different dimensionality: a zero-dimensional
area of attraction with a one-dimensional repulsive sur-
face. In d = 3 we can consider a richer class of scale-free
objects (points, lines, planes, cones, pyramids, etc.), and
more combinations of zero-, one- and two-dimensional
entities. Each one of these components can be either
repulsive or attractive, and we expect to have compet-
ing and coexisting adsorption transitions. For d = 3 the
adsorption transition problem can be expanded to more
realistic self-avoiding and Θ polymers.
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