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We study the behavior of a classical two-component ionic plasma made up of non-additive hard
disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repul-
sion, long-wavelength total density fluctuations are suppressed and the system is globally hyper-
uniform. Short-range volume effects lead to phase separation or to hetero-coordination for positive
or negative non-additivities, respectively. These effects compete with the hidden long-range order
imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with
long-wavelength concentration fluctuations partially damped when the system is charged. It is also
shown that the decrease of configurational entropy due to hyperuniformity originates from contri-
butions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our
system, the spatial configuration associated with each component separately is not hyperuniform,
i.e., the system is not “multihyperuniform.”

I. INTRODUCTION

Disordered hyperuniform systems have gained consid-
erable attention over the last decade, since their relevance
as distinguishable states of matter was first stressed by
Torquato and Stillinger [1]. Hyperuniform many-body
systems are those characterized by an anomalous sup-
pression of density fluctuations at long wavelengths rela-
tive to those in typical disordered systems such as ideal
gases, liquids and structural glasses. More precisely, By
definition, a hyperuniform many-particle system in d-
dimensional Euclidean space Rd at number density ρ is
one in which the structure factor S(Q) ≡ 1+ρh̃(Q) tends
to zero as the wavenumber Q ≡ |Q| tends to zero [1], i.e.,

lim
Q→0

S(Q) = 0, (1)

where h̃(Q) is the Fourier transform of the total corre-
lation function h(r) = g2(r) − 1 and g2(r) is the pair
correlation function.

All perfect crystals and perfect quasicrystals, and cer-
tain special disordered systems are hyperuniform [1, 2].
The fact that the microscopic structure of disordered hy-
peruniform systems lie somewhere between that of disor-
dered fluids (with only short-range disorder) and crystals
(with long-range translational and orientational order)
has been found to have relevant consequences in a va-
riety of contexts and applications across different fields.
This includes maximally random jammed hard-particle
packings [3], classical disordered ground states [2, 4–6],
driven nonequilibrium granular and colloidal systems [7–
9], dynamical processes in ultracold atoms [10], photonic
band-gap materials [11–13], dense disordered transparent
dispersions [14], photoreceptor mosaics in avian retina
[15], immune system receptors [16], composites with de-
sirable transport, dielectric and fracture properties [17–
20], polymer-grafted nanoparticle systems [21], and “per-

fect” glasses [6].
Our fundamental understanding of disordered hyper-

uniform systems is still in its infancy. We know that
one can achieve them via equilibrium and nonequilib-
rium routes, and they come in quantum-mechanical and
classical varieties. Classical disordered hyperuniform sys-
tems of identical particles in equilibrium necessarily pos-
sess long-range interparticle interactions, whether they
occur at ground-state (T = 0) conditions [2, 4–6] or
positive temperatures [22, 23]. However, much less is
known about the hyperuniformity of classical multicom-
ponent systems and yet the infinite parameter space (par-
ticle size distribution and composition) afforded by them
should provide greater tunablilty to achieve hyperuni-
form states. Of course, when more than one component
is present in the system, the situation becomes obviously
more involved, but also physically more interesting, in-
cluding technological relevance as designer composites
[17–20].

It is noteworthy that when there are two or more com-
ponents, the system can be globally hyperuniform (long-
wavelength total density fluctuations are suppressed) or
multihyperuniform (long-wavelength density fluctuations
are suppressed for each and every component). In prac-
tice, multihyperuniformity in this case amounts to sup-
pressing simultaneously long-wavelength total density
and concentration fluctuations. These possibilities are
accounted for by the Bhatia-Thornton structure factors
[24]. In the first instance, one must consider the total
structure factor SNN (Q), defined as

SNN (Q) =
∑
αβ

Sαβ(Q), (2)

where the partial structure factors, Sαβ(Q) are given by

Sαβ(Q) = xαδαβ + ρxαxβh̃αβ(Q), (3)
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being xα the mole fraction of component α, δαβ Kro-

necker’s delta, ρ the total number density, and h̃αβ(Q)
the Fourier transform of the total partial correlation func-
tion (hαβ(r) = gαβ(r) − 1, where gαβ is the partial pair
distribution function). The low-Q behavior of the total
structure factor is connected to the isothermal compress-
ibility of the systems, and it is known to diverge when the
critical point of a liquid-vapor transition is approached
(i.e., density fluctuations occur on the macroscopic length
scale). A hyperuniform system is the antithesis of such a
critical point with a total structure factor that vanishes in
this low-Q limit according to (1), but can be regarded to
be at an “inverted” critical point in which the direct cor-
relation function, defined through the Ornstein-Zernike
equation, becomes long-ranged [1]. Additionally, concen-
tration fluctuations are described by the concentration-
concentration structure factor, defined by[24, 25]

Scc(Q) = x22S11(Q) + x21S22(Q)− 2x1x2S12(Q) (4)

This quantity exhibits a low-Q divergence when the bi-
nary system approaches the consolute point, i.e. the
demixing critical point. Conversely, if the system is glob-
ally hyperuniform, multihyperuniformity implies the sup-
pression of low-Q concentration fluctuations, i.e.,

lim
Q→0

Scc(Q) = 0. (5)

In this paper, we theoretically and computationally
investigate the behavior of 2D classical two-component
ionic plasmas made up of non-additive hard disks with
additional logarithmic Coulomb interactions between
them. By two component ionic plasma we refer to a
mixture of two different positively charged species in a
neutralizing background of negative charge[26]. We will
show that due to the Coulomb repulsion, long-range to-
tal density fluctuations are suppressed and the systems
are globally hyperuniform at positive temperatures. It
is demonstrated that short-range volume effects lead to
phase separation or to hetero-coordination for positive
or negative non-additivities, respectively. Interestingly,
we show that the decrease of configurational entropy due
to hyperuniformity originates from contributions beyond
the two-particle level. Finally, despite global hyperuni-
formity, we show that in our system the structure of each
component separately is not hyperuniform, i.e., the sys-
tem is not “multihyperuniform.” We note here, that even
though our model interaction is strictly a mathematical
construct resulting from 2D electrodynamics, it can also
be thought as an effective coarse-grained model for much
more complex realistic systems. In fact, the experimen-
tal structure factors obtained from the distribution of
avian photoreceptors in Ref.[15], shows a linear and/or
quadratic dependence in the low wavenumber regime.
This actually amounts to effective interactions that dis-
play either an inverse power or logarithmic r-dependence,
i.e. effective 3D repulsive Coulomb in a plane (1/r), or
2D repulsive Coulomb (− log r). Concerning the results

presented in this work, it is worth mentioning that a qual-
itatively similar picture from the point of view of hype-
runiformity would have been obtained had the Coulomb
interaction been fully three-dimensional (i.e. ∝ 1/r),
with the particles constrained to lie on a plane. The only
relevant difference would be a linear decay of SNN (Q) as
Q→ 0, instead of the quadratic dependence, induced by
the logarithmic dependence, shown in Eq.(36) below.

Here, more specifically we will study one of the sim-
plest disordered binary systems which can exhibit hy-
peruniformity in two dimensions, namely, the symmet-
ric non-additive hard-disk (NAHD) plasma. This system
is characterized by a short range NAHD interaction, to
which a long ranged repulsive two-dimensional Coulomb
interaction is superimposed. The two-dimensional
Coulomb potential in plasma systems is known to lead to
hyperuniformity [27–29], with limQ→ S(Q) ∝ Q2. On the
other hand, the short range part of the potential for posi-
tive non-additivity (i.e. when σαβ > (σαα+σββ)/2, being
σαβ the distance of minimum approach between parti-
cles α and β), can induce a demixing transition[30, 31].
In contrast, for negative non-additivities the system will
be fully miscible and presents a tendency to hetero-
coordination, i.e. local coordinations with neighboring
unlike particles tend to be favored. Our study makes
extensive use of Monte Carlo simulations (MC) and
integral-equation approaches, namely the Hypernetted
Chain (HNC) equation and the closely related Reference
Hypernetted Chain equation (RHNC). With these tools,
we investigate the structural effects of the interplay be-
tween long- and short-ranged interactions, with special
emphasis on the influence of hyperuniformity on the crit-
ical behavior of the demixing transition for the NAHD
plasma with positive non-additivity. This is a particu-
larly interesting situation, since prior to demixing the
system exhibits a structure reminiscent of a disordered
two-phase heterogeneous material, which in this case will
be shown to be hyperuniform.

The rest of the paper is organized as follows. In the
next Section we present our model system and provide a
brief description of the theoretical and simulation meth-
ods employed, including a summary of the expressions
that describe the system thermodynamics in the HNC
approximation. Then, in Section III, we derive analyti-
cal expressions that describe the low-Q behavior of our
system. It will be shown that whereas the condition for
global hyperuniformity is fulfilled, the systems are not
multihyperuniform. Finally, in Section IV we present our
most relevant results, with particular emphasis on the
phase behavior of the NAHD plasma and how global hy-
peruniformity affects the concentration fluctuations that
lead to demixing. The connection between hyperunifor-
mity, “hidden order”, and configurational entropy is also
explored in this final Section.
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II. MODEL AND METHODS

Our model consists of a symmetric mixture of non-
additive hard disks with a two-dimensional Coulombic
interaction between them, i.e., the interaction potential
uij(r) is given by

βuij(r) =

{
∞ if r < (1 + ∆(1− δij))σ

−ZiZjΓ log r/σ if r ≥ (1 + ∆(1− δij))σ
(6)

where β = 1/kBT as usual, and Γ = βe2, being e the
electron charge (esu units). Also, Zi, is the particle
charge in e units (and here for simplicity we will just
consider Zi = 1), ∆ is the non-additivity parameter, and
σ the hard disk diameter between like species. Obvi-
ously, increasing Zi is completely equivalent to modify-
ing the coupling parameter, Γ. Moreover, we restrict
ourselves to the case Zi = Zj , since for Coulombic sys-
tems charge asymmetry destroys global hyperuniformity,
as shown in the discussion of Eq. (39) below. Our system
will be a mixture of total surface density, ρ. Theoretical
calculations will be presented for the equimolar mixture
ρ1 = ρ2 = ρ/2, i.e. the mole fractions will be simply
x1 = x2 = 1/2. We do not expect any new physics to
arise from non-equimolar compositions. One would sim-
ply find a species dependent asymmetry in the cluster
number distributions for the positive non-additive case,
and for very asymmetric compositions it would be pos-
sible to reach higher total densities without demixing.
For negative non-additivities changes will be even less
visible, aside from the dominance of a particular species
and correspondingly lower degree of hetero-coordination.
Throughout the paper density will be reduced as ρσ2.

A. The integral equation approach

The Ornstein-Zernike equation for a mixture is given
by [25]

hjk(r12) =
∑
l

ρl

∫
dr3cjl(r13)hlk(r32), (7)

where cij is the direct correlation function, with ρl being
the number density of species l. In Fourier space Eq. (7)
can be cast into matrix form to yield

Γ̃(Q) = [I− C̃(Q)]−1C̃(Q)C̃(Q), (8)

where I is the identity matrix, the tilde denotes a 2D
Fourier transformation, and

[Γ̃(Q)]ij =
√
ρiρj γ̃ij(Q), (9)

[C̃(Q)]ij =
√
ρiρj c̃ij(Q), (10)

with γij ≡ hij − cij . The closure for Equation (7) reads

cij(r) = exp [−βφij(r) + γij(r) +Bij(r)]− 1− γij(r).
(11)

where Bij(r) is the bridge function. Here we will make
use of two approximations, namely Bij(r) = 0, i.e. the

HNC approximation, and Bij(r) = BHS−PYij (r), where
this latter function is the bridge function computed in the
Percus-Yevick (PY) approximation for the plain NAHD
system without electrostatic interactions. We will denote
this approximation by RHNC-PY. These equations can
now be solved by a simple iterative procedure, provided
the long range character of the correlations is appropri-
ately treated. Following Ref.[32] we define a well-behaved
long range component of the interaction

βφLRij (r) = −ZiZjΓ
[
ln
( r
σ

)
+

1

2
E1

(
r2

σ2

)]
, (12)

βφ̃LRij (Q) = ZiZjΓ
2π

(kσ)2
exp

(
−1

4
(kσ)2

)
, (13)

where E1(x) is the exponential integral. With these, one
can construct a set of short-ranged correlations and in-
teraction of the form

βφSRij (r) = βφij(r)− βφLRij (r), (14)

cSRij (r) = cij(r)− βφLRij (r), (15)

γSRij (r) = γij(r) + βφLRij (r), (16)

and similarly for their Fourier transforms. Now, Equa-
tion (8) and its closure (11) can be solved without further
complications. A more detailed description of the proce-
dure can be found in [32] and references therein. Here the
equations have been solved over 2000 grid points covering
a range in r-space of 20σ.

B. Hypernetted Chain Equation thermodynamics

In what follows, we summarize the key equations to
compute the thermodynamics of our system in the HNC
approximation. Our choice is based on the internal con-
sistency of all thermodynamic properties in the HNC
(with the exception of the isothermal compressibility
computed from the fluctuation theorem), which can be
used to test the correctness of our results. The excess
internal energy is simply given by

βUext/N = −1

ρ

∑
α,β

ZαZβραρβΓπ

×
∫
drr(gαβ(r)− 1) log(r/σ). (17)

The presence of the neutralizing background is appar-
ent in the above expression through the term involving
−1 in gαβ(r) − 1. The accuracy of the internal energy
calculation, is high in the HNC, as can be appreciated
in Table I. Even though the RHNC-PY provides slightly
better results, here we will mostly make use of the HNC
thermodynamics, since quantities such as the chemical
potential and Helmholtz energy can be evaluated directly
from the correlation functions, and as mentioned above,
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TABLE I. Thermodynamics of the equimolar NAHD plasma for ρσ2 = 0.8, and ∆ = −0.2, as computed from MC simulations,
and in the HNC and RHNC-PY approximations.

MC RHNC-PY HNC

Γ βUex/N βUex/N βUex/N βAex/N Sex/NkB Sex
2 /NkB ∆Sex/NkB

0.0 0 0 0 1.878 -1.878 -1.4520 -0.426

0.5 -0.248 -0.2507 -0.2407 1.651 -1.892 -1.4279 -0.464

1.0 -0.512 -0.5168 -0.4990 1.405 -1.904 -1.4121 -0.492

2.0 -1.053 -1.0652 -1.0318 0.897 -1.929 -1.3889 -0.540

5.0 -2.733 -2.7716 -2.6840 -0.688 -1.996 -1.3456 -0.650

it is endowed with a high degree of thermodynamic con-
sistency. Specifically, the Helmholtz’s free energy can be
evaluated as the sum of two contributions

βAex/N = βAex1 /N + βAex2 /N, (18)

obtained by a set of integrals in physical r-space and Q-
space, namely

βAex1 /N =
π

ρ

∑
α,β

ραρβ

(
−Γ

4
ZαZβ +

∫
drr
[
cSRα,β(r) +

1

2
[c2α,β(r)− γ2α,β(r)]

])
βAex2 /N = − 1

2ρ

∫
dQQ

(
log |I + H̃(Q)/Q−1| − Tr[H̃(Q)/Q−1]

)
. (19)

One can also calculate the free energy from the chem- ical potential in the HNC, which is given by

βµexi = −
∑
α

ραc̃
R
iα(0) +

π

2

∑
α

ρα

∫
hiα(r) (hiα(r)− ciα(r)) rdr, (20)

where

c̃Rij(0) = c̃SRij (0) +
π

2
ΓZiZj (21)

is the Q → 0 limit of the regular part of the direct
correlation[28]. With this one gets,

βAex/N =
∑
i

ρiβµ
ex − βP/ρ+ 1. (22)

Now, the pressure can be computed from the virial equa-
tion, that in the case if the NAHD two component plasma
is simply

βP/ρ = 1 +
1

4ρ
π
∑
α,β

ραρβσασβgαβ(σ+
αβ)− 1

4
Γ. (23)

The fact that the Coulomb contribution equals −Γ/4 can
be used as an internal consistency check of the results by
numerically integrating the correlation functions with the
corresponding virial factors.

From these expressions, the excess configurational en-
tropy is obtained as

Sex/NkB = βUex/N − βAex/N (24)

Additionally, one can determine the two-particle excess
configurational entropy contribution layer by layer using

Sex2 (R)/NkB = −πρ
∑
α,β

xαxβ (25)

×
∫ R

0

(gαβ(r) log gαβ(r)− gαβ(r) + 1) rdr.

The total two-particle contribution corresponds to
Sex2 (∞)/NkB . This quantity accounts in most cases
for more than 80 per cent of the total configurational
entropy[33]. We will see later that our case deviates from
the standard behavior in regular fluids. A relevant quan-
tity in connection with the configurational entropy, Sex

and its two particle contribution, Sex2 , is their difference
∆Sex/NkB = Sex/NkB − Sex2 /NkB . For purely repul-
sive interactions, the presence of zeros in ∆Sex(ρ)/NkB



5

0

0.04

0.08

0.12

S N
N

(Q
)

OCP limit: Q2/(Q2+2πρΓ)
 HNC
Eq.(36) Q2/(aQ2+2πρΓ)
MC

0 0.4 0.8 1.2 1.6 2
Qσ

0.1

0.12

0.14

0.16

S cc
(Q

) Eq.(38) 1/(4+s+tQ2)

∆=−0.2

ρσ2=0.8

FIG. 1. Low-Q behaviour of the SNN and Scc structure fac-
tors for an equimolar hard disk plasma mixture with negative
non-additivity, as determined by simulation and in the HNC
approximation. The low-Q HNC expansion from Eq. (36)
and that the pure OCP limit (a = 1) are also illustrated for
SNN (Q, together with the limiting formula (38) for Scc(Q)..
Diamonds and stars have been chosen to represent these limit-
ing analytic expressions to ease the comparison with the HNC
results (solid lines). Filled and open circles denote simulation
results.

has been correlated with the location of a fluid-solid
transition[33]. Finally, it is worth mentioning that the
two particle excess entropy is closely related with the
τ -order metrics parameter, which is a measure of trans-
lational order [2],

τ =
πρ

D

∑
α,β

xαxβ

∫
hαβ(r)2rdr

=
1

D

∑
α,β

∫
(Sαβ(Q)− xαδαβ)(Sαβ(−Q)− xαδαβ) dQ,

(26)

where D is a suitable characteristic length (e.g., corre-
lation length). This expression is in fact the multicom-
ponent generalization of the τ order metric defined in
Ref. [2]. Importantly, the τ order parameter defined by

(26) is given in terms of quantities that are experimen-
tally accessible. Note that a closely related order metric
was defined in physical space in terms of |h(r)| [34], in-
stead of h(r)2. Obviously, while this does not modify
the qualitative behavior of the order parameter, it does
not have a corresponding representation in terms of the
structure factor. Comparing Eqs.(25) and (26), one sees
that the latter can easily be obtained from (25) by a small
h-expansion of the integrand, with the sign changed. Or-
dered systems (e.g. crystals) will give infinite τ , whereas
for the ideal gas τ vanishes, as the does the excess two-
particle entropy.

C. Details of the simulation procedure

The Monte Carlo simulations were performed mostly
in the canonical ensemble using N particles embedded in
a uniform neutralizing background in a square box of side
L with periodic boundary conditions. The energy of the
periodic system was evaluated by the Ewald summation
method with conducting boundary conditions: [35]

βU ex =
Γ

4

N∑
i=1

N∑
j=1

ZiZj
∑
n

′
E1

(
α ∗2

∣∣∣rij
L

+ n
∣∣∣ )

+
Γ

4π

∑
n6=0

e−π
2n2/α∗2

n2

∣∣∣∣ N∑
i=1

Zi exp
(

2πin · ri
L

) ∣∣∣∣
2

−Γ

4
(γ + lnα∗2)

N∑
i=1

Z2
i +

Γπ

4α∗2
N∑
i=1

Z2
i

+
Γ

2
ln

(
L

σ

) N∑
i=1

Z2
i . (27)

In Eq. (27), rij = rj − ri, and γ = 0.5772156 . . . is Eu-
ler’s constant. The prime in the sum over n = (nx, ny),
with nx,ny integers, restricts it to i 6= j for n = 0. The
dimensionless parameter α∗ = αL controls the relative
contributions to the Ewald sum of the direct and recip-
rocal space terms. With the choice α∗ = 6, adopted
in our calculations, only terms with n = 0 need to be
retained in the first sum of Eq. (27). The sum in recipro-
cal space extends over all lattice vectors k = 2πn/L with
|n2| ≤ 64. The fourth term in Eq. (27) represents the
interaction of the background with itself. In the simula-
tions the Coulomb potential was scaled by L rather than
σ as in the theoretical approaches. The last term in Eq.
(27) was added to meet the theoretical choice.

We note here that in Ref. [29] periodic boundary con-
ditions and Ewald sums are not required, since the sys-
tem is simulated on the surface of a sphere. In principle,
both methods should lead to similar results, particularly
for relatively large samples, like those used in this work.
But on the other hand, a key quantity in our calculation
is the structure factor, and one can easily appreciate that
its determination on a spherical surface is substantially
more cumbersome than on a plane. These considerations
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have led us to employ the simulation procedure sketched
above.

In the vicinity of the demixing transition which oc-
curs for positive non-additivity of the disks we performed
semi-grand canonical MC simulations along the lines de-
tailed in Ref. [31] for the plain NAHD system. In par-
ticular, we took advantage of the cluster algorithm de-
scribed in Ref. [31] for identity sampling. Two particles
of the same species are considered linked within the same
cluster when their separation is less than σ(1+∆). With
this choice cluster identity swaps do not lead to particle
overlaps and for the present symmetrical case where the
chemical potential difference ∆µ = µA−µB = 0, the pro-
cedure leads to a rejection free algorithm of composition
sampling for a fixed set of particle positions[31].

Most simulations used 1600, 2500 and 3600 particles
and generally structural properties or order parameters
were obtained by averaging over 3× 106 to 5× 106 trial
translational moves per particle after equilibration of the
system. An identity swap was performed after 5 transla-
tional moves. Further calculations were carried out with
6100 and 8400 particles to allow for a more precise deter-
mination of the consolute point of the mixture. The ef-
fects of system size on the structural properties are prac-
tically negligible for all our samples. The dependence
of the Binder’s cumulants on the sample size is used to
determine the critical demixing density[36] (see Eq. (40)
and the discussion below).

III. LOW-Q BEHAVIOR

Starting from the matrix form of the Ornstein-Zernike
equation (7)

I + H = [I−C]
−1

(28)

one gets explicitly for the components of the partial struc-
ture factors (3)

1 + ρih̃ii =
1− ρj c̃jj
|I−C|

(29)

√
ρiρj h̃ij =

√
ρiρj c̃ij

|I−C|
, (30)

with i 6= j and

|I−C| = 1− ρ1c̃11 − ρ2c̃22 + ρ1ρ2(c̃11c̃22 − c̃212). (31)

The situation simplifies for the symmetric system, c11 =
c22, ρ1 = ρ2 = ρ/2. One can perform a small-Q ex-
pansion of the direct correlation function separating the
Coulomb term,

c̃ij(Q) = c̃Rij(0) + c
(2)
ij Q

2 − 2πΓZiZj/Q
2. (32)

The expansion coefficients of c̃Rij(Q) are simply given by

c
(2)
ij =

1

2

∂c̃Rij(Q)

∂Q

∣∣∣∣∣
Q=0

. (33)
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ρ
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=ρ
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∆=0.2

FIG. 2. Density-density, SNN , and concentration-
concentration, Scc structure factors for the equimolar NAHD
plasma (Γ = 5) and plain NAHD system Γ = 0 for positive
non-additivity. Curves denote various theoretical approaches
(shown on the legend) and symbols MC data. The effect
of global hyperuniformity is seen for the charged system, as
limQ→0 SNN (Q) = 0.

These Q2 contributions are needed to reproduce the low-
Q behavior of the partial structure factors beyond Q = 0.

Using the expressions above, one can obtain the fol-
lowing limiting behavior

1 + ρ1h̃11(Q) ≈
(1− ρ

2 (c̃R11(0) + c
(2)
11 Q

2))Q2 + πρΓZ2

(aQ2 + 2πρΓZ2)b

ρ
√
x1x2h̃12(Q) ≈

ρ
2 (c̃R12(0) + c

(2)
11 Q

2)Q2 − πρΓZ2

(aQ2 + 2πρΓZ2)b
, (34)

when Q→ 0, with

a = 1− ρ

2
(c̃R11(0) + c̃R12(0) + (c

(2)
11 + c

(2)
12 )Q2)

b = 1− ρ

2
(c̃R11(0)− c̃R12(0) + (c

(2)
11 − c

(2)
12 )Q2).

For the total structure factor, in our fully symmetric
mixture we have

SNN (Q) = 2S11(Q) + 2S12(Q) (35)
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by which

SNN (Q) ≈ Q2

aQ2 + 2πρΓZ2
(36)

This differs slightly from the pure one component plasma
(OCP) behavior[29] for which a = 1, since core contri-
butions vanish. In our case non-negligible contributions
from the hard core become more evident as Q grows.

For the concentration-concentration structure factor
we have,

Scc(Q) =
1

2
(S11(Q)− S12(Q)), (37)

which leads to

Scc(Q) ≈ 1

4b
=

1

4(1− ρ
2 (c̃R11(0)− c̃R12(0) + (c

(2)
11 − c

(2)
12 )Q2))

=
1

4 + s+ tQ2
(38)

where the constants s and t depend on density and on the
short range behavior of the direct correlation functions.

From the expressions (34), it is clear that

lim
Q→0

(1 + ρ1h̃11(Q)) =
1

2(1− ρ
2 (c̃R11(0)− c̃R12(0)))

lim
Q→0

(ρ
√
x1x2h̃11(Q)) = − 1

2(1− ρ
2 (c̃R11(0)− c̃R12(0)))

which shows definitely that the system is not multihy-
peruniform, although globally it has a hyperuniform be-
havior given by Eq.(36), i.e. SNN (Q) ∝ Q2 (Q→ 0). In
Figure 1 the validity of expressions (36) and (38) is illus-
trated for a NAHD plasma with negative non-additivity.
For comparison the OCP limiting behavior is also shown,

1 2 3 4
r/σ

0

1

2

3

4

5

g
α

β
(r

)

g
AA 

Γ=5

g
AA

Γ=0

g
AB 

Γ=5

g
AB 

Γ=0

4 6 8 10 12 14
r/σ

0.9

1

ρσ
2
=0.6   ∆=0.2

FIG. 3. Pair distribution functions for the equimolar NAHD
plasma (Γ = 5) and plain NAHD system Γ = 0 for positive
non-additivity as obtained from MC simulation. The inset
illustrates the long-range behavior. Long-range correlations
are damped by the presence of charged, as an effect of global
hyperuniformity .

and can be seen to deviate already at Qσ ∼ 0.6. At
this point is it important to stress that the global hype-
runiformity summarized in Eq. (36) is the result of the
symmetry relation

lim
Q→0

(ũ11(Q) + ũ22(Q)− 2ũ12(Q)) = 0 (39)

being fulfilled by the long-range contributions to the in-
teractions. Obviously, repulsive Coulomb systems com-
ply with Eq. (39) whenever Z1 = Z2.

IV. RESULTS

We have first focused our investigations in a case of
positive non-additivity, ∆ = 0.2, whose phase behav-
ior has already been studied in detail for the uncharged
system[31]. This NAHD mixture is known to exhibit a
demixing transition with Ising 2D criticality. Addition-
ally, we have also considered the situation with nega-
tive non-additivity, ∆ = −0.2, which is characterized by
the absence of a demixing transition and a tendency to
present local hetero-coordination.

A. Positive non-additivity and demixing transition

In Ref. [31], it was found that the uncharged system
exhibits a phase separation when ∆ = 0.2 with a conso-
lute point at ρcσ

2 = 0.69 (and obviously x1 = x2 = 1/2).
We have first studied the system at a somewhat lower
total density, ρσ2 = 0.60 and a relatively large Coulom-
bic coupling, Γ = 5. Thermodynamic properties for this
system in the HNC approximation are collected in Table
II.

The effect of the charges is readily seen in the density-
density correlations represented by the total structure
factor (see Figure 2), which now vanishes as Q → 0,
making the system globally hyperuniform. On the other
hand, in the lower graph of Figure 2 for Scc(Q) we can ob-
serve that there are large concentration fluctuations when
Q → 0, i.e. for large separations. This is a clear indica-
tion of the vicinity of the demixing transition. Interest-
ingly, one observes that Scc(0)(Γ = 5) < Scc(0)(Γ = 0),
i.e., charges (or global hyperuniformity) counteract to a

TABLE II. Thermodynamics of the equimolar NAHD plasma
for ρσ2 = 0.6 and ∆ = 0.2 computed in the HNC approxima-
tion.

Γ βUex/N βAex/N Sex/NkB Sex
2 /NkB ∆Sex/NkB

0.0 0 2.301 -2.301 -1.9947 -0.306

0.5 -0.2140 2.097 -2.311 -1.9484 -0.362

1.0 -0.4423 1.879 -2.321 -1.9210 -0.400

2.0 -0.9125 1.429 -2.342 -1.8813 -0.461

5.0 -2.3677 0.030 -2.398 -1.8054 -0.593
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FIG. 4. Snapshots of Monte Carlo configurations of the equimolar plain NAHD system (subfigure A on the left, Γ = 0) and
the NAHD two component plasma for Γ = 5 (subfigure B on the right) and positive non additivity, ∆ = 0.2, for ρσ2 = 0.6.
The effect of global hyperuniformity cannot be appreciated on the translational order, but on the compositional order it can
be seen that the presence of charges tends to reduce the size of the clusters.

0 0.2 0.4 0.6 0.8 1

x
A

0.66

0.68

0.7

0.72

ρ
σ

2

Γ = 0
Γ = 5  N=900

Γ = 5 Ν=1600
Γ = 5 Ν=3600

FIG. 5. Phase diagram of the NAHD system and the NAHD
plasma with Γ = 5. Symbols correspond to Semi Grand En-
semble simulations for different system sizes. The critical
point estimates are obtained from the crossing of Binder’s
U2n cumulants (see Eq. (40)) and the lines are a fit to Ising
2D critical behavior.

certain extent the tendency to demix. This effect is fur-
ther illustrated by the long-range behavior of the pair
distributions depicted in Figure 3. One readily observes
that the long-range oscillations of like and unlike gαβ in
the uncharged system (an indication of the approaching
divergence at the critical density) are quite damped due
the effect of the charges. Overall, one sees that the values
of the like correlations at short and intermediate ranges
are lowered when charges are introduced, which reflects

the repulsive nature of the Coulomb interaction in the
plasma. In contrast unlike correlations grow, since the
Coulombic repulsion has a larger effect on like particles
whose distance of closest approach is σ, which is lower
than (1 + ∆)σ, for unlike particles. One can easily see
in the snapshots of Figure 4 that this translates into a
situation for which the size of the clusters of like particles
decreases when charges are present. Here we have one of
these situations in which global hyperuniformity leads to
some sort of long-range “hidden” order invisible to the
eye. In contrast, the effect on the compositional order is
readily appreciated.

As to the net effect on the phase behavior, in Figure 5
we present the phase diagram for the plain NAHD sys-
tem, taken from Ref. [31] and that obtained in this work
for Γ = 5.

The critical point estimates are calculated from the
crossings of Binder’s cumulants[36], U4 and U6,

U2n =
〈θ2n〉
〈θ2〉n

(40)

where the 〈. . .〉 denotes an ensemble average, and θ =
2x − 1. The size dependence of these quantities is il-
lustrated in Figure 6, from which one can estimate the
critical density determined by the crossing of the curves.
One obtains ρcσ

2 ≈ 0.699, slightly larger than the value
for the plain NAHD system, ρcσ

2 ≈ 0.69. This agrees
with our previous findings that indicated that global hy-
peruniformity, damping long-range correlations, tends to
counteract phase separation. Still, short range volume
effects cannot be completely canceled out by the subtle
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FIG. 6. Size dependence of Binder’s U4 and U6 cumulants
as a function of total density. The crossing for all curves is
indicated by a vertical line and is seen to occur in the same
density, ρcσ

2 ≈ 0.699.

changes induced by global hyperuniformity and the sys-
tem demixes at a higher density. As to the crossing of
the cumulants, for U4, one gets U c4 ≈ 1.15± 0.02, which
means that the accepted Ising 2D universal value[37],
U c4 ≈ 1.168 lies within the uncertainty of our calcula-
tion. Here then, for our purposes, we have assumed 2D
Ising criticality[37], and thus the fitted curves of Figure
5 are obtained using a critical exponent β = 1/8.

B. Negative non-additivity: hetero-coordination

Thermodynamic properties for the NAHD system with
ρσ2 = 0.8 and ∆ = −0.2 are collected in Table I for var-
ious couplings. As to the structure, in the snapshots of
Figure 7 one can qualitatively appreciate the effects of the
charges (i.e. global hyperuniformity) on the microscopic
structure of the fluid. On the left (uncharged NAHD) one
can see that system tends to hetero-coordination, max-
imizing the contacts between unlike particles and thus

minimizing volume. Switching on the Coulombic repul-
sion, even though it affects all particles in the same de-
gree, has more apparent effects for pairs of unlike par-
ticles. In this case, their hard core repulsion allows for
closer contact, and as a consequence, hetero-coordination
is no longer so favorable. One can then appreciate a
slight increase of like particle “aggregates”. As a matter
of fact, this is quantitatively illustrated by the behavior
of the partial pair distribution functions depicted in Fig-
ure 8. There one can appreciate the considerable drop in
the contact value of the unlike pair distribution function
(in contrast with the situation for positive non-additivity
seen in Figure 3). Moreover, the like distribution func-
tion also decreases somewhat, although to a much lesser
extent. For this reason, the snapshot of Figure 7(b) seems
to present a certain degree of clustering of like particles.
This features translates into a total structure factor that
decays to zero following (36) (i.e. a globally hyperuni-
form system), and a concentration-concentration struc-
ture factor with a low-Q behavior given by Eq. (38), as
discussed in Section III and illustrated in Figure 1. Addi-
tionally, in Figure 9, we observe long-ranged oscillations
in Scc(Q) (with a period of Ql ≈ 7σ−1) that actually re-
flect the presence of hetero-coordination (i.e changes in
local concentration over a range 2π/Ql ≈ 0.9σ ≈ σαβ).
The presence of charges somewhat damps the oscillations,
i.e. it counteracts the hetero-coordination induced by
volume effects.

C. Entropy and hyperuniformity

As mentioned before, the two particle contribution to
the configurational entropy (25) usually accounts for 80%
of the total configurational entropy. One can actually es-
timate the different contributions of each particle layer
from Sex2 (R)/NkB , and thus analyze the effect of charges
on disorder (or more properly, on the number of configu-
ration/microstates compatible with our thermodynamic
state). In Figure 10 we have plotted this quantity for
both the positive and negative non additivity computed
in the HNC approximation. Additionally, in the lower
graph we have included the results for an additive sys-
tem (∆ = 0), where no volume effects are at play. In
this latter instance, we chose a density that gives a hard
core contribution to the pressure similar to that of the
∆ = −0.2 case. One should expect to a find an obvi-
ous effect on the two-particle entropy due to the “hid-
den order” introduced by hyperuniformity. We observe
that except in the uncharged system close to demixing,
the two-particle excess entropy contributions originate in
the first two coordination shells. For Γ = 0 and ∆ = 0.2
this extends up to 4 ∼ 5 layers. Interestingly, in all
instances one observes that the two-particle entropy de-
creases when charges are introduced (i.e. when the sys-
tem becomes hyperuniform). In the case of negative non-
additivity the effect is rather extreme. As mentioned,
the effect of hyperuniformity in this system counteracts
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FIG. 7. Snapshots of Monte Carlo configurations of the equimolar plain NAHD system (subfigure A on the left, Γ = 0) and
the NAHD two component plasma for Γ = 5 (subfigure B on the right) and negative non additivity, ∆ = −0.2for ρσ2 = 0.6.
The system tends to hetero-coordination, but the net Coulombic repulsion somewhat enhances clustering of like particles.

phase separation. Since the system looses entropy when
demixing, it is understandable that the charged system,
further away from the transition, might have a larger
entropy. This would explain why the two-particle con-
tribution is less negative when charges are added. The
situation is less obvious for ∆ = 0 and ∆ = −0.2. Ac-
tually, as discussed above, in Figure 8 one already sees
that the net effect of the Coulomb repulsion is a decrease
in the contact values of the pair distribution functions
(much more visible in the unlike case). This could be
considered formally equivalent to the effect of a density
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FIG. 8. Pair distribution functions for the equimolar NAHD
plasma, (Γ = 5), and plain NAHD system, Γ = 0, for negative
non-additivity as obtained from MC simulation (symbols) and
RHNC-PY approximation (curves).

decrease, which obviously would imply an increase of en-
tropy. This scenario applies both to the additive and
negative non additive hard disk plasmas. At least, that
is the situation as far as the two-particle contribution is
concerned. Note that as discussed in Section II B, these
arguments also apply to the evolution of the translational
order parameter, which is basically the negative of the
two-particle entropy.

Turning attention to the the net configurational en-
tropy, Tables I and II interestingly show that the increase
in entropy due to the two-particle configurational entropy
is overcompensated by many-particle contributions that
are approximated by the various terms that enter Eqs.
(19)-(23). Now, one can vividly see a clear decrease of the
net configurational entropy. When comparing Sex/NkB
and Sex2 /NkB , it is readily seen how the relative contri-
bution of the two-particle excess configurational entropy
decreases as the system is charged, going from 80% to
67%. This is in marked contrast with the situation for
“ordinary” fluids where the two-particle contribution is
known to account for 80 ∼ 90% of the total configura-
tional entropy[33]. This reflects how the “hidden order”
introduced by hyperuniformity, being a long-range effect,
must influence entropy through many particle contribu-
tions: As we have seen, the two-particle configurational
entropy is determined basically by the first four coordi-
nation shells.

In summary, we have shown that a simple system
of NAHD with superimposed repulsive two-dimensional
Coulomb interactions can exhibit a rich structural be-
havior due to the interplay between the short range
volume effects leading to phase separation, clustering
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plasma (Γ = 5) and plain NAHD system Γ = 0 for negative
non-additivity. Curves denote various theoretical approaches
(shown on the legend) and symbols MC data. Again, the ef-
fect of global hyperuniformity is seen for the charged system,
as limQ→0 SNN (Q) = 0..

or hetero-coordination, and the long-range effects intro-
duced by the Coulomb forces inducing global hyperuni-
formity. Subtle effects are particularly visible when hy-
peruniformity counteracts demixing.

Finally, we note that elsewhere we have shown that by
tuning interactions in binary mixtures of non-additive
hard-disk plasmas one can achieve disordered multihy-
peruniform many-body systems [23]. We demonstrated
that multihyperuniformity competes with phase separa-
tion and stabilizes a clustered phase.
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