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We report on the first experimental observation of classical diffusion distinguishing between structural univer-
sality classes of disordered systems in one dimension. Samples of hyperuniform and short-range disorder were
designed, characterized by the statistics of the placement of µm-thin parallel permeable barriers, and the time-
dependent diffusion coefficient was measured by NMR methods over three orders of magnitude in time. The
relation between the structural exponent, characterizing disorder universality class, and the dynamical exponent
of the diffusion coefficient is experimentally verified. The experimentally established relation between structure
and transport exemplifies the hierarchical nature of structural complexity — dynamics are mainly determined
by the universality class, whereas microscopic parameters effect the non-universal coefficients. These results
open the way for non-invasive characterization of structural correlations in porous media, complex materials,
and biological tissues via a bulk diffusion measurement.

How does a measurement of a macroscopic characteristic
relate to microscopic structure? This ill-posed question has
been repeatedly asked in many disciplines — famously, “Can
one hear the shape of a drum?” [1] — and its answer depends
on the kind of measurement. Naively, one could imagine that
infinitely many parameters needed to specify sample’s struc-
ture would in one way or the other contribute to the outcome.
Physical intuition, however, tells that only a few parameters
profoundly affect the measurement; identifying these relevant
parameters is generally nontrivial, especially for irregular, or
disordered systems. For instance, even small irregularities
in a periodic lattice can change perfectly conducting metal-
lic bands into an insulator due to quantum localization [2].

Here we consider classical diffusion in structurally dis-
ordered systems, where the practical answer to the above
question could help quantify the underlying microstructure of
complex materials [3–8] and living tissues [9–13]. We ex-
perimentally demonstrate that the qualitative behavior of the
time-dependent diffusion coefficient is tied to the long-range
structural fluctuations. While systems may strongly differ in
their microscopic parameters, there are only a few universality
classes of such fluctuations — in essence, a system can be dis-
ordered in one of a few distinct ways — and each universality
class yields a particular power-law behavior of the observed
macroscopic diffusion coefficient.

Technically, we experimentally verify the recently derived
relation [10]

ϑ =
p+ d

2
(1)

between the structural exponent p, and the dynamical expo-
nent ϑ of the Brownian motion xt in structurally disordered
stationary media in d spatial dimensions. The defining signa-
ture of structural complexity is reflected in the structural ex-
ponent p which takes discrete values according to the univer-
sality class, as illustrated in Fig. 1 for our d = 1-dimensional
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samples. Equation (1) relates p to the long-time tail in the
bulk diffusion coefficient [10] (the mean-squared displace-
ment rate)

Dinst(t) ≡
∂

∂t

〈(xt − x0)2〉
2

' D∞+ c·t−ϑ , t→∞. (2)

The macroscopic diffusion coefficient D∞ ≡ Dinst(t)|t=∞
and the power-law amplitude c are non-universal, i.e. depend
on the microstructural parameters. On the other hand, as we
experimentally demonstrate in Fig. 2, the relation (1) is uni-
versal [10], akin to the relations between critical exponents
[14] in statistical physics, where the notion of universality
originates.

Formally, the structural universality class is defined [10] by
the k → 0 scaling of the power spectrum

Γ(k) ≡
∫
V

dr e−ikr〈n(r0+r)n(r0)〉r0 =
|n(k)|2

V
∼ kp (3)

of the restrictions which embody the sample’s microscopic
structure. The exponent p, taking a handful of discrete values
such as in Fig. 1d, describes how fast the spatial correlations
Γ(r) in the density of the restrictions n(r) decay at large dis-
tances r, and thereby characterizes the system’s heterogeneity.
The values p > 0 correspond to hyperuniform media [15, 16]
(sample C), where the fluctuations are suppressed relative to
the short-range (e.g. Poissonian) disorder (p = 0, samples A
and B); p < 0 correspond to strong disorder, where the fluc-
tuations are enhanced [9, 10]. Qualitatively, the variance in
the number of restrictions within a volume V grows ∝ V for
short-range disorder (according to the central limit theorem),
slower than V for hyperuniform disorder (such as in maxi-
mally random jammed packings [17]), and faster than V for
strong disorder. The relation (1) relies on self-averaging [18],
p+ d > 0, ensuring the existence [10] of finite D∞.

Two samples exhibiting short-range (SR) disorder were
constructed by stacking flat, porous, permeable barriers in a
layered geometry (as shown in Supplementary Fig. S1c [19]),
and random positions, inside a glass tube filled with H2O.

mailto:gboutis@brooklyn.cuny.edu


2

10-2 10-1 100 101
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FIG. 1. Structure and universality classes of the samples. a Representative optical microscopy image of the SR sample. b, AFM image of
a single barrier. c, Digitized 1d cut-outs of the two SR samples (A-B) and HU sample C. d, Power spectrum (3) of the barrier density n(x)
reveals qualitative differences between the disorder classes as k → 0: A plateau (p = 0) in Γ(k) for the SR samples (A-B), and kp scaling
with p = 2 for HU sample (C).

One SR sample was constructed using the barriers with 15
nm pore diameter (A in Fig. 1c) and one SR sample using
the barriers with 45 nm pore diameter (B in Fig. 1c). Fig.
1b reveals a pore density of 8 pores/µm2 by AFM. These two
different samples correspond to two different realizations of
short-range disorder and the one-dimensional lines shown in
Fig. 1c correspond to digitized cut-outs of the actual samples
representing the barrier spacings of a part of the sample.

A representative optical microscopy image of SR sample A
is shown in Fig. 1a and yields an average spacing ā ≈ 12.5µm
between the centers of the barriers. The short-range character
of the arrangement is proven by the finite value of the plateau
Γ(k)|k→0 of the power spectrum, Fig. 1d, and is also consis-
tent with the probability density function (PDF) of the suc-
cessive barrier spacings (Supplementary Fig. S7 [19]) lack-
ing a “fat tail”. The non-Possonian nature of barrier arrange-
ment in both SR samples is shown by the value Γ(k)|k→0 · ā
which is different from unity (in contrast to the Poissonian,
i.e. fully uncorrelated placement), and is consistent with non-
exponential PDF of the barrier spacings.

On the other hand, the hyperuniform (HU) disordered sam-
ple C, shown in Fig. 1c (and Supplementary Fig. S1-a-b-d
[19]), was achieved by placing identical rectangular copper
plates, ∼ (45 ± 4) µm thick, between the permeable barri-
ers with pore diameter of 45 nm and is characterized by re-
duced long-range structural fluctuations. Ideally, the barri-
ers would create a periodic lattice (with ā ≈ 51.0µm) which
would result in Bragg peaks in Γ(k) and Γ(k < π/ā) ≡ 0.
However, experimental inaccuracies in the placement of the
barriers and copper plates act as random displacements from
ideal lattice positions, resulting in apparent hyperuniformity
[15] of a “shuffled lattice” [20], for which the power spectrum
Γ(k) ∼ k2 for kā � 1. The spectrum in Fig. 1d is indeed
consistent with the exponent value p = 2.

We underscore that it is practically impossible to discern
the qualitative differences between the samples A, B and C —
or to reveal the disorder universality class by the naked eye.
Based on local sample cut-outs, shown in Fig. 1c, the three
samples look very similar, when the dimensions are rescaled
such that mean spacing between the barrier centers is the same
for all of them. However the power spectrum Γ(k), shown in
Fig. 1d, readily shows similarity between samples A and B,
and their qualitative difference from sample C, as its low k
scaling captures the universal features in the large-scale be-
havior of the density fluctuations. For the computation of
Γ(k), the reader is referred to Supplementary section II as
well as Fig. S8. [19] In what follows, we show how a bulk
diffusion measurement distinguishes between the SR and HU
classes, thereby yielding the form of Γ(k) for kā � 1 (i.e.
for distances exceeding ā), and experimentally validating the
relation (1) in dimension d = 1.

The conventional cumulative D(t) ≡ 〈(xt − x0)2〉/2t of
H2O was measured using pulse-gradient diffusion NMR [3]
over a broad range of diffusion times t, from 1.0 ms to 4.5 s,
spanning over 3 orders of magnitude, and translating to mean
square displacements 〈(xt − x0)2〉1/2 ranging from 2µm to
144µm. Measuring such short mean square displacements re-
quires fast switching and strong in magnitude gradient pulses.
Therefore, a homemade gradient coil was constructed [21, 22]
capable of delivering gradient pulses of approximately 90
G/cmA. However, such strong gradient pulses may introduce
errors in the experimental data, such as those due to eddy cur-
rents. To mitigate such effects, two pulse sequences were used
for the diffusion measurements (cf. Supplementary Materi-
als [19]) which made use of bipolar gradient pulses for short
times, and asymmetric pules for long times.

Figure 2a shows the time dependence of the cumulative dif-
fusion coefficient D(t), of H2O diffusing through the three
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FIG. 2. Dynamical exponent (1) identifies the disorder classes. a, The tail in the cumulative diffusion coefficientD(t) (see text) distinguishes
between SR and HU disorder, via exponent ϑ̃ = min {ϑ, 1} (Table I). Note that ϑ̃ ≡ ϑ ≈ 1/2 for both SR samples (made of barriers with
different permeability), while ϑ̃ ≈ 1 for the HU sample, indicating that the “true” ϑ > 1. D(t) = const for unrestricted water is shown
for comparison. b, To access ϑ for HU disorder, we obtain the tail in Dinst(t), equation (2). While results are noisier due to numerical
differentiation, the exponent values ϑ ≈ 1/2 for SR and ϑ ≈ 3/2 for HU, cf. Table I, are consistent with equation (1).

samples, as well as for unrestricted H2O (cyan). Note that the
diffusion coefficient for unrestricted H2O (cyan) was rescaled
using D∞ from sample A. While there is no time depen-
dence in D(t) for unrestricted H2O, a power-law exponent
ϑ̃ = 0.59± 0.09 in D(t)−D∞ ∼ t−ϑ̃ was observed for H2O
diffusing through sample A and ϑ̃ = 0.56 ± 0.11 for sam-
ple B. Note that the exponent ϑ̃ is the same with ϑ of eq. (2)
if ϑ < 1. The exponents are in remarkable agreement with
equation (1) for p = 0 and d = 1, and with earlier predic-
tion [23] for the tail in D(t). On the other hand D(t) − D∞
for H2O diffusing through the HU sample exhibits the 1/t tail
with ϑ̃ = 0.99 ± 0.14. The range in which the least squares
fit was performed was chosen such that the χ2/dof was min-
imized. The structural and dynamical exponents, as well as
main characteristic of the samples such as residence and dif-
fusion times τr and τD, are given in Table I.

The 1/t tail in D(t) in the HU sample indicates that ϑ > 1.
Indeed, the cumulative D(t) ≡ 1

t

∫ t
0

dτ Dinst(τ) may be used
to determine ϑ only in the case when the power-law tail in
Dinst(t) is sufficiently slow [10], ϑ < 1. In this case, the
instantaneous mean squared displacement rate (2) has similar
behavior to the average rate 〈(xt − x0)2〉/2t over the whole
interval t; formally, the above integral converges at the upper
limit. However, when the underlying ϑ > 1, the tail D(t) −
D∞ = 1

t

∫ t
0

dτ [Dinst(τ)−D∞] ' 1
t

∫∞
0

dτ [Dinst(τ)−D∞]
is determined by the short τ , such that the 1/t factor overshad-
ows the effect of ϑ. In other words, D(t)−D∞ ∼ t−ϑ̃, where
ϑ̃ = min {ϑ, 1}. Hence, if the tail in D(t) has ϑ̃ = 1, which
is the case for the HU sample, one has to obtain Dinst(t) via
numerical differentiation to uncover the true ϑ > 1, with the
expense of amplifying the experimental noise.

Figure 2b shows the computed instantaneous Dinst(t) =

∂t[tD(t)], using numerical differentiation with Savitzky-
Golay (SG) regularization [24] (cf. Supplementary Materials
[19]), along with the weighted least squares fit (solid line).The
time window in which the fit was performed was chosen such
that the χ2/dof was minimum. As expected, for both SR
samples, Dinst(t) reaches its universal limit D∞ according
to equation (2) with ϑ = 0.52 ± 0.19 for sample A and
ϑ = 0.45±0.15 for sample B (cf. Table I), consistent with the
above results for ϑ̃ and equation (1) with p = 0 and d = 1. For
the HU sample, the dynamical exponent ϑ = 1.51 ± 0.12, is
notably different from that for SR samples, and in agreement
with equation (1) for p = 2 and d = 1. The least squares fit
was stable with respect to the SG filtering window and poly-
nomial order producing reasonable values of χ2/dof (cf. Sup-
plementary Materials for details, Fig. S4-S5 [19]). Note that
the fit is mainly weighted by the first points which have good
signal-to-noise ratio. An important observation of Figure 2b is
that the molecules in the HU sample gets homogenized by the
diffusion process qualitatively faster than in the SR samples
A-B, so that the power law tail becomes pronounced already
when t ∼ τr. This is a general consequence of a more effi-
cient coarse-graining in a qualitatively more ordered (hyper-
uniform) sample. As noted in ref. [10], in the “extreme” case
of a fully periodic sample, diffusion exhibits coherence due
to infinitely long spatial correlations, which makes the sample
effectively homogenized already when t ∼ τD.

Previous applications of bulk diffusion for characteriz-
ing microstructure below imaging resolution focussed on the
short-time [25] initial decreaseD(t) ' D0(1− 4

√
D0

3d
√
π
S
V ·t

1/2)

of the cumulative diffusion coefficient, as a result of the in-
creasing fraction ∼

√
D0t S/V of random walkers restricted

by walls. In this limit, it is the net amount of the restrictions
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Sample Disorder class p ϑ̃th ϑ̃ ϑth ϑ τr , ms τD , ms D∞,
µm2

ms
ā, µm Pore diam., nm

A (green) SR 0 1/2 0.59± 0.09 1/2 0.52± 0.19 157.2 34.2 0.42± 0.04 12.5 15
B (blue) SR 0 1/2 0.56± 0.11 1/2 0.45± 0.15 117.2 43.0 0.58± 0.05 14.1 45
C (red) HU 2 1 0.99± 0.14 3/2 1.51± 0.12 2949.0 754.9 0.63± 0.04 58.9 45

TABLE I. Sample parameters and exponents for disorder classes. Theoretical (eq. 1) and experimental (Fig. 2) power-law exponents ϑ̃
and ϑ in the tails of D(t) and Dinst(t). The (non-universal) macroscopic diffusion coefficient, D∞, mean barrier spacing ā as computed from
optical microscopy, pore diameter of the barriers, residence time τr ≡ ā/2κ, and time to diffuse in-between barriers, τD ≡ ā2/2D0 are also
shown.

that is relevant, irrespective of their positions in space — akin
to the net drum surface area derived from the density of high
frequency eigenmodes [1]. This technique has been used for
quantifying the surface-to-volume ratio (S/V ) of porous me-
dia [4] and biological samples such as red blood cell suspen-
sions [26] and brain tumor cells in mice [27].

Experimentally, the short-time limit is highly demanding on
the pulsed field gradients. However, for our samples, displace-
ments as short as L(t) ≈ 2 µm are accessible with our home-
made gradient coil. Fig. 3 highlights the initial t1/2 decrease
of D(t) for t/τD � 1, when the short time limit is valid
(cf. Table I for the values of τD). For sample A, the average
spacing of the barriers was determined from S/V ≡ 2/ā, and
found to be ā = 11.4 µm, deviating by ∼ 9% from the value
expected from the images acquired via optical microscopy.
Simirarly, for sample B, ā = 12.0 µm deviating by ∼ 15%
from the value expected from the images acquired via optical
microscopy and reported in Table I. For HU sample, ā = 61.5
µm deviated by approximately∼ 4% from the predicted value
(Table I). In the least squares fits shown in Fig. 3, the free dif-
fusion coefficient D0 was fixed to the exact value at the cor-
responding temperature. Note that the maximum (t/τD)1/2

used for the least squares fit (solid lines of Fig. 3) was 0.31
for sample A, 0.27 for sample B and 0.24 for sample C (see
Supplementary Materials Fig. S6 for statistical analysis of
the fit [19]). As mentioned earlier, the initial t1/2 decrease,
sensitive only to the net amount of restrictions, cannot reveal
structural correlations. Therefore, the qualitative differences
between the two disorder classes are not apparent in Fig. 3 —
only the quantitative differences in S/V = 2/ā are seen in the
slopes of the curves at small t.

To summarize, our experiments for the first time reveal the
qualitative difference in the diffusive dynamics between sam-
ples with qualitatively different spatial statistics of structural
fluctuations, justifying the application of the concept of uni-
versality to classical transport in disordered media, and vali-
dating the fundamental relation (1) between structural and dy-
namical exponents. The coefficients c andD∞ of equation (2)
for the two SR samples are non-universal, and reflect the den-
sity of the barriers and their permeability (cf. Supplementary
Materials [19]). However, the dynamical exponent ϑ remains
the same, because the statistics of large-scale fluctuations for
both samples A and B are governed by the central limit the-
orem (finite correlation length, a plateau in Γ(k)|k→0). On
the other hand, based on the dynamical exponent ϑ, qualita-
tive differences were revealed between the samples exhibit-
ing short-range (A, B), and hyperuniform disorder (C) (where
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FIG. 3. Short time t1/2 decrease [25] of D(t): Quantifying the
net amount of restrictions, S/V = 2/ā; the difference in the large
scale fluctuations is not revealed. The cumulative diffusion coeffi-
cient D(t) exhibits the t1/2 decrease for t/τD � 1.

fluctuations are reduced [15, 16] relative to those governed
by central limit theorem since Γ(k)|k→0 → 0), verifying that
diffusion can identify the structural universality class of the
medium.

After the seminal 1991 observation of diffusion diffraction
[28] yielding the structure factor of water-filled identical con-
fining pores, the late Paul T. Callaghan insightfully referred
to diffusion as microscopy [3]. This q-space technique has
enabled determination of the shape of regular confining struc-
tures with impermeable walls, such as pores of any shape [29].
The present investigation suggests that the time-dependent
diffusion coefficient (2) reveals the parameter that microscopy
does not provide — the elusive to the naked eye statistics of
structural correlations, which are able to distinguish and char-
acterize randomly looking, or disordered, and permeable sam-
ples such as those in Fig. 1c, using a low-resolution bulk trans-
port measurement. As most building blocks of living tissues,
such as cells and organelles, are not fully confining (cells have
permeable walls; water can move along the dendrites and ax-
ons), we believe this fundamental result can serve as a basis
for quantitative investigations of µm-level structural correla-
tions in complex materials [6] and in live biological tissues
[9–12] with diffusion NMR and MRI.
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