aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Orbitals for classical arbitrary anisotropic colloidal
potentials
Martin Girard, Trung Dac Nguyen, and Monica Olvera de la Cruz
Phys. Rev. E 96, 053309 — Published 20 November 2017
DOI: 10.1103/PhysRevE.96.053309


http://dx.doi.org/10.1103/PhysRevE.96.053309

Orbitals for classical arbitrary anisotropic colloidal potentials

Martin Girard, Trung Dac Nguyen, and Monica Olvera de la Cruz*
Department of Materials Science and Engineering,

Northwestern University, Fvanston, Illinois, United States, 60208

Abstract

Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to
compute effective interactions for spherically symmetric particles exist, anisotropic interactions are
seldom used, due to their complexity. Here, we describe a general formulation, based on a spatial
decomposition of the density fields around the particles, akin to atomic orbitals. We show that
anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based
methods. We validate the field formulation and characterize its computational efficiency with a
system of colloids that have Gaussian surface charge distributions. We also investigate the phase
behavior of charged Janus colloids immersed in screened media, with screening lengths comparable
to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel and crystalline
morphologies, depending on temperature and screening length. The crystalline phase only appears
for symmetric Janus particles. For very short screening lengths, the system undergoes a direct
transition from a vapor to a crystal upon cooling; while, for longer screening lengths, a vapor-
liquid-crystal transition is observed. The proposed formulation can be extended to model force
fields that are time- or orientation-dependent, such as those in systems of polymer-grafted particles

and magnetic colloids.
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I. INTRODUCTION

Efforts to synthesize and assemble anisotropic particles such as Janus particles [1-5],
patchy colloids [6, 7], polyhedral particles [8] and functionalized polyhedral nanoparticles
[9] have led to materials with diverse structures and functionalities. Systems described by
and modeled on anisotropic interactions also include proteins [10-13] and polyhedral colloids
[14-17]. The anisotropy of the interaction field is akin to that of the electron orbitals of
individual atoms or molecules, and could enhance control of structural properties such as
that of the crystal lattices formed [9, 13].

Simulations can guide experimental attempts to self-assemble systems with anisotropic
interactions. While state of the art simulations are often effective at both the micro (particle-
based description) and macro (continuum) scales, they frequently fail at the mesoscopic scale,
where macroscopic equations become invalid and the number of particles is too large for
efficient computation. Coarse-graining circumvents this problem by reducing the number of
degrees of freedom. For instance, the interactions of spherical colloids are generally rewritten
as a function of the distance between the spheres only, discarding fine details such as surface
roughness and the explicit nature of grafted chemical components. For non-spherical colloids
of arbitrary nature, one must take into account the relative orientation of the colloids. The
single degree of freedom for two spherically symmetric colloids then becomes six degrees of
freedom.

All-atom molecular force fields encounter similar problems for rigid molecules, where fast
calculation of interaction potentials is sought [18]. An expansion into spherical harmonics

for potentials of the form r=¢

was explored, which yields products of spherical harmonics
and hypergeometric functions. Sack attacked the problem of arbitrary interactions between
sites [19], but could not obtain any explicit form. Ruedenberg used properties of Fourier
transforms to reformulate the problem as an integral representation [20]; however, in nu-
merical implementations, calculating hypergeometric functions is prohibitively expensive. A
few other approaches that do not involve spherical harmonics have been attempted, such as
expressing excluded-volume interactions in liquid crystals using the Gay-Berne potential and
subsequent refinements [21, 22|, and using potential decomposition for lock-and-key systems

[23]. However, a general description of arbitrary potentials remains elusive. The common

solution is to use brute force calculation, where the surface is tessellated with particles and



some not necessarily physical interaction is used between surface particles.

Here, we revisit this problem for the general case of arbitrary bodies. We expand inter-
actions into orbital-like interactions which are efficiently evaluated by Fourier transforms in
the spirit of Ruedenberg [20]. Previous approaches aimed at obtaining analytical formula-
tions require solving an integral and evaluating computationally expensive functions. We
avoid explicitly computing these integrals by relying on tabulations of Fourier integrals and
their full derivatives. Our approach is equivalent to ab initio Molecular Dynamics (AIMD)
where the amplitudes are replaced by densities [24]. The numerical implementation avoids
the Pulay forces which plague traditional AIMD. This orbital expansion is truncated at
some appropriate level, which effectively smooths the particle description and produces ex-
pressions closely related to classical multipole expansions. We implement this potential in
the LAMMPS software package [25] and provide a simple implementation for the uniaxial
case (See Supplemental Material at [URL will be inserted by publisher]| for implementation
details).

The method requires two conditions: 1) that the orbital expansion of a particle is time
invariant (that is, the particle shape does not change over time), which is a reasonable
approximation for colloids grafted with a very dense brush and for rigid bodies with charges
on the surface, and 2) that the interaction potential possesses a Fourier transform. A large
set of potentials satisfy this second requirement, including Coulomb, Yukawa and Gaussian
potentials; whereas the well-known Lennard-Jones potential does not, due to its rapidly
divergent excluded volume term at » = 0. Excluded volume interactions can be resolved,
for example, by using a Gaussian force, a technique used in mean field theories [26-28].

We first introduce the method and a numerical implementation (Section II). We derive
the field representation for a system of colloids interacting through a Gaussian surface charge
distribution and for a system of charged Janus particles in a screened environment. For the
Gaussian charged particles, for which the multipole expansion terminates, we show that this
method is exact and thus has improved accuracy compared with a naive tessellation of the
surface (Section IIT A). For the charged Janus particles (Section I1I B), which was previously
examined using a Kern-Frenkel potential valid only at very short screening lengths [29], we
extend the calculation to higher screening lengths, which is a regime typically difficult to

access numerically. The limitations of the method are also discussed (Section III C).



II. FIELD REPRESENTATION OF PAIRWISE POTENTIALS

A. Motivating example

Consider a system of charged particles interacting through a screened Yukawa poten-
tial. We assume that particle i is located at 7 with orientation R;. Let p(7, R) be the
distribution of interacting particles and x(r) their interaction potential. x(r) must pos-
sess a Fourier transform; otherwise, it has no restriction. In the case of charged parti-

cles interacting through a Yukawa potential, p;(¥ — 7;, R;) is the charge distribution and

Xes(r) = r~Lexp(—xr). The interaction is given by the integral:

UZS(T_‘;’R“’I_‘}’R]) = /‘/pl(Fa RZ)dF/ X€8(|(F_F/ _f;JDpJ(F/’R])dF/’ (1>

where 7;; = 7; — 7; and the coordinates are centered around the two colloids ¢ and j. The

second integral in Eq. 1 is a convolution of p; with x.s, which we introduce as the auxiliary

field ®,,,

By, (7 1) = [ xR = 057 By a0 )

where * denotes the convolution operation. The electrostatic potential energy between the
colloids is then rewritten as the overlap integral of the auxiliary field with the density field

as:

Ug 7 R, ) = [ 7= 7 R (7 = 55, ) Q

%
where we expanded the auxiliary field around the center of the colloid j for symmetry
considerations that will become clear later. While the density p(7, R) and interaction x(r)
fields are scalar, generalization to tensor fields is straightforward, as shown for the vector

case in Appendix C.

B. Field equations

We now derive the general formalism for forces based on overlaps of fields. We consider

two arbitrary fields ®,(7— 177, R;) located near colloid ¢ and ®;(#—7;, R;) located near colloid

j as we did in the previous section. In the case of electrostatic interactions, ®; (7 — 7}, }?iz) =
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pi(7 — 77, Rz) and (7" — 77, 1:2]) =, (- Fj,l%j) = (p;(r — Fj,l%j) * Xes(T)). The overlap

integral in which we are interested is given by

Uy (7, Ri 7, Ry) = / B,(7 — 74, ) D, (7 — 75, ) (4)
1%
We first rewrite the left-hand side of Eq. 4. Without making any assumptions on the

particular shape of each particle or field, we have six degrees of freedom, three for the relative
position of the second particle with respect to the first one, and three for the rotation of
the second particle. To obtain completely symmetric forms suitable for molecular dynamics
(MD), we treat the potential energy as having nine degrees of freedom, three for the center
to center vector r, three for the rotation of the first particle and three for the rotation of
the second particle.

Without loss of generality, we can assume that the particle 7 is located at the origin. We
note that Eq. 4 is very similar to the convolution integral treated by Fourier transforms
[30]. Denoting the difference in colloid position by 7;; = 7; — 7; and geometrical inversion of
f(7) by f(r) such that ®;(— ") = @;(r” — '), we cast equation 4 as the convolution of ®;

and the inversion of ®;:

~

Ui B ) = | @075 = 17 = (79 + 2409 |os, 6

Within the spherical harmonics transform framework [30], this operation is straightfor-
ward in reciprocal space, where 77— g, ®(r, 6, ¢) — (i)(p, O, @) is the Fourier transform op-
eration, and U;(7, R;, R,) = ®;(7, R;)®;(7, R;). We introduce the Wigner functions Dﬁ,w(f%)
to treat the rotation of spherical harmonics, resulting in the full expressions for ®, and g

given by:

Oi(p) = Y Dl (R (0w, b)) ™ (p), (6)
Liymg, i

b7 = S D (R (15 B 60) L () (7)
Ljsmgpg

The usual spherical harmonics Y;™(6, ¢) are defined by

" (l—m) ,
Y;"(0,9) = mpz (cos 0) exp(ima),



where P™(x) is the associated Legendre polynomial of degree ! and order m, such that
S Y(0,0)Y™ (0, ¢)dQ = 88, m. A useful representation of the Wigner D!, , function is

based on quaternion representation of rotations as developed in [31]:

e T - (1) 17, ) (185

p

where R, = ¢, +iq, and R, = g, +1q, and ¢ = (qu, ) is a normalized quaternion describing
the orientation. The quantities Fj™ are the [ order spherical Fourier-Bessel transforms of

®(7) given by:
A = 4= [ V@ ) )

where j;(z) is the [** order spherical Bessel function of the first kind. Multiplying Eqs. (6)
and (7) and inverting back the transform yields the potential:

~

Uij(7ij, Ri, Ry) = Z 8(—i)“Y," " (035, ¢3;) DL, (i) DY (Rj)foZ;Zj(nj)CZfégf}"f,

My
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(10)
where
- glitls oo mi )
Fra, (ri) = (W/o " (p)G7 (p)ie(er)p dp) : (11)
mam; (2, + 1)(21; + 1)
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and (l;, m;,l;,m;, L, M) is a Clebsh-Gordan coefficient. This definition of CZL}:Z] is equiv-
alent to the Slater coefficients of [30]. In the general case, there is no known analytical

representation of F(r), and it must be tabulated.

C. Numerical implementation

The coefficients f?;lzj (r;;) are precomputed and compiled into tables. This can be done
using known software packages (see provided files) or by fast Fourier-based methods [32].
For Monte Carlo simulations, potential energy given by Eq. 10 is sufficient for sampling. In
order to time evolve the system in MD simulations, we must compute forces and torques.

In Eq. 10, the position and rotation components are fully decoupled. Forces are given by
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spatial derivatives, while torques are given by angular derivatives of the Wigner functions.

We tabulate the derivative of F using:

OFpu, " (o (Lilrp) 2
s ([ rmeer e (M < i) ) L a3

J
T=Tjj

Additional forces arise from the derivatives of the spherical harmonics. Their projection
along direction k is calculated by using partial derivatives,
oYM (6,6) 0 OV (9,6) 96

b 20 ok 0 ok

Partial derivatives of the spherical harmonics are obtained by either multipling by iM

(14)

or taking the derivative of the associated Legendre polynomial. In practice, since spherical
harmonics are polynomials of cos(f), we simply calculate
(I —m)! OP™(cosf) O cosf

! . 99
(I 4+m)! exp(iM¢) dcosf Ok ok

The force can then be computed by addition of all individual contributions. For instance,

Fy ~ +iMYM (0, §) (15)

the £ component is given by

OF . x oU —2xz 0OU —y
F, = bl & < . 16
or 7’+80059 r3 +8¢x2+y2 (16)

In order to compute torques, we must take derivatives with respect to infinitesimal ro-

tations along some set of axes. The composition of two rotations, R, and fig, with corre-
sponding quaternions ¢; and ¢s, is given by the quaternion product ¢, - ¢;. This relation is
used to obtain the variation of the quaternion of a particle with respect to a rotation axis.
For instance, a rotation along the z axis of the referential frame, u,, will cause a variation

in quaternion given by

8(]71
ou, 2

The result is multiplied by the partial derivatives of D%M(Rj) in order to obtain the

(0717070) ) (Qw7Qm7Qy7QZ)- (17)

full derivative. For instance, the derivative of D%j,uj(f%j) against a rotation along the axis

Z is given by

[ l l l [ l
oD, > 0D O __ My | 0Dy Wiy | hy o
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The Wigner coefficients D,l%j,uj(f%j) are calculated directly from quaternions (see Eq. 8),
providing straightforward implementations in MD packages. Since these coefficients and
their derivatives are only dependent on individual particle orientations, they are updated
once per timestep and not for each pair interaction. In principle, one can invert the multi-
plication order to obtain the torques in the body frame. This removes the p; index from the
summation in Eq. 10 but requires calculating the Wigner functions once per pair interac-
tion, instead of once per particle. It is not done in the supplied code as it would complicate

the LAMMPS implementation without any obvious benefit in computational performance.

D. Gaussian patchy particles

To test the method’s accuracy, we consider a case where the series in Eq. 10 terminates
and does not require truncation, resulting in a spherical harmonic representation that is
exact. In particular, we examine colloids with surfaces interacting through a Gaussian
potential x¢(r) = aexp(—br?), where a and b are parameters of the potential. In order for
the series to terminate, we use a surface density pg(7) = 0(|7] — 1)(1 4 cosf), that is, a
distribution located on the surface of a particle with radius R = 1. The interaction energy

between two colloids is written as

Ut = a/Pi(Si)Pj(Sj)eXP(—bTi,Sj)dSide, (19)

where S; is the surface of particle ¢ and pg, is a continuous function on the surface of particle
i.

We compare the cases where this integral is evaluated using a numerical quadrature with
the case where the exact field method is used. Using a numerical quadrature, the integrand

is evaluated at N points on each surface, yielding

U = a(4m PN S0 Y pl)p(i) exp(—bI( — 7)) + OND). (20)

Eq. 20 can be directly evaluated in standard MD packages by tessellating the surface of
a sphere and assigning charges to each point proportional to ¢ = (1 4 cos@)/N, where N is
the number of points per sphere, as sketched by Fig 1. The points are chosen according to a

Fibonacci mapping in order to obtain an approximately equal area for each point [33]. The
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FIG. 1. Representation of the surface function p(S) for two interacting particles of arbitrary

orientations, where blue indicates p = 0 and red indicates p = 1.

interaction between points of the tessellation is taken as Ufjess = ag;q; exp(—br?).

For the field representation, the integral in Eq. 4 can be written using the product of two
equal fields due to special properties of Gaussian functions (see Appendix B). These two
fields are given by ®;(7) = ®¢ * p;, where &g = a'/?23/2773/4p3/4 exp(—2br?), obtained by
inverting the square root of the Fourier transform of xg(r). The overall field for this case is

then given by

8a'/2m™/4 exp(—ﬁ s

7)== T TP (VR0 g+ [FY00.000) ) (21

3

E. Screened Janus particles

Using this method, we can now extend our recent study of charged Janus particles im-
mersed in an ionic solution [29] to the cases where the screening length is on the order of the
particle radius. Janus particles possess two sides with equal, but opposite charge density.
The cap angle, 6,,, dictates the fraction of the surface covered by each charge. This system
was previously simulated using a Kern-Frenkel potential, which is valid for very small Debye
lengths, that is, A < R, where A is the Debye length and R is the particle radius.

In electrostatically screened environments, the coupling is non-trivial. For instance,
dipole-dipole and charge-charge interactions generate terms with the same distance depen-
dence [34]. These effects are included in our method.

To calculate interactions between colloids when A ~ R, we use Eq. 3. The charge density



is given by the series:

i(7) = —87 2 (cos 0o PR)YL(6,6) + Z VT << 0 ¢>> -

(22)
In reciprocal space, the potential x.s(7) is convolved with the charge density by a multipli-
cation using Yes(p) = 873/2(A~2 4 p?)~!. The series is truncated at l,,,4, = 3 in order to be
evaluated numerically and a purely repulsive truncated Lennard-Jones potential (i.e. the
Weeks-Chandler-Anderson potential) is added to represent the solid cores of the colloids.
One quickly notices the similarity between Eq. 22 and the usual multipole expansion for
charges. A proof of equivalence for A — oo is found in Appendix A. Using tabulated integrals
over traditional multipoles presents a major advantage since the integral is well-defined in

the overlapping regime when |75;| < R; + R;.

ITII. RESULTS AND DISCUSSION
A. Accuracy and computational performance

We first characterize the computational efficiency and accuracy of the field respresen-
tation for the Gaussian charged particles. We implement the field representation and the
Gaussian charge potential as new force fields in LAMMPS. The benchmark runs are per-
formed with equilibrated systems at similar thermodynamic state points, i.e., number of
particles, temperature and density. LAMMPS is built with the stable 31Mar17 release.

Both the coarse-grained (Gaussian charge) and the spherical harmonic (field) represen-
tations achieve strong scaling performance for our numerical implementations, as seen in
Figure 2. The spherical harmonic representation is generally faster than the surface bead
representation by a factor of 2.0-3.5, depending on the resolution of the latter. Finer resolu-
tion of the surface bead representation increases the computational overhead as N2, where
N is the number of beads discretizing the surface. Furthermore, the spherical harmonic
representation exhibits a parallel efficiency as high as 55% at 125 particles per MPI process.
The particularly high parallel efficiency at low particle counts per MPI process, compared
to other conventional pairwise potentials (such as Lennard-Jones and Yukawa potentials),
implies that the field representation is computationally intensive and thus should further

benefit from finer-grained parallelisms including GPU acceleration, as observed with Gay-
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FIG. 2. Strong scaling performance on the Titan XK7 supercomputer. The number of particles in

each run is 32000. There are 16 MPI processes launched on each node.

Berne potentials [35].

For Gaussian patchy particles, the spherical harmonic representation is exact. Fig. 3
compares the average energies of the coarse-grain and field calculations as a function of
the number of quadrature points N for a particle with radius R = 1 and volume fraction
v =~ 0.077, using four sets of the potential parameters a,b. The slopes are approximately
—2, indicating that the error of the coarse-grain simulation scales as 1/N?, consistent with
Eq. 20.

Since the calculation speed of the coarse-grained simulations also scales as N2, accuracy
and computational efficiency must be balanced. For this specific system, very few points on
the surface are required for accurate simulations. An accuracy of 1% of the mean energy
of the system requires approximately 20 beads per surface. Even for this level of precision,
however, the spherical harmonic potential method is faster than the coarse-grained repre-
sentation. The calculation speeds become comparable only when N ~ 6 — 8. Finally, for
the a = 0.2,b = 2, N = 37 case, coarse-grained models achieve a calculation speed around
33 timesteps per second, compared to 652 timesteps per second for the spherical harmonic

representation.
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FIG. 3. Relative error of the average energy of the system as a function of the number of tessellation
points of the coarse-grained representation. Curves are plotted for a = (0.15,0.20) and b = (1, 2).
The system is in a liquid state with these parameters. An additional curve proportional to 1/N?

is drawn for comparison.

B. Janus particles morphologies

To characterize the phase behavior of Janus particles, we simulated particles with two
opening angles (6,, = 7/2 and 6,, = 1.40) previously calculated using a Kern-Frenkel po-
tential [29]. The simulations were run with 4000 colloids of radius R = 1 and a constant
volume fraction of v = 0.10. The Debye length is varied over the range 0.16 < A < 0.32.
The reduced temperature T* = wekgT R/2q¢* is varied independently within 1.0 < T* < 2.0,
where € is the permittivity and ¢ is the charge on one of the hemispheres of the balanced
0,, = 7/2 Janus particle. The system is equilibrated over 3 x 10° timesteps.

We observe four morphologies shown in Fig. 4. At very high temperatures, the system is
in a vapor phase, labeled V. The system also exhibits a liquid state, labeled L, which seems
to correspond to what we previously called a worm-like glass state in [29]. This liquid phase
forms either very small droplets near the V' / L boundary or elongated structures. This
behavior is similar to that of hard dipole dumbbell systems [36], where it was observed that,
while dumbbells with explicit charge or point dipoles exhibit a vapor-liquid transition, point

dipole spheres do not [37]. Our simulations suggest that explicit charge representations of
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spheres also exhibit a vapor-liquid transition.

One should be careful making comparisons between Kern-Frenkel and the present orbital
potentials. While they are both approximating the Yukawa potential, it is not the same
approximation. Kern-Frenkel assumes that the charge density is locally constant (in a region
which size depends on ). The present orbital representation approximates it using a series.
At the opening angle, Kern-Frenkel approximates the mean charge density as either +1 or
—1 while the orbital gives a sine polynomial dependance. This has strong consequences for
crystalline phases, which are very sensitive to the type of interaction used. For instance,
crystal formed by colloids interacting through repulsive inverse power laws (1/7") will exhibit
FCC-BCC transition around an exponent of n ~ 6 [38]. Due to these differences, we do
not find that the crystal lattice match the previous calculations based on Kern-Frenkel.
Nevertheless, the melting temperature of the crystal phase for 6,, = 7/2,A = 0.16R, is
around 7™ =~ 0.8, which is similar to the critical temperature found in the work using the
Kern-Frenkel approximation [29], where T* = 0.75.

Interestingly, in the 6, = 7/2 case, the liquid morphology only emerges for sufficiently
large Debye lengths (A 2 0.20) and sufficiently high temperatures. This phase was absent
in our Kern-Frenkel simulations conducted at A = 0.16. For very small Debye lengths or
very low temperatures, it is replaced by a crystalline morphology. In all observed cases,
the system first condenses to the L phase and then crystallizes. Consequently, multiple
crystalline domains form on the elongated L structures, instead of single crystals. At large
Debye lengths and low temperatures, the systems starts supporting thinner lines of colloids
and the system forms a branched structure, eventually coalescing into a gel-like structure.
Whether such a phase is thermodynamically stable or the result of kinetic traps is unknown.
However, when 6, = 1.40, the system is liquid near the L / G boundary, which suggests a
stable phase. We have performed additional simulations runs at this state point to confirm
this hypothesis. More information on the liquid-gel morphology transition can be found in

Appendix E.

C. Limitations of the method

As mentioned earlier, the current method has two limitations. First, the interaction po-

tentials y must possess a Fourier transform. A common source of soft potentials is excluded
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() (d)

FIG. 4. Snapshots of the simulations in different morphologies observed for symmetric (6,, = 7/2)
Janus particles a) Vapor V state at 7% = 1.81, A = 0.24, b) Liquid L state at 7" = 1.50, A = 0.24,
c¢) Crystalline C' state at T* = 1.20, A = 0.24, d) Gel state at 7" = 1.0, A = 0.32. Arrows indicate

north pole of the Janus particles.
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FIG. 5. Regions of observed morphologies in simulations of charged Janus colloids for opening
angles of a) 6, = 1.40 and b) 6,, = 7/2. The different morphologies indicate the main morphology
observed. The phase is deemed as vapor by a clustering analysis if more than half the colloids
are in clusters of size less than 50. Other morphologies are determined by visual inspection of
the trajectories. A morphology is deemed crystalline if it forms at least one crystalline domain.
Morphologies are determined for five values of A and six (0, = 1.40) or nine (#,, = 7/2) values of
temperature, totaling 30 simulated state points for 6, = 1.40 and 45 for #,, = 7/2. Boundaries
are obtained by drawing splines in between grid points of different morphologies and should be

treated as a guide for the eyes. Coexistence of morphologies is often found along the boundaries.

volumes, which diverge when the volumes overlap. While this is clear from the mathematical
equations, the underlying physical reason lies with the fact that series truncation produces
a spatial averaging of the densities. This averaging is inconsistent with systems that re-
spond to infinite frequencies. To overcome this limitation, one may be able to represent
excluded volumes by expanding Eq. 3 into a summation of integrals of powers of p(7, f%) or
by regularizing the potential function (see Appendix D for further details and derivations).

The second limitation is that density fields must be static in time, which makes the
description unsuitable for system with strong deformations. Typical cases include colloids

grafted with a low amount of flexible polymers. In such systems, when colloids come close

15



to each other, the polymer coating may deform. In systems of DNA coated polyhedra, this
has been shown to strongly affect broken symmetry regimes, driving transitions between
different crystal lattices [9]. These deformations have been the starting point of the orbital
topological model, which for polymer coated spheres predicts different equilibrium structures
than a regular non-deformable potential [39]. In order to model such a system with our
description, one would have to use a time-dependent density field and advance the field over
time. We are currently working on such a model, which will be the subject of a future

publication.

IV. CONCLUSION

We have developed a field representation for describing the anisotropic interactions be-
tween colloids at mesoscopic scales based on an orbital-like decomposition. Using the field
representation, several use cases are derived, including patchy particles and charged Janus
particles. With this approach, we demonstrate that charge-neutral Janus particles show
qualitative agreement with studies of dipolar hard dumbbell systems. Interestingly, the
vapor-liquid transition is supplanted by the liquid-crystal transition for very short screening
lengths, yielding similar results from the Kern-Frenkel potentials. The liquid phase has pre-
viously been shown to be absent for point dipole spheres [37], which raises the question of
whether it arises from inclusion of higher order hexapole terms or disapears at large Debye
lengths. Addition of isotropic dispersion forces to systems of point dipole spheres has been
shown to cause the liquid phase to appear, provided the dispersion force is sufficiently strong
[40]. In our system, the additional hexapole force is entirely determined by the shape of the
charges at the surface of the Janus particle. These particles are usually thought of as dipoles
and whether the phase diagram can actually be controlled by the surface charge distribution
remains an interesting question.

This technique enables simulations in solutions with screening lengths comparable to the
size of the colloids without resorting to expensive and often inaccessible explicit ions simula-
tions. The modest requirements for the type of potentials that can be used, make this field
coarse-graining approach applicable to many types of interactions. With this flexibility, the
technique could potentially be employed to calculate interactions between globular proteins

of various shapes and surface compositions stemming from a combination of electrostatics
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and hydrophobicity. Indeed, our approach has the inherent capability of including position-
orientation coupling of particles. It can in principle describe any anisotropic potential, as
long as the potential has proper behavior in reciprocal space, and, in the present form, as
long as the particles shape and surface composition remain constant as the particles interact.

In order to relax the assumptions made in the present study, namely that the density
representing particle shapes is constant and that the surface composition does not change
as the particles interact, the field coarse-graining approach has to be extended to directional
and time-dependent force fields. While the complexity of the derived field depends on the
original interactions and increases with the target accuracy, the performance gain due to
finer-grained parallelization can be significant and will be the focus of future studies. A major
refinement is to include dynamic densities, which is necessary to efficiently simulate very
soft colloids such as polymer-coated particles where the shape of the particle changes when
two colloids interact [39]. This refinement is necessary also to make comparison between our
approach and results of conventional approaches that include grafted chains such as DNA

to nanoparticles explicitly [9].
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Appendix A: Equivalence between multipole expansions

Eq. 22 expands the charge into spherical harmonics. Arbitrary rotations of this multipole

are treated by Wigner D functions :

- . a0 P'(cosb,,)sinb,, .
Gi(p) = -8/ R? (Cosé’mjo(pRi)YOO(@, ¢)+ Y DM(R)VI+2 L 1(z+)1) jl(pR,»))flo(e,qs)) :
I=1m

(A1)

When convolved with other charge distributions and the interaction potential, we get

Uy =Y 8" yM@,0) Y Dr(R)D(R)C 0 CLy 87 e, Tuy,,  (A2)
LM

li;mi,lj,m;

where 7 is an integral defined by

2

h . p .
Ty, = / it 0B = . (A3)
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To the best of our knowledge, this integral only has a known solution for » > R; 4+ R; and
A = oo. Physically, this is two finite size multipoles without any overlap between their charge
distributions for unscreened electrostatic interactions. In this specific case, the integral can

be written as [41]

. RS T SO 1+li+lj+L
Y Rl p—1-bi ZJF< : >
3 L—li—l;
2 D(+3/2T (4 +3/2)T (1+2572)
XF4<li+lj—L 1+L+0;+L , 3 3 R} R}
2

L0, =

sbasby

li _7l'
2 ’ 2 ’ +2 it

where Fj is the Appell hypergeometric function of the fourth kind. Due to I'(1 + (L —
li —1;)/2) in the denominator and the Clebsch-Gordan coefficient of A2, it is only evaluated
when L = [; + ;.

To see this, consider that max;, = [; +1;, for which the Clebsch-Gordan coefficient is non-
zero and the integral coeflicient is non-zero. For L = [;+1; — (2n+1), n € N, the symmetries
are incompatible and the Clebsch-Gordan coefficient is zero. For L =1, +1; — (2n), n € N,
the Gamma function evaluates to a negative integer, which is a pole of the function.

Since the first coefficient of the function is zero, it is trivial Fy(0, 8;v,7';z,y) = 1, yielding
the usual powers of r for multipole expensions. For instance the L = [; = [; = 0 contribution,

which is the monopole-monopole term, yields the usual

pL=li=li=0 _ Qin’ (A5)

] r
where Q; = —4mR? cos 6,,. Note that we defined the energy between charges to be g;q;/r

in Xes(r), so this result is consistent with the unit system used 47 /e = 1.

Appendix B: Field equations from stretched exponential functions

In equation 3, we have defined the auxiliary field as an convolution between the pairwise
interaction x(r) and the density field p;(7). In, equation 5, we relate the total energy to the
convolution of the auxiliary field with the density field p;(7), which is written as

A

Usj(Fig, Ri, By) = pi(7, Ba) % x(r) * p; (7, R;). (B1)
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This triple convolution is then related to products in reciprocal space,

Ui (9, Bss B5) = pul 7. R)X()gs (5. 1) = (5:5, R X)) (X(0) 235 By)) - (B2)

If there exists a well-defined inverse transform of ¥'/2(p) and assuming that p;(7) = p; (),
then we can define an new auxiliary field such that ., (7, R;) = pi(, R;)X(p)"/?. The energy

is then defined as a self-convolution

Uiy = (I)pix(ﬁa Rl) * (I)pix(_;W ;) (B3)

The well-defineness of inverting ¥(p)'/? is quite limiting as we have only found that

stretched exponentials y(r) = exp(—r?) with 1/2 < ¢ < 2 fit this criteria.

Appendix C: Vector fields

In Section II we describe directional interactions under the assumption that energy can
be expressed as an overlap of scalar fields. However, the approach is generalizable to tensor
fields. For simplicity, let us look at an interaction that stems from the inner product of the

vector field of two distinct particles ®; and ®;,

This type of interaction can be used to describe electrostatic interactions through electric

fields,

1

1 S o
ng_/VqE\?dvz5/V6(|Ei|2+ij|2+2Ei~Ej) av, (C2)

2
where the first two terms are constants and the last term is in the same form as equation

C1. In order to evaluate C1, we separate the field into multiple components such that

P, = D% + DYG + D72, (C3)

in the reference frame of the particle. The additional difficulty stems from the fact that
once the particle is rotated, ®* may now point in the z direction. This is resolved by

considering the overlap of 9 fields, by taking rotation of unit vectors
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Uj=Y_ /V QFON Rike - RikaV, (C4)

ke k!
where k, k' = x,y, z and R; is the rotation operator of the i*" particle. Unlike the expansion
done for interacting charges in equation 22, direct use of an electric field permits the use of
charge distributions interacting in non isotropic media, that is, € only has the restriction that
it needs to be constant throughout the volume. This could be used for instance, to calculate

charge interactions of colloids suspended in liquid crystal media, where € is a tensor.

Appendix D: Excluded volumes and Van der Waals gas

In coarse-grained models, one generally uses Lennard-Jones forces to model interactions.
This includes a short-ranged repulsive part which shows a r~'2 dependance. This would
suggest use of x(r) ~ (¢/r)'? — (o/r)®. However, the Fourier transform of such a function
does not exists. One could regularize it by changing r to r 4 d, or adding other short ranged
potentials to remove the divergence, but this hides a major problem in that we truncate the
Fourier series or equivalently use spatial filtering. While Eq. 3 is strictly physical and exact,

after truncation it is akin to

U = | )@, ) (1)
where () is some kind of spatial average consistant with the Fourier series truncation. If
one plots the pair distribution function for a Lennard-Jones system, it becomes trivial to
see that no overlap is present for small values of r (or large x(r)). In order to evaluate the
excluded volumes, we will need to use some spatial average of the Lennard-Jones interactions.
As an approximation, one can still use regularization, but it has to be done carefully as it
may impact the system behavior.
Instead of using a soft repulsive term, one can start with the Van der Walls equation of

state, which writes the average enthalpy per particle of a gas of hard spheres of volume b as

1 3
H N=kzgT | ——+—-]. D2
vaw/ kp (1—pb+2) (D2)

Here we assume that we can treat all excluded volume interactions as Van der Waals gas

and write the overall energy as the integral of the spatially filtered enthalpy. We also assume
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that local density can be written as pairwise densities, such that p = p; + p; in the local

enthalpy. Disregarding the constant 3/2 term, this leads to a local enthalpy defined by

1
1— (pi + pj)b’

In the present formalism, we cannot treat arbitrary potential in p. However, we can

Hgi = kT (D3)

expand in power series,

HS ~ kT (14 b(p; + p;) + b (pi + p;)° + 0 (pi + pj)* + ...) . (D4)

Given that powers of strictly p; and p; are not part of pairwise potentials of colloid, we

do not have to deal with them. We are then left with the following interaction

~

BHyaw 2252/ pi(F—Fi,Ri)Pj(F_Fjv]%j)"‘?’bS/ P?(F—Fi,Ri)ﬂj(F_FjaRj)jLPi(F_Fi»Ri)ﬂ?(F_Fij)"‘“-

\4 |4

(D5)
One can then produce fields for p(7, f%), (7, R), ..., for all colloids and trucate the series

at some power of p.

Appendix E: Supplementary data for the liquid-gel transition

The liquid-gel morphology transition of asymmetric charged Janus particles is in appear-
ance a continuous transition where the branches of the gel are thick near the liquid phase.
This can be seen on Fig. 6. The transition is characterized by gradual changes of the pair

correlation function, as shown on Fig.7.
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() (d)

FIG. 6. Snapshots of the simulations of charged Janus particles (6,, = 1.40) for different temper-
atures. a) T'=1.62, b) T'=1.42, ¢) T = 1.20, d) T'= 1.0. Arrows indicate the north pole of the

Janus particles
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FIG. 7. Pair correlation functions for different temperatures for the asymmetric (6,, = 1.40) Janus

particles for A = 0.32.
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