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It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components
to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a
second-order accuracy in strain-rate. This is one of the appealing features of the lattice Boltzmann
method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However,
no known LB model can provide the same quality for vorticity and pressure gradients. In this
paper, we design a multiple-relaxation time (MRT) LB model on a three-dimensional twenty-seven-
discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate
all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remain-
ing degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic
computation of all the velocity and pressure gradients from the non-equilibrium moments. This
new way of vorticity calculation naturally ensures a second-order accuracy, which is also proven
through an asymptotic analysis. We thus show, for the first time, with enough degrees of freedom
and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The
resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow,
a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that
the mesoscopic vorticity computation can be realized even with single relaxation parameter.

PACS numbers: 47.11.Qr, 47.10.ad
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I. INTRODUCTION

As a viable numerical method for computational fluid dynamics (CFD), the lattice Boltzmann method (LBM)
is gaining its popularity because of its easiness in programming, flexibility in treating solid boundary and fluid-
fluid interfaces, and excellent scalability in parallel computation [1, 2]. Well known for its second-order accuracy in
space and time, the standard LBM is usually compared with the second-order finite-difference (FD) or finite-volume
(FV) schemes based on solving the Navier-Stokes equations. In many occasions, LBM is observed to have better
performance than these conventional FD or FV schemes in terms of both accuracy and robustness. For example,
Dellar [3] showed that LBM coupled with large bulk viscosity was free of spurious vortices that had been observed in
the FD schemes for two-dimensional double-shear flow [4]. Gao et al. [5] found that the dissipation rate in a decaying
homogeneous isotropic turbulence obtained with LBM was much more accurate than that from the second-order FD
scheme [6], when compared with the same benchmark from the pseudo-spectral (PS) method. The high fidelity of
LBM can be attributed to at least three origins. First, the advection term in the Boltzmann equation is treated
exactly in LBM by a Lagrangian streaming process, implying that the advection term in the resulting Navier-Stokes
(N-S) equations according to the Chapman-Enskog analysis is of low numerical dissipation. On the other hand, in
conventional second-order FD or FV, the intrinsic truncation errors of spatial discretization always introduce artificial
dispersion and dissipation to the flow [7]. Second, the collision model in LBM preserves the exact local mass and
momentum conservation, which may or may not be achieved by FD or FV schemes. Third, the strain-rate tensor
in LBM can be mesoscopically obtained from the non-equilibrium distributions. This feature offers the second-order
accuracy in strain-rate calculation in LBM [8–10], whereas, for the second-order FD or FV schemes, the resulting
strain-rate components usually have the first-order accuracy only.

By design, the particle distribution functions in LBM contain both the equilibrium part and the non-equilibrium
part. In most cases, the equilibrium part is related to the conserved moments, namely, density (or pressure) and fluid
hydrodynamic momentum, while the non-equilibrium part is related to the strain-rate components [11]. Together,
they can satisfy the N-S equations. The usual design process does not involve vorticity, and no existing LBM can
allow vorticity to be computed in terms of the local non-equilibrium distributions. Therefore, the vorticity calculation
in LBM generally relies on FD approximations of velocity gradients [12], which degrades the order of accuracy for
vorticity to the first order. As the most intuitive (not necessarily accurate) representation of vortical structures,
accurate vorticity calculation is of great importance in many fluid mechanics problems, especially in turbulent flows.
It must be noted that vorticity is a local flow property whereas vortical structures represents a coherent distribution of
vorticity over a finite region in space [13]. Better ways of identifying vortical structures may require a more complete
knowledge of velocity gradient tensor [14–16]. Clearly, a direct, mesoscopic computation of vorticity from distribution
functions in LBM is desired for several reasons. First, mesoscopic computation of hydrodynamic quantities in LBM
only relies on the local information. In large-scale computations with multiple processors, such local computation
needs no data communications between processors and is free of any adverse effect associated with the boundary
geometric complexity. Second and more importantly, since the LBM has the second-order accuracy in its distribution
functions, the vorticity obtained directly and locally from the distribution functions, if possible, is expected to share
the same order of accuracy.

In the past, this desire is usually unfulfilled due to the widely accepted facts that the lattice grids and the associated
equilibrium distribution functions, based on which LBM is developed, are designed to maximize the isotropy at all
orders [17]. Under this consideration, the resulting higher-order moments of the distribution did not provide direct
links to the local flow vorticity which represents the anti-symmetric property of the local velocity gradient tensor. It
is important to realize that the hydrodynamic constraints required by the N-S equations represent only a subset of
the moment equations [18, 19], namely, the number of the degrees of freedom in the distribution function in a LBM
model is usually much larger than the number of hydrodynamic constraints.

The question we ask in this paper is whether those degrees of freedom not used in the N-S equations can be utilized
to allow mesoscopic vorticity computation. We shall explore the possibility of re-designing LBM for this purpose. A
multiple-relaxation time (MRT) LBM on a three-dimensional twenty-seven-velocity (D3Q27) lattice grid is chosen,
mainly based on two considerations. First, compared with the single-relaxation time (SRT) counterparts, the MRT
LBM usually has a better flexibility in relaxing the different physically-irrelevant moments and in configuring their
equilibrium distributions [17, 20, 21]. Furthermore, a mesoscopic forcing term can introduce additional flexibility [?
]. Second, the D3Q27 lattice possesses adequate degrees of freedom than those base on other popular 3D lattices with
smaller amounts of discrete particle velocities, e.g., D3Q15 and D3Q19. Since the D3Q27 lattice actually contains all
the particle velocities in D3Q15 and D3Q19, we might argue if a certain property is not contained in D3Q27, it is
very unlikely such property can be found in D3Q19 or D3Q15.

The rest of the paper is arranged as follows. In Sec. 2, a detailed bottom-up inverse design based on the Chapman-
Enskog analysis is presented. By the inverse design, we view the isothermal N-S equations as our design goal, and
construct the mesoscopic model details based on the hydrodynamic constraints. This process offers a clear picture
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FIG. 1: Sketch of D3Q27 lattice grid.

on the minimum set of constraints a mesoscopic LBM model must satisfy in order to remain consistent with the
hydrodynamic equations. At the same time, it will reveal the maximum unconstrained degrees of freedom that could
potentially be used to configure the mesoscopic vorticity calculation. A systematic discussion of how these remaining
degrees of freedom can be feasibly used to fulfill the mesoscopic vorticity calculation is offered in Sec. 3. An asymptotic
analysis is also provided to prove the second-order accuracy of the mesoscopic vorticity calculation. In Sec. 4, the
proposed model is validated via three benchmark tests, a three-dimensional (3D) Taylor-Green vortex flow, a 3D
lid-driven cavity flow and a 3D uniform stream passing a fixed sphere. Both qualitative and quantitative observations
are made regarding the reliability and accuracy of the proposed mesoscopic vorticity calculation. Main conclusions
of the current study is recapitulated in Sec. 5. At last, a top-down analysis in terms of the equilibrium distribution
is given in the Appendix to offer an alternative explanation of the key idea in our model design. This top-down
explanation is based on the results from the bottom-up derivation.

II. AN INVERSE DESIGN OF D3Q27 MRT MODEL

A. Construction of moments and transform matrix

A D3Q27 lattice grid is shown in Fig. 1. Its twenty-seven discrete particle velocities can be expressed as

eα =



(0, 0, 0)c α = 0,
(±1, 0, 0)c α = 1, 2,
(0,±1, 0)c α = 3, 4,
(0, 0,±1)c α = 5, 6,
(±1,±1, 0)c α = 7− 10,
(±1, 0,±1)c α = 11− 14,
(0,±1,±1)c α = 15− 18,
(±1,±1,±1)c α = 19− 26.

(1)

A set of 27 distributions, written in vector form as f , is associated with these 27 discrete particle velocities. The same
number of independent moments, denoted by m, can be defined through linear transformation of the distribution
functions. When constructing the moments, we always proceed with increasing order, from the zeroth-order, to the
first-order, and then the second-order moments, and so on. All independent moments at a given order are exhausted
first before proceeding to the next order. A Gram-Schmidt procedure [22], i.e.,

Mj = M̃j −
j−1∑
i=0

M̃j ·Mi

Mi ·Mi
Mi, (j ≥ 1), (2)
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is applied to the row vectors M̃j of the raw transform matrix M̃ to ensure orthogonality between any two row vectors
in the finalized transform matrix M. This procedure results in a finalized orthogonal transform matrix M reads

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−2 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 −4 4 0 0 0 0 −1 −1 1 1 −1 −1 1 1 0 0 0 0 2 2 2 2 −2 −2 −2 −2
0 0 0 −4 4 0 0 −1 1 −1 1 0 0 0 0 −1 −1 1 1 2 2 −2 −2 2 2 −2 −2
0 0 0 0 0 −4 4 0 0 0 0 −1 1 −1 1 −1 1 −1 1 2 −2 2 −2 2 −2 2 −2
0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
8 0 0 0 0 0 0 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 2 2 2 2 2 2 2 2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0 0 0 0 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 2 2 −2 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 2 −2 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 −2 2 2 −2 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 4 −4 0 0 0 0 −2 −2 2 2 −2 −2 2 2 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 4 −4 0 0 −2 2 −2 2 0 0 0 0 −2 −2 2 2 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 4 −4 0 0 0 0 −2 2 −2 2 −2 2 −2 2 1 −1 1 −1 1 −1 1 −1
−8 4 4 4 4 4 4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1



, (3)

and 27 independent and orthogonal moments, which are summarized as:

• The zeroth-order moment (1)

m0 =
∑
α

fα

• The first-order moments (3)

m1 =
∑
α

fαeαx, m2 =
∑
α

fαeαy, m3 =
∑
α

fαeαz,

• The second-order moments (6)

m4 =
∑
α

fα
(
‖eα‖2 − 2

)
, m5 =

∑
α

fα
(
3e2
αx − ‖eα‖2

)
, m6 = pzz =

∑
α

fα
(
e2
αy − e2

αz

)
,

m7 =
∑
α

fαeαxeαy, m8 =
∑
α

fαeαyeαz, m9 =
∑
α

fαeαxeαz,

• The third-order moments (7)

m10 =
∑
α

fα
(
3‖eα‖2 − 7

)
eαx, m11 =

∑
α

fα
(
3‖eα‖2 − 7

)
eαy, m12 =

∑
α

fα
(
3‖eα‖2 − 7

)
eαz,

m13 =
∑
α

fα
(
e2
αy − e2

αz

)
eαx, m14 =

∑
α

fα
(
e2
αz − e2

αx

)
eαy, m15 =

∑
α

fα
(
e2
αx − e2

αy

)
eαz, m16 =

∑
α

fαeαxeαyeαz,

• The fourth-order moments (6)

m17 =
∑
α

fα
(
3‖eα‖4 − 11‖eα‖2 + 8

)
, m18 =

∑
α

fα
(
3‖eα‖2 − 5

) (
3e2
αx − ‖eα‖2

)
, m19 =

∑
α

fα
(
3‖eα‖2 − 5

) (
e2
αy − e2

αz

)
,

m20 =
∑
α

fα
(
3‖eα‖2 − 8

)
eαxeαy, m21 =

∑
α

fα
(
3‖eα‖2 − 8

)
eαyeαz, m22 =

∑
α

fα
(
3‖eα‖2 − 8

)
eαxeαz,
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• The fifth-order moments (3)

m23 =
∑
α

fα

(
9

2
‖eα‖4 −

39

2
‖eα‖2 + 19

)
eαx, m24 =

∑
α

fα

(
9

2
‖eα‖4 −

39

2
‖eα‖2 + 19

)
eαy,

m25 =
∑
α

fα

(
9

2
‖eα‖4 −

39

2
‖eα‖2 + 19

)
eαz,

• The sixth order moment (1)

m26 =
∑
α

fα

(
9

2
‖eα‖6 −

45

2
‖eα‖4 + 30‖eα‖2 − 8

)
.

B. Inverse design of a D3Q27 MRT model

The idea of the inverse design is to use the N-S equations as design constraints, to help determine the minimum
number of equilibrium moments. By doing so, we maximize the flexibility of our model that could be potentially
used for the mesoscopic vorticity calculation. In this work, we follow the same inverse design procedure as presented

in [10, 21, 23]. All the equilibrium moments m
(eq)
α are unspecified at the beginning. Some of them will be determined

later via the Chapman-Enskog (C-E) analysis. Unlike the standard multi-scale expansion in C-E analysis that is
performed in terms of the distribution functions, the C-E analysis showing below is done in the moment space. This
alteration does not change the nature of the C-E expansion, but is easier to derive the governing equations for all
moments. Same as in the other MRT LB models, the evolution equation is

f (x + eαδt, t+ δt)− f (x, t) = −M−1S
[
m (x, t)−m(eq) (x, t)

]
. (4)

where m is the moment vector and m(eq) is the corresponding equilibrium-moment vector, x is the spatial location, t is
the time, δt is the time step size, S is a diagonal matrix containing 27 relaxation parameters S = diag(s0, s1, · · · , s26).
Multiplying the transform matrix M to the above equation, then applying the Taylor expansion to the left-hand side
(LHS), the evolution equation becomes(

I∂t + Ĉi∂i

)
m +

δt
2

(
I∂t + Ĉi∂i

)2

m = − S

δt

(
m−m(eq)

)
, (5)

where Ĉi ≡ MCiM
−1, with Ci being the diagonal matrix containing eαi. Subscript i is the spatial directions.

Following the standard C-E procedure, the moments m, the time, and spatial derivatives in Eq. (5) are expanded as

m = m(0) + εm(1) + ε2m(2) + · · · , (6a)

∂t = ε∂t1 + ε2∂t2 + · · · , (6b)

∂i = ε∂1i + · · · , (6c)

where ε is a small number that is proportional to the Knudsen number, the ratio between the molecular mean free
path to the macroscopic characteristic length. Substituting Eq. (6) into Eq. (5) and grouping all terms according to
the order in ε, we obtain

O (1) : m(0) = m(eq), (7a)

O (ε) :
(
I∂t1 + Ĉi∂1i

)
m(0) = − S

δt
m(1), (7b)

O
(
ε2
)

: I∂t2m
(0) +

(
I∂t1 + Ĉi∂1i

)(
I− S

2

)
m(1) = − S

δt
m(2), (7c)
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In particular, the first four equations of Eq. (7b) can be explicitly written as

∂t1m
(0)
0 + ∂1xm

(0)
1 + ∂1ym

(0)
2 + ∂1zm

(0)
3 = −s0

δt
m

(1)
0 , (8a)

∂t1m
(0)
1 + ∂1x

[
2

3
m

(0)
0 +

1

3
m

(0)
4 +

1

3
m

(0)
5

]
+ ∂1ym

(0)
7 + ∂1zm

(0)
9 = −s1

δt
m

(1)
1 , (8b)

∂t1m
(0)
2 + ∂1xm

(0)
7 + ∂1y

[
2

3
m

(0)
0 +

1

3
m

(0)
4 −

1

6
m

(0)
5 +

1

2
m

(0)
6

]
+ ∂1zm

(0)
8 = −s2

δt
m

(1)
2 , (8c)

∂t1m
(0)
3 + ∂1xm

(0)
9 + ∂1ym

(0)
8 + ∂1z

[
2

3
m

(0)
0 +

1

3
m

(0)
4 −

1

6
m

(0)
5 −

1

2
m

(0)
6

]
= −s3

δt
m

(1)
3 . (8d)

which should yield the leading order continuity equation and Euler equations, i.e.,

∂tδρ+ ∂x (ρ0u) + (∂yρ0v) + (∂zρ0w) = 0, (9a)

∂t (ρ0u) + ∂x
(
p+ ρ0u

2
)

+ ∂y (ρ0uv) + ∂z (ρ0uw) = 0, (9b)

∂t (ρ0v) + ∂x (ρ0uv) + ∂y
(
p+ ρ0v

2
)

+ ∂z (ρ0vw) = 0, (9c)

∂t (ρ0w) + ∂x (ρ0uw) + ∂y (ρ0vw) + ∂z
(
p+ ρ0w

2
)

= 0. (9d)

where u, v and w are the velocity components in x, y and z directions, respectively. p is the pressure, which is related
to density fluctuation δρ by the isothermal equation of state as p = c2sδρ, and cs is the speed of sound. Note here we
partition the density as a constant background density ρ0 and a density fluctuation δρ, following He & Luo [24].

Matching Eq. (9) with its corresponding equation in Eq. (8), the following equilibrium moments are uniquely
determined:

m
(0)
0 = δρ,m

(0)
1 = ρ0u,m

(0)
2 = ρ0v,m

(3)
3 = ρ0w, (10a)

m
(0)
4 =

(
3c2s − 2

)
δρ+ ρ0

(
u2 + v2 + w2

)
,m

(0)
5 = ρ0

(
2u2 − v2 − w2

)
,m

(0)
6 = ρ0

(
v2 − w2

)
, (10b)

m
(0)
7 = ρ0uv,m

(0)
8 = ρ0vw,m

(0)
9 = ρ0uw. (10c)

In order to reproduce the isothermal Euler equations, the equilibria of all zeroth-, first- and second-order moments
must be uniquely derived. However, all third- and higher order moments are irrelevant moments at this stage. The
leading-order non-equilibrium components of the zeroth- and first-order moments must also be set to zero, as required
by the local conservation laws.

Next, we proceed to the O
(
ε2
)

equations. So far, it is clear that the zeroth- and first-order moments are density
and momenta in the hydrodynamic equations, respectively. Since the N-S equations are macroscopic evolution equa-
tions of density and momenta, our remaining job is to connect these four mesoscopic moment equations with their
corresponding hydrodynamic equations. Again, the four equations at O

(
ε2
)

can be explicitly written as

∂t2δρ = −s0

δt
m

(2)
0 , (11a)

∂t2 (ρ0u) + ∂1x

[
1

3
A4 +

1

3
A5

]
+ ∂1yA7 + ∂1zA9 =

s1

δt
m

(2)
1 , (11b)

∂t2 (ρ0v) + ∂1xA7 + ∂1y

[
1

3
A4 −

1

6
A5 +

1

2
A6

]
+ ∂1zA8 = −s2

δt
m

(2)
2 , (11c)

∂t2 (ρ0w) + ∂1xA9 + ∂1yA8 + ∂1z

[
1

3
A4 −

1

6
A5 −

1

2
A6

]
= −s3

δt
m

(3)
3 . (11d)

where Aα ≡
(
1− sα

2

)
m

(1)
α , with no summation over α. It should be noted that terms in the N-S equations representing

the Euler equations have already been reproduced by the leading-order moment equations. Hence, the above equations
are only expected to match the remaining part, which is the difference between the N-S equations and the Euler
equations, i.e.,

∂t2 (δρ) = 0, (12a)

∂t2 (ρ0ui) = ∂1j

[
µ (∂1jui + ∂1iuj)−

2

3
µ (∂1kuk) δij + µV (∂1kuk) δij

]
, (12b)
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where the subscripts i, j and k denote the spatial directions, µ and µV are the shear and bulk viscosity, respectively.
Matching Eq. (11) with Eq. (12) leads to

A4 = −3µV (∂1xu+ ∂1yv + ∂1zw) , (13a)

A5 = −2µ (2∂1xu− ∂1yv − ∂1zw) , (13b)

A6 = −2µ (∂1yv − ∂1zw) , (13c)

A7 = −µ (∂1yu+ ∂1xv) , (13d)

A8 = −µ (∂1yw + ∂1zv) , (13e)

A9 = −µ (∂1zu+ ∂1xw) . (13f)

The above results relate the leading-order non-equilibrium parts of the six second-order moments to stress components
in the N-S equations. Alternatively, Aα can be also expressed in terms of equilibrium moments according to the C-E
expansion on the order of O(ε), i.e., Eq. (7b), as

A4 = −
(

2− s4

2s4

)
δt

{
∂1x

[
1

3
ρ0u+

1

3
m

(0)
10 −

(
3c2s − 2

)
ρ0u

]

+ ∂1y

[
1

3
ρ0v +

1

3
m

(0)
11 −

(
3c2s − 2

)
ρ0v

]
+ ∂1z

[
1

3
ρ0w +

1

3
m

(0)
12 −

(
3c2s − 2

)
ρ0w

]}
,

(14a)

A5 = −
(

2− s5

2s5

)
δt

{
∂1x

[
2

3
ρ0u−

1

3
m

(0)
10

]
+ ∂1y

[
−1

3
ρ0v +

1

6
m

(0)
11 −

3

2
m

(0)
14

]
+ ∂1z

[
−1

3
ρ0w +

1

6
m

(0)
12 +

3

2
m

(0)
15

]}
,

(14b)

A6 = −
(

2− s6

2s6

)
δt

{
∂1xm

(0)
13 + ∂1y

[
1

3
ρ0v −

1

6
m

(0)
11 −

1

2
m

(0)
14

]
+ ∂1z

[
−1

3
ρ0w +

1

6
m

(0)
12 −

1

2
m

(0)
15

]}
, (14c)

A7 = −
(

2− s7

2s7

)
δt

{
∂t1 (ρ0uv) + ∂1x

[
2

3
ρ0v +

1

6
m

(0)
11 −

1

2
m

(0)
14

]
+ ∂1y

[
2

3
ρ0u+

1

6
m

(0)
10 +

1

2
m

(0)
13

]
+ ∂1zm

(0)
16

}
, (14d)

A8 = −
(

2− s8

2s8

)
δt

{
∂t1 (ρ0vw) + ∂1xm

(0)
16 + ∂1y

[
2

3
ρ0w +

1

6
m

(0)
12 −

1

2
m

(0)
15

]
+ ∂1z

[
2

3
ρ0v +

1

6
m

(0)
11 +

1

2
m

(0)
14

]}
,

(14e)

A9 = −
(

2− s9

2s9

)
δt

{
∂t1 (ρ0uw) + ∂1x

[
2

3
ρ0w +

1

6
m

(0)
12 +

1

2
m

(0)
15

]
+ ∂1ym

(0)
16 + ∂1z

[
2

3
ρ0u+

1

6
m

(0)
10 −

1

2
m

(0)
13

]}
,

(14f)

where all the known equilibrium moments have already been expressed in terms of the results in Eq. (10). Finally,
matching Eq. (13) and Eq. (14) equation by equation, and then term by term, we can obtain

m
(0)
10 = −2ρ0u, m

(0)
11 = −2ρ0v, m

(0)
12 = −2ρ0w, (15a)

m
(0)
13 = 0, m

(0)
14 = 0, m

(0)
15 = 0, m

(0)
16 = 0, (15b)

νV =

(
2− s4

2s4

)
δt
3

(
5

3
− 3c2s

)
, ν =

(
2− s5

2s5

)
δt
3
, s5 = s6 = s7 = s8 = s9. (15c)

where ν = µ/ρ0 and νV = µV /ρ0 are the kinematic shear and bulk viscosity, respectively. It shall be noted that the
three time-derivative terms ∂t1 (ρ0uv), ∂t1 (ρ0vw), ∂t1 (ρ0uw) are neglected, since they are of the order O

(
Ma3

)
and

are usually neglected in LBM. At this stage, all the zeroth-, first-, second- and third-order equilibrium moments have
been uniquely determined by the constraints of the isothermal N-S equations. The fourth- and higher-order moments
are irrelevant. The relaxation parameters of the six second-order moments, s4 to s9 must also be appropriately defined
in order to have correct bulk and shear viscosities.

C. Summary

From the inverse design process, we find that Eqs. (10) and (15) are the only necessary constraints in our MRT LB
model. Among all 27 equilibrium moments, only the zeroth-, first-, second-, and third-order equilibrium moments must
be properly specified. Since the isothermal N-S equations are of concern and the energy equation is not considered,
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it is unnecessary to constrain any fourth- or higher-order moments, or the relaxation parameters for the third- or
higher-order moments.

We note, however, in many previous designs [25–27] of the MRT-LB models, the equilibrium moments were acquired
simply based on the matrix transform of standard LBGK equilibrium distribution,

f (LBGK,eq)
α = wαδρ+ wαρ0

[
eαiui
c2s

+
(eαiui)

2

2c4s
− uiui

2c2s

]
, (16)

where wα is the weighting factor associated with each lattice velocity. This specification led to the determination for
all equilibrium moments, which completely discarded the available flexibilities in designing the irrelevant high-order

equilibrium moments. We emphasize that, although we must have m = Mf , the relation m(eq) = Mf (LBGK,eq)

is not required. The flexibility of designing those unconstrained higher-order equilibrium moments and relaxation
parameters potentially offers a possibility to incorporate the mesoscopic vorticity calculation into the LBM. This
possibility will be explored in detail in the next section. However, it must be made clear that the above statement
may not be valid for those LBM models where high-order equilibrium moments are constrained otherwise, for example,
by the energy equation or flow compressibility. In this paper, we confine our LBM model to the nearly incompressible
and isothermal N-S equations.

III. HIGH-ORDER EQUILIBRIUM MOMENTS AND MOMENT EQUATIONS FOR VORTICITY
CALCULATION

A. The construction of high-order equilibrium moments

Our inverse design in the last section clearly shows that in the D3Q27 MRT model, besides the 17 zeroth-, first-,
second- and third-order equilibrium moments that can be determined uniquely based on the hydrodynamic equations,
the other 10 fourth- and higher-order equilibrium moments are irrelevant to the N-S equations, thus can be designed
relatively freely. However, it should be made clear that the design of these 10 higher-order equilibrium moments is, by
no means, completely free. The main consideration is that the particle distribution functions in LBM must be near
their equilibria. Therefore, we should expect the expressions of these high-order equilibrium moments to be consistent
in form with the definitions of the moments. Specifically, it is reasonable to assume the following general forms

m
(eq)
17 = α17δρ+ β17ρ0

(
u2 + v2 + w2

)
, m

(eq)
18 = β18ρ0

(
2u2 − v2 − w2

)
, m

(eq)
19 = β19ρ0

(
v2 − w2

)
(17a)

m
(eq)
20 = γ20ρ0uv, m

(eq)
21 = γ21ρ0vw, m

(eq)
22 = γ22ρ0uw, (17b)

m
(eq)
23 = ζ23ρ0u, m

(eq)
24 = ζ24ρ0v, m

(eq)
25 = ζ25ρ0w, (17c)

m
(eq)
26 = α26δρ+ β26ρ0

(
u2 + v2 + w2

)
. (17d)

The coefficients α17, β17, β18, β19, γ20, γ21, γ22, ζ23, ζ24, ζ25, α26, and β26 remain to be determined. We will show later
that their values can be specifically designed to embed the vorticity components into the non-equilibrium moments. It
is noted that the set of the standard LBGK equilibrium moments corresponds to a special setting of these coefficients,
namely, α17 = 2, β17 = −4, β18 = β19 = −1, γ20 = γ21 = γ22 = −1, ζ23 = ζ24 = ζ25 = 1, α26 = −1, β26 = 3. The
key here is to alter these values to realize the necessary anisotropy to enable the local vorticity calculation from the
non-equilibrium moments.

B. Mesoscopic vorticity calculation from non-equilibrium moments

It is well known that all six components of the strain-rate tensor in LBM can be calculated mesoscopically in terms
of the second-order non-equilibrium moments [9, 28]. In our model, the vorticity components are expected to be

obtained in the same manner. In MRT-LBM, the non-equilibrium moments, m
(neq)
α is usually approximated as εm

(1)
α ,

which can be related to the time derivatives of themselves and the spatial derivatives of other equilibrium moments
via C-E expansion on the order of ε, i.e., Eq. (7b). In the D3Q27 model, Eq. (7b) contains 27 subequations, the
first 4 of which, as we have shown in the last section, lead to the continuity and Euler equations. The remaining
23 moment equations, can be potentially used to evaluate non-conserved hydrodynamic quantities, such as velocity
gradients and pressure gradients. In this section, we will explore those 23 moment equations in terms of increasing
order in moments, to determine if the mesoscopic vorticity calculation can be made possible.
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First, the six equations governing the second-order moments m4 to m9, can be expanded from Eq. (7b) as(
5− 9c2s

3

)
(∂xu+ ∂yv + ∂zw) = − s4

ρ0δt
εm

(1)
4 , (18a)

2

3
(2∂xu− ∂yv − ∂zw) = − s5

ρ0δt
εm

(1)
5 , (18b)

2

3
(∂yv − ∂zw) = − s6

ρ0δt
εm

(1)
6 , (18c)

1

3
(∂xv + ∂yu) = − s7

ρ0δt
εm

(1)
7 , (18d)

1

3
(∂yw + ∂zv) = − s8

ρ0δt
εm

(1)
8 , (18e)

1

3
(∂xw + ∂zu) = − s9

ρ0δt
εm

(1)
9 . (18f)

The right-hand side (RHS) of each of the above equations contains the leading order part of a second-order non-
equilibrium moment, while the LHS is the spatial derivatives of the first- and third-order equilibrium moments. The
time derivative in each equation has been absorbed into the spatial derivatives by using the Euler equations. Also note
that terms on the order of O(Ma3) have been eliminated from the equations. Clearly, the six strain-rate components
can be explicitly solved from the above six equations. Because both first- and third-order equilibrium moments on
the LHS are defined isotropically with respect of x, y and z, as required by the N-S equations, the non-equilibrium
parts of the six second-order moments on the RHS involve no vorticity components. To realize explicitly the local
vorticity calculation, we need to find another three independent equations involving the six cross velocity gradients
∂xv, ∂xw, ∂yu, ∂yw, ∂zu and ∂zv.

Next, we exploit the moment equations for the seven third-order moments. Those equations do not appear in the
inverse design process as the non-equilibrium parts of third-order moments are irrelevant to the derivation of the N-S
equations, and they are

∂x

[(
α17

3
+ 6c2s −

8

3

)
δρ+

(
β17

3
+

2β18

3
+ 2

)
u2 +

(
β17

3
− β18

3
+ 2

)
v2 +

(
β17

3
− β18

3
+ 2

)
w2

]
+ (3 + γ20) ∂y (uv) + (3 + γ22) ∂z (uw) = − s10

ρ0δt
εm

(1)
10 ,

(19a)

∂y

[(
α17

3
+ 6c2s −

8

3

)
δρ+

(
β17

3
− β18

3
+ 2

)
u2 +

(
β17

3
+
β18

6
+
β19

2
+ 2

)
v2 +

(
β17

3
+
β18

6
− β19

2
+ 2

)
w2

]
+ (3 + γ20) ∂x (uv) + (3 + γ21) ∂z (vw) = − s11

ρ0δt
εm

(1)
11 ,

(19b)

∂z

[(
α17

3
+ 6c2s −

8

3

)
δρ+

(
β17

3
− β18

3
+ 2

)
u2 +

(
β17

3
+
β18

6
− β19

2
+ 2

)
v2 +

(
β17

3
+
β18

6
+
β19

2
+ 2

)
w2

]
+ (3 + γ22) ∂x (uw) + (3 + γ21) ∂y (vw) = − s12

ρ0δt
εm

(1)
12 ,

(19c)

(
2

3
+
β19

3

)
∂x
(
v2 − w2

)
+

(
1

3
− γ20

3

)
∂y (uv) +

(
γ22

3
− 1

3

)
∂z (uw) = − s13

ρ0δt
εm

(1)
13 , (19d)(

γ20

3
− 1

3

)
∂x (uv)−

(
β18

6
+

1

3

)
∂y
(
2u2 − v2 − w2

)
−
(
β19

6
+

1

3

)
∂y
(
v2 − w2

)
+

(
1

3
− γ21

3

)
∂z (vw) = − s14

ρ0δt
εm

(1)
14 ,

(19e)(
1

3
− γ22

3

)
∂x (uw) +

(
γ21

3
− 1

3

)
∂y (vw) +

(
β18

6
+

1

3

)
∂z
(
2u2 − v2 − w2

)
−
(
β19

6
+

1

3

)
∂z
(
v2 − w2

)
= − s15

ρ0δt
εm

(1)
15 ,

(19f)(
2

3
+
γ21

3

)
∂x (vw) +

(
2

3
+
γ22

3

)
∂y (uw) +

(
2

3
+
γ20

3

)
∂z (uv) = − s16

ρ0δt
εm

(1)
16 . (19g)

The LHS of these seven equations are spatial derivatives of second- and fourth-order equilibrium moments. Again,
the time derivatives are replaced by the spatial derivatives using the Euler equations. Compared to that of Eq. (18),
the LHS of above seven equations are on higher order in Ma, i.e., the spatial derivatives in Eq. (19) scale as O(Ma2)
whereas those in Eq. (18) are of O(Ma). For this reason, Eq. (19) is evidently not suitable to serve as desired
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supplementary equations for the local vorticity calculation. However, Eq. (19a) to Eq. (19c) contain pressure gradients
∂xδρ, ∂yδρ and ∂zδρ, they can be utilized to calculate pressure gradients mesoscopically if the coefficient α17/3 +
6c2s − 8/3 is non-zero. In our model, α17 is tunable, so this direct computation of pressure gradient is achievable, in
contrast with the standard LBGK model, where α17 must be set to 2 in order to reproduce the N-S equations. In this
work, since we focus on exploring the mesoscopic vorticity calculation, the above point will not be examined further.

Now we move to the six equations of fourth-order moments, which read explicitly as(
2ζ23

3
− 4

3
− α17

)
∂xu+

(
2ζ24

3
− 4

3
− α17

)
∂yv +

(
2ζ25

3
− 4

3
− α17

)
∂zw = − s17

ρ0δt
εm

(1)
17 , (20a)

−
(

2

3
+

2ζ23

3

)
∂xu+

(
1

3
+
ζ24

3

)
∂yv +

(
1

3
+
ζ25

3

)
∂zw = − s18

ρ0δt
εm

(1)
18 , (20b)

−
(

1

3
+
ζ24

3

)
∂yv +

(
1

3
+
ζ25

3

)
∂zw = − s19

ρ0δt
εm

(1)
19 , (20c)(

ζ24

3
− 2

3

)
∂xv +

(
ζ23

3
− 2

3

)
∂yu = − s20

ρ0δt
εm

(1)
20 , (20d)(

ζ25

3
− 2

3

)
∂yw +

(
ζ24

3
− 2

3

)
∂zv = − s21

ρ0δt
εm

(1)
21 , (20e)(

ζ23

3
− 2

3

)
∂zu+

(
ζ25

3
− 2

3

)
∂xw = − s22

ρ0δt
εm

(1)
22 , (20f)

where the non-equilibrium parts of fourth-order moments on the RHS are related to the spatial derivatives of third-
and fifth-order equilibrium moments on the LHS. Particularly, Eq. (20d) to Eq. (20f) not only involve the cross
velocity gradients, but also are on the order of O(Ma), the same as in Eq. (18d) to Eq. (18f). Unlike the third-order
equilibrium moments that must have full isotropy to reproduce the N-S equations, the fifth-order equilibrium moments
are not constrained so they can be purposely designed to be anisotropic with ζ23 6= ζ24 6= ζ25. By having anisotropic
fifth-order equilibrium moments, we embed the three local vorticity components into the fourth-order non-equilibrium
moments. Mathematically, when ζ23 6= ζ24 6= ζ25, Eq. (20d) to Eq. (20f) become linearly independent of Eq. (18d) to
Eq. (18f), thus all three vorticity components can be explicitly calculated as

ωx ≡ ∂yw − ∂zv =
1

(ζ24 − ζ25)

[
−3 (ζ24 + ζ25 − 4) s8

ρ0δt
εm

(1)
8 +

6s21

ρ0δt
εm

(1)
21

]
, (21a)

ωy ≡ ∂zu− ∂xw =
1

(ζ25 − ζ23)

[
−3 (ζ25 + ζ23 − 4) s9

ρ0δt
εm

(1)
9 +

6s22

ρ0δt
εm

(1)
22

]
, (21b)

ωz ≡ ∂xv − ∂yu =
1

(ζ23 − ζ24)

[
−3 (ζ23 + ζ24 − 4) s7

ρ0δt
εm

(1)
7 +

6s20

ρ0δt
εm

(1)
20

]
. (21c)

Together with Eqs. (18a) to (18f), all the velocity gradients can be explicitly determined from the non-equilibrium
moments. In fact, when the number of lattice particle velocities is sufficient, the LB model can be designed to entail
all the hydrodynamic quantities we concern in the CFD (i.e., velocity, pressure, velocity gradients, pressure gradients)
into their mesoscopic distribution functions. The reason that such properties were never fully explored might be due
to the fact that, when the LBM was first established, its equilibrium was obtained via the Taylor expansion of the
Maxwell-Boltzmann distribution at small Ma. Such design, while having the most solid physical background from
the kinetic theory viewpoint, is only a sufficient but not necessary condition for the isothermal N-S equations.

In the standard LBGK model, Eq. (21) is unachievable since the isotropic equilibrium distribution function will
always yield ζ23 = ζ24 = ζ25 = 1. However, these values from standard LBGK model set up a baseline to determine
ζ23,24,25 in our model in order to ensure sufficient numerical stability. We suggest ζ23 ≈ ζ24 ≈ ζ25 ≈ 1 so we can
maintain the non-equilibrium parts of second- and fourth-order moments small in terms of the same physical velocity
gradients, as indicated in Eq. (21). The three numerical benchmark cases shown in Sec. IV show that the range of
0.5 ≤ ζ23−25 ≤ 2.0 is numerically stable, which is quite acceptable.

C. Accuracy of the mesoscopic vorticity calculation

In this section, we provide an asymptotic analysis, in terms of incompressible N-S equations, concerning the accuracy
of our proposed mesoscopic vorticity calculation following the idea of the Maxwell iteration [29, 30]. To simplify the
analysis, all the relaxation times in our model are chosen identical to be 1/τ since their values are not essential in
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the vorticity calculation. Furthermore, since only three coefficients of fifth-order equilibrium moments are relevant to
the vorticity calculation, other undefined coefficients of fourth-order and sixth-order equilibrium moments are chosen
corresponding to the standard LBGK equilibrium, namely, α17 = 2, β17 = −4, β18 = β19 = −1, γ20 = γ21 = γ22 = −1,
α26 = −1, β26 = 3. The evolution equation, Eq. (4), can then be simplified as

fα (x + eαδt, t+ δt)− fα (x, t) = −1

τ

[
fα (x, t)− f (eq)

α (x, t)
]

(22)

where the equilibrium distribution f (eq) = M−1m(eq). Based on the design in Eq. (10), (15) and (17), it can be shown
that the equilibrium distribution can be written as

f (eq)
α = wαδρ+ wαρ0

{
3 [b(α, 1)eα1u1 + b(α, 2)eα2u2 + b(α, 3)eα3u3]

c2
+

9 (eαiui)
2

2c4
+

3uiui
2c2

}
(23)

which is identical to Eq. (16) except that the first term in the square brackets is designed to be anisotropic with respect
to the spatial direction i. The detailed form of b(α, i) is provided in the Appendix in terms of three coefficients only,
namely, ζ ′1, ζ ′2 and ζ ′3 (see Eqs. (34) to (36)). Note that here ζ ′1 = ζ23, ζ ′2 = ζ24 and ζ ′3 = ζ25, respectively. When
b(α, 1) 6= b(α, 2) 6= b(α, 3), the usual isotropy in the standard LBGK equilibrium is no longer assumed. However, the
symmetry is still rigorously preserved, i.e., b(ᾱ, i) = b(α, i), where eᾱ = −eα.

While the previous design is based on the C-E analysis (acoustic scaling), in the limit of incompressible flow the
alternative diffusive scaling can be applied [9, 31]. Under the diffusive scaling, i.e., δx = h, δt = h2, c = δx/δt = 1/h,
Eq. (23) can be rewritten as

f (eq)
α = h2wαρ̃+ 3hwαρ0 [b(α, 1)eα1u1 + b(α, 2)eα2u2 + b(α, 3)eα3u3] +

9

2
h2wαρ0 (eαiui)

2
+

3

2
h2wαρ0uiui. (24)

where the density fluctuation δρ = h2ρ̃ is on the order of O(h2) in the incompressible limit.
Applying Taylor expansion to the LHS of Eq. (22), we obtain

∞∑
s=1

hsDα,sfα (x, t) = −1

τ

[
fα (x, t)− f (eq)

α (x, t)
]
, Dα,s =

∑
m+2n=s

∂nt (eα · ∇)
m

m!n!
(25)

Expanding the LHS of Eq. (25) to O(h4), the following relation between fα and f
(eq)
α is obtained.

fα − f (eq)
α = −τ

[
h (eα · ∇) fα +

1

2
h2 (eα · ∇)

2
fα +

1

6
h3 (eα · ∇)

3
fα + h2∂tfα + h3 (eα · ∇) ∂tfα

]
+O

(
h4
)

(26)

Note that we have simplified the notations since all terms in the above equation is at (x, t). Now, we process the
Maxwell iteration, i.e., substitute Eq. (26) into itself and again keep all the terms to O(h4), we can express fα in

terms of f
(eq)
α as

fα − f (eq)
α = −τh (eα · ∇) f (eq)

α + τ2h2 (eα · ∇)
2
f (eq)
α − τ 1

2
h2 (eα · ∇)

2
f (eq)
α − τ3h3 (eα · ∇)

3
f (eq)
α

+τ2h3 (eα · ∇)
3
f (eq)
α + 2τ2h3 (eα · ∇) ∂tf

(eq)
α − τh3 (eα · ∇) ∂tf

(eq)
α − τ 1

6
h3 (eα · ∇)

3
f (eq)
α +O

(
h4
) (27)

Finally, substituting Eq. (24) into Eq. (27), we have

fα − f (eq)
α = −3wαρ0τh

2 (eα · ∇) [b(α, 1)eα1u1 + b(α, 2)eα2u2 + b(α, 3)eα3u3]

−wατh3 (eα · ∇)

[
ρ̃+

9

2
ρ0 (eαiui)

2
+

3

2
ρ0uiui

]
+3wαρ0τ

(
τ − 1

2

)
h3 (eα · ∇)

2
[b(α, 1)eα1u1 + b(α, 2)eα2u2 + b(α, 3)eα3u3] +O

(
h4
)
.

(28)

Clearly, the RHS of Eq. (28) contains an even part in terms of eα, which is the first term, and an odd part that
consist of all the remaining terms. When multiplied by the transform matrix M, the odd part will only contribute to
the odd moments, and the even parts only to even moments because of the symmetry in lattice structure. In other
words, for any second- and fourth-order moment, the leading-order truncation error in its non-equilibrium part is on
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TABLE I: The physical and simulation parameters in the 3D Taylor-Green flow

Case # Re0 Nx×Ny×Nz U0 ν νV

1 600π 64× 64× 64 0.1019 0.00346 0.0370
2 600π 128×128×128 0.0509 0.00346 0.0370
3 600π 256×256×256 0.0255 0.00346 0.0370

the order of O(h4) since all O(h3) terms in Eq. (28) disappear due to the symmetry in terms of the lattice velocities.
As shown in Eq. (18) and (21), the computation of all velocity gradients in the present model only involves even order
non-equilibrium moments. Thus, the mesoscopic velocity gradient calculation indeed has the second-order accuracy.

An interesting question to ask is whether the same design can be achieved with D3Q15 or D3Q19 lattice grids. In
our D3Q27 lattice model, the mesoscopic vorticity calculation is made possible by introducing anisotropy into the
three fifth-order equilibrium moments. However, as shown in [20], in D3Q15 there are only one zeroth-order moment,
three first-order moments, six second-order moments, four third-order moments, and one fourth-order moment; while
in D3Q19 there are only one zeroth-order moment, three first-order moments, six second-order moments, sixth third-
order moments, and three fourth-order moments. The fifth-order moments available to D3Q27 simply do not exist
in D3Q15 and D3Q19. Therefore, we conclude that both D3Q15 and D3Q19 MRT models are not flexible enough to
allow mesoscopic vorticity calculation.

IV. NUMERICAL VALIDATION AND RESULTS

In this section, the mesoscopic vorticity calculation in our model is numerically investigated in three 3D flows, i.e.,
a 3D Taylor-Green vortex flow, a 3D lid-driven cavity flow, and a uniform flow passing a fixed sphere. The main
purposes of those examinations are, 1) to numerically prove the modification on the fifth-order equilibrium moments
brings only marginal effect to the numerical accuracy and stability of LBM as a N-S equation solver, 2) to validate
the accuracy of mesoscopic vorticity calculation.

A. The 3D Taylor-Green vortex flow

The 3D Taylor-Green vortex flow is one of the very few analytical solutions of three-dimensional time-dependent
N-S equations. In 1936, Taylor and Green [32] established the short-time solution based on a perturbation expansion
of the velocity field. Given the initial velocity field u0 = (u0, v0, w0)

u0 (x, y, z, t = 0) = U0 cos (2πx/L) sin (2πy/L) sin (2πz/L) , (29a)

v0 (x, y, z, t = 0) = −U0 sin (2πx/L) cos (2πy/L) sin (2πz/L) , (29b)

w0 (x, y, z, t = 0) = 0, (29c)

where 0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ L are the spatial coordinates, L is the domain size, t is time, U0 is
the initial characteristic velocity magnitude. Periodic boundary conditions are assumed in all three directions. The
initial velocity gradients are known analytically and the initial pressure field can also be obtained by solving the
Poisson equation. The time derivative of velocities in the N-S equations can be expressed in terms of the initial
velocity and pressure fields, which can be integrated to give a short-time solution. Repeat the above iteration process
of velocity field → pressure field → velocity time derivatives → updated velocity field, Taylor and Green obtained
a three-dimensional, time-dependent theoretical solution that is valid for short times [32]. Based on this solution,
analytical expressions of kinetic energy and dissipation rate at short times were also obtained in [32].

In this section, we focus on benchmarking the vorticity field obtained from the moment equations presented in
Sec. III B. However, the theoretical solution derived by Taylor and Green will not be used as the benchmark due to
the reason that it is only valid for short times. It is difficult to determine precisely how long the theoretical solution
is accurate enough to be used as benchmark, which depends on which physical quantity is of concern. Instead,
the solution from a pseudo-spectral method (PSM) is used as benchmark for its high-accuracy with an exponential
convergence rate. In the past, the PSM results have often been used to benchmark results from LBM [5, 7, 21].

Some of the key parameters adopted in the present MRT LBM are listed in Table I and Table II. For all three
cases, the initial Reynolds number Re0 = U0L/ν is set to 600π so the small scales can develop relatively quickly
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TABLE II: The coefficients of high order equilibrium moments and relaxation parameters in the Taylor-Green flow
simulations (identical in all three cases)

α17 β17 β18,19 γ20,21,22 ζ23 ζ24 ζ25 α26 β26
2.0 −4.0 −1.0 −1.0 1.0 1.5 2.0 −1.0 3.0

s4 s5−9 s10−12 s13−16 s17−22 s23 s24 s25 s26
1.5 1/ (3ν + 0.5) 1.2 1.2 1.5 1.2 1.2 1.2 1.2

by nonlinear interactions. Also, since we are mainly interested in the mesoscopic vorticity calculation, which only
involves three coefficients, ζ23,24,25, we set all the other coefficients of high order equilibrium moments to the ones that
recovers LBGK equilibrium. Specially, the potential capability of mesoscopic pressure gradient calculation will not
be exposed in the present study as α17 is still set to 2 in all cases. On the other hand, the values of ζ23,24,25 as well
as the relaxation parameters of third- and higher-order moments are chosen rather casually (we avoid extreme values
though) for demonstrative purpose. Optimization of those parameters could lead to better accuracy and stability the
model, but it is beyond the scope of the present study.

To properly specify all the initial particle distributions, we need to iterate the distribution functions [33]. The
detailed procedure is as follows [33].

1. First, initialize the distributions by the equilibrium distribution functions based on the initial velocity field and
uniform zero pressure field as f0 = M−1m(eq) (δρ = 0,u0).

2. Evolve the distribution function, for one time step, according to the standard collision and streaming substeps,
i.e., f0 → f∗.

3. Restore the initial velocity field by first converting the distributions to the moment space through m = Mf∗, then
set m1 = ρ0u0, m2 = ρ0v0, m3 = ρ0w0, finally update the distributions by an inverse transform f0 = M−1m. It
is worth mentioning that in the later convergence rate calibration of strain rate and vorticity calculation, we also
restore all the velocity gradient components back to their initial values in order to ensure that the initialization
is fully consistent with the initial flow field. In other words, the nine moments that associated with the strain
rate and vorticity calculation, i.e., m4,5,6, m7,8,9 and m20,21,22 are also constrained using the initial velocity and
velocity gradients. However, such treatment is not necessary in the usual initialization process.

4. Repeat step 2 to step 3 for a sufficient number of iteration steps.

In the simulations, we specify the number of iteration steps. For three cases, the initial distribution functions are
iterated for 1, 000, 4, 000 and 16, 000 steps, respectively. The iteration numbers are chosen to be consistent with the
amount of time steps the flow evolves under each grid resolution. Typically, at the end of the iteration, the maximum
local pressure difference, namely, c2s

[
δρ(m) − δρ(m−1)

]
/
(
ρ0U

2
0

)
, between two consecutive iterations, m and m− 1, is

about 10−7. It shall be noted that although in this case, the initial pressure field can be analytically obtained by
solving the Poisson equation, such pressure field based on incompressible assumption may not be consistent with the
LB solution that corresponds to the weakly compressible N-S equations. Therefore, in the present simulations, we
do not utilize the theoretical incompressible-flow pressure field. On the other hand, although the velocity divergence
in LBM is not strictly zero, the three moments associated with the three normal velocity gradients, i.e., m4,5,6 are
still constrained. This is mainly to guarantee no significant initialization error is introduced in the later convergence
study of strain rate and vorticity computations.

Before discussing the results for the flow vorticity, we first examine a few basic flow statistics to validate our model.
The time-dependent kinetic energy k, dissipation rate D, and the longitudinal velocity-derivative skewness S and
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flatness F are shown in Fig. 2. These statistical quantities are defined as

k = 0.5
〈
u2 + v2 + w2

〉
, (30a)

D = 2ν

(
sij −

1

3
∇ · uδij

)2

+ νV (∇ · u) , (30b)

S =

〈
1
3

[
(∂xu)

3
+ (∂yv)

3
+ (∂zw)

3
]〉

〈
1
3

[
(∂xu)

2
+ (∂yv)

2
+ (∂zw)

2
]〉3/2

, (30c)

F =

〈
1
3

[
(∂xu)

4
+ (∂yv)

4
+ (∂zw)

4
]〉

〈
1
3

[
(∂xu)

2
+ (∂yv)

2
+ (∂zw)

2
]〉2 . (30d)

where sij is the strain rate tensor. The kinetic energy and dissipation rate are normalized by their respective initial
values. In the same plot, we compare the results obtained from 1) the short-time theory, as in [32], denoted as
“Theory”, 2) pseudo spectral method at two different resolutions nx = 128 and 256, denoted as “Spectral”, 3) the
present LB model in terms of the moment equations at three different resolutions nx = 64, 128 and 256, denoted as
“Present”, and finally 4) the regular MRT LB model that recovers LBGK equilibrium at resolutions nx = 64 and
256, denoted as “MRT”, in order to assess the impact of modifying equilibrium on the physical accuracy. The LBM
results involved in the above comparisons are mesoscopically computed from the non-equilibrium moments.

As clearly shown in Fig. 2, the two groups of pseudo spectral results are essentially identical, with very minor
differences in skewness and flatness. Since the pseudo-spectral results are well converged, the PSM results at resolution
256 are viewed as the benchmark. As expected, the theoretical results are only valid for short times. Under the current
setting of Re0 = 600π, the short-time theory are quantitatively reliable for t∗ ≤ 1, where t∗ = 2πU0t/L is the non-
dimensional time. As more and more small scales develop at later times, the theory is no longer accurate, especially
for the high-order statistics. On the other hand, the corresponding results of the present LB model and regular MRT
LB model are in excellent agreement with each other: both converge to the PSM data as grid resolution increases.
This confirms our claim that the modification of high-order equilibrium moments only has a marginal impact on the
hydrodynamics since those moments are irrelevant to the reproduction of the N-S equations.

Compared with its impacts on accuracy, modifying the high-order equilibrium moments might bring a more obvious
effect on the numerical stability. To clarify, we compared the stability limits of both the present model and regular
MRT model in the same case of decaying Taylor-Green flow at Re0 = 600π and a grid resolution of nx = 64. For
this unsteady flow case, more and more small scales develop with time and the simulation eventually leads unphysical
results when the grid resolution fails to resolve those small scales. Therefore, we define the stability limit as the
minimum shear viscosity used by the model to yield physically accurate kinetic energy in the time period of concern
(t∗ ≤ 10). As shown in Fig. 3, the stability limits for both the present model and the regular MRT model are around
0.002 in terms of shear viscosity value. Decreasing the shear viscosity further, the present model tends to yield
inaccurate kinetic energy earlier than the regular MRT model does, which indicates that the former has slightly worse
numerical stability. However, it must be noted that in the present model, all the high-order equilibrium moments are
tunable, which could potentially lead to better numerical stability. Combining those two aspects, we conclude that
the modification of high-order equilibrium moments does not significantly affect the numerical stability of LB model

Next, we validate the mesoscopic vorticity calculation in the present LB model. In the remaining part of this section,
we shall use two different approaches to calculate the vorticity field from the LB simulations. The first approach is
to use the finite-difference approximation (e.g., as in [12]), which could degrade the accuracy by one order from that
for the velocity, as mentioned before. The errors in the finite-difference approximation have two origins. The first
is the numerical error, which originates from the second-order velocity error in LBM. The second is the truncation
error whose order depends on the finite-difference representation we choose. It shall be clear that the latter error
exists even when the velocity result is precise. In the vorticity calculation based on finite-difference approximation, we
need to make sure a finite-difference scheme is at least second-order accurate. In our later calculation, a second-order
central-differencing scheme using the LBM velocity field has been employed, as

∂ui
∂xj

(x) =
ui(x + ejh)− ui(x− ejh)

2h
+O

(
h2
)

(31)

where h is the grid spacing, i and j are the indices of velocity direction and spatial coordination, respectively.
Schemes of higher-order accuracy can be used to minimize the truncation error in the finite-difference based vorticity
calculation. Those higher-order schemes are usually based on large stencil widths that may introduce extra workload in
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data communication between processors in parallel computations, and are hard to implement when complex boundary
geometries present. There are also efforts to utilize the lattice links other than those align with the axes of a Cartesian
coordinate to construct high-order discretizations of differential operators within small stencils [34]. However, as long
as the vorticity is differentiated based on the second-order accurate velocity field, its order of accuracy is expected to
be lower than second-order. This is because the error in the velocity field is usually not distributed uniformly and
does not cancel out in the differentiation.[Please check. The reviewer asked to make comparison between our paper
and Ref. [34]]

Alternatively, the vorticity can be calculated locally from the non-equilibrium moments, which is a unique capability
of the present model. As a qualitative illustration, the vorticity contours of ωx, ωy and ωz on a 2D slice at z/L = 0.5 at
t∗ = 4 and t∗ = 8 are presented in Fig. 4, Fig. 5 and Fig. 6, respectively. The resolution nx = ny = nz = 256 is chosen
for all results in these three figures. The vorticity results calculated from the present model with finite difference
approximation and moment equations are denoted as FD and ME, respectively, while the spectral benchmarks are
named as PSM. As clearly shown by the three figures, the vorticity contours from the present LB model with the FD
and ME approaches are almost identical, and both are in good agreement with contours from PSM. The capability of
the ME approach for local vorticity calculation is thus well supported. Physically, there are more small-scale features
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data communication between processors in parallel computations, and are hard to implement when complex boundary
geometries present. There are also efforts to utilize the lattice links other than those align with the axes of a Cartesian
coordinate to construct high-order discretizations of differential operators with compact stencils [34]. However, as
long as the vorticity is differentiated based on the second-order-accurate velocity field, its overall order of accuracy
is expected to be lower than second-order. This is because the error in the velocity field is usually not distributed
uniformly and does not cancel out in the differentiation scheme.

Alternatively, the vorticity can be calculated locally from the non-equilibrium moments, which is a unique capability
of the present model. As a qualitative illustration, the vorticity contours of ωx, ωy and ωz on a 2D slice at z/L = 0.5 at
t∗ = 4 and t∗ = 8 are presented in Fig. 4, Fig. 5 and Fig. 6, respectively. The resolution nx = ny = nz = 256 is chosen
for all results in these three figures. The vorticity results calculated from the present model with finite difference
approximation and moment equations are denoted as FD and ME, respectively, while the spectral benchmarks are
named as PSM. As clearly shown by the three figures, the vorticity contours from the present LB model with the FD
and ME approaches are almost identical, and both are in good agreement with contours from PSM. The capability of
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FIG. 3: The kinetic energy results of a decaying 3D Taylor-Green flow with different shear viscosities.

the ME approach for local vorticity calculation is thus well supported. Physically, there are more small-scale features
in the vorticity field at the later times, which causes the relative magnitude of the non-equilibrium moment to increase
relative to the equilibrium part in some local regions. This could lead to a better accuracy of local vorticity calculated
by the mesoscopic method, provided that there are no numerical noises in these high-order non-equilibrium moments
used in the mesoscopic representation of the local vorticity. This aspect needs further investigation. On the other
hand, the finite-difference approximated vorticity tends to be smoother since the velocity field in LBM is associated
with the first-order equilibrium moment which does not usually contain numerical oscillations.

We shall now compute the convergence rate of both FD and ME approaches using the PSM results at highest
resolution (nx = ny = nz = 256) as the benchmark. In LBM, three resolutions nx = ny = nz = 64, 128 and 256 are
considered. For fair comparison, the LBM grids for all resolutions are aligned precisely with the PSM grid such that
no interpolation is necessary. The L1 and L2 norms are computed, which are defined as

εL1 (t) =

∑
x,y |qLBM (x, y, t)− qPSM (x, y, t)|∑

x,y |qPSM (x, y, t)| (32a)

εL2 (t) =

√∑
x,y [qLBM (x, y, t)− qPSM (x, y, t)]

2√∑
x,y [qPSM (x, y, t)]

2
(32b)

where qLBM and qPSM represent the corresponding numerical results (velocity, strain rate, vorticity, etc.) of LBM
and PSM, respectively, and the summation is over the whole computational domain. At the initial stage (t∗ = 0),
the L2 error norms are shown in Table III. Here we will only show explicitly the results of L2 error norms, as
the corresponding results of L1 error norms are very similar. While the L2 errors in velocity are negligibly small
(∼ O

(
10−7

)
) and are almost independent of the grid resolution, implying that these errors are due to machine

round-off errors. The same holds true for the errors in vorticity and strain rates computed through ME. On the other
hand, the errors in vorticity and strain rates from the FD approximation are on the respective order of 10−3 to 10−4

and decrease with increasing grid resolution. Since we initialize the flow with the exact initial velocity field, these
errors in the FD approach are clearly due to the truncation error of the finite difference scheme in the velocity gradient
calculation. The relative magnitudes from the FD approach at different grid resolutions clearly show that the rate
of convergence is of second order, which is consistent with our expectation in Eq. (31). Although the magnitudes of
these truncation errors in FD appear to be large, as we shall find shortly, they are still about two orders of magnitude
smaller than the error magnitude in the strain rate and vorticity in FD at later times. Therefore, the existence of such
initial errors should not affect our later observations on the order of accuracy. Therefore, we can safely assume that
the L2 norms listed in Table IV and V for the strain rate and vorticity at t∗ = 4 and 8, truly reflect the convergence
rate of the errors in both computation approaches.

At t∗ = 4, except ωz, the vorticity and strain rate calculated mesoscopically are more accurate than those from
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FIG. 4: Contours of vorticity in x direction at t∗ = 4 and t∗ = 8 with Re = 300 using different: (a) FD, t∗ = 4, (b)
ME, t∗ = 4, (c) PSM, t∗ = 4, (d) FD, t∗ = 8, (e) ME, t∗ = 8, (f) PSM, t∗ = 8.

the finite-difference approximation, measured by the magnitude of the L2 norm. Both methods exhibit roughly
a second-order accuracy for all strain rate and vorticity components but the errors from the mesoscopic approach
always have higher convergence rates than their finite-difference counterparts. The magnitudes of the numerical errors
in mesoscopic vorticity calculation must be associated with the values of fifth-order equilibrium moments, i.e., ζ23,
ζ24 and ζ25, as well as the relevant relaxation parameters s7−9 and s20−22, so potentially smaller L2 norm might be
achieved with optimized parameter setting. On the other hand, Junk et al. [31] showed that the velocity gradients
calculated by second-order finite-difference scheme could maintain second-order accuracy in pure periodic problems.
This is because the leading-order velocity error in LBM scales with h3 instead of h2, which can be easily seen via the
asymptotic expansion. For more general problems, e.g., flows with solid boundaries, the above statement breaks down
and the finite-difference method is only capable of providing vorticity calculation of the first-order accuracy [31].

At the later time t∗ = 8, for most strain rate and vorticity components, the results calculated through finite-
difference approximation have error magnitudes comparable to or smaller than those from moment equations. This
indicates that in the present simulation, the computation of conserved moments (i.e., the velocity field) is much more
accurate than those of non-conserved moments, from which the vorticity components are obtained. Again, in general,
we observe a second-order accuracy for both ME and FD approaches. While for vorticity components, the mesoscopic
method has higher convergence rates for the numerical error than the finite difference method, the convergence rates
for the strain rate components in the two approaches are comparable.

B. The lid-driven cavity flow

The present model and its mesoscopic vorticity calculation feature are further examined by a 3D lid-driven cavity
flow. The flow setting is sketched in Fig. 7, where the fluid at rest initially inside a cubic box with length L is driven
by the top lid moving with a constant velocity ~u = (uw, 0, 0). The other five walls are maintained at zero velocity. The
Reynolds number Re = uwL/ν is set to 100 and the shear and bulk viscosity are fixed at ν = 0.02 and νV = 0.0370.
The grid resolution has been adopted as nx = ny = nz = 256. The coefficients of high order equilibrium moments
and relaxation parameters are the same as those listed in Table II. The fluid boundary nodes are arranged half lattice
spacing from all walls so the accurate mid-link bounce back can naturally be applied to represent the no-slip boundary
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FIG. 5: Contours of vorticity in y direction at t∗ = 4 and t∗ = 8 with Re = 300 using different: (a) FD, t∗ = 4, (b)
ME, t∗ = 4, (c) PSM, t∗ = 4, (d) FD, t∗ = 8, (e) ME, t∗ = 8, (f) PSM, t∗ = 8.

condition.
When the flow reaches the steady state, the voritcity component ωx at i = nx/2 plane, ωy at j = ny/2 and ωz at

k = nz/2, are shown in Fig. 8. Here we only qualitatively examine if the present model still ensures correct mesoscopic
vorticity calculation with the presence of solid boundries. Clearly, Fig. 8 shows that the mesoscopically calculated
vorticity results are almost identical to those calculated via the FD approximation, except the small region near the
singularity edges (see the top corners of Fig. 8(b)). The mesoscopic vorticity calculation is contaminated more by
the noises generated from the singularities than the finite difference approximation. This is again because the large
velocity gradients in this region break the quasi-equilibrium assumption of LBM, which results in a rather fluctuating
off-equilibrium distribution.

C. A uniform flow passing a fixed sphere

Finally, we test the mesoscopic vorticity calculation in the present model for a flow with curved boundary: a
uniform flow passing a fixed sphere with a particle Reynolds number Rep = UD/ν = 50 and 100. As illustrated in
Fig. 9, a uniform stream u = (U, 0, 0) from the inlet passes a fixed sphere with a diameter of D = 20 and centered
at (5D, 5D, 5D). The computational domain has a size of 20D × 10D × 10D. The stress-free boundary condition
is applied to the four side boundaries, which is realized by mirror reflection. For the inlet and outlet, we use the
boundary schemes by Lou et al. [35].

Our focus here is to test the performance of mesoscopic vorticity calculation in the presence of a curved boundary.
Different from the previous two cases, here we define ζ23 = 1.0, ζ24 = 1.25 and ζ25 = 1.5, and keep the other coefficients
of high-order equilibrium moments and their relaxation parameters identical with those adopted in Table II. At the
steady state, vorticity contours in a cut across the particle center are shown in Fig. 10. For completeness, here
we also show the corresponding vorticity contours in parallel from the regular MRT model (from finite-difference
approximation) to assess the impact of modified high-order equilibrium on the accuracy of the LB model.

As clearly indicated by Fig. 10, the modification of high-order equilibrium moments does not affect the accuracy of
LBM, as the vorticity contours from regular MRT model and the present model, both from finite-difference approx-
imation are visually identical with each other. Again, the mesoscopically calculated vorticity contours contain more
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FIG. 6: Contours of vorticity in z direction at t∗ = 4 and t∗ = 8 with Re = 300 using different: (a) FD, t∗ = 4, (b)
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FIG. 7: Sketch of the 3D lid-driven cavity flow.

fluctuations around the stagnation point. This fluctuations can be reduced by either choosing finer grid resolution,
or optimizing the relevant coefficients on the vorticity calculation.

V. SUMMARY

In this paper, we proposed a new D3Q27 MRT LB model, in order to realize mesoscopic vorticity calculation. The
mesoscopic vorticity calculation, compared with the finite-difference approximation, has several advantages. First, it
requires no additional data communication when the parallel computation is involved. Second, it does not require
special treatments near complex geometric boundaries. Most importantly, same as the strain rate computation from
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TABLE III: The L2 norms of velocity and vorticity at the initial time (t∗ = 0). For completeness, the L2 norms of
strain rate components are also listed. The L2 norms of velocity w, strain rate szz = ∂zw and sxy = 0.5(∂xv + ∂yu)

are not given since at the initial stage, w, szz and sxy are identically zero in the whole domain.

nx u v w
64 6.812E-8 6.812E-8 (-)
128 1.120E-7 1.120E-7 (-)
256 1.643E-7 1.643E-7 (-)

nx ωx(FD) ωx(ME) ωy(FD) ωy(ME) ωz(FD) ωz(ME)
64 1.606E-3 7.266E-8 1.606E-3 7.266E-8 1.606E-3 1.731E-7
128 4.016E-4 1.708E-7 4.016E-4 1.708E-7 4.016E-4 1.153E-7
256 1.004E-4 1.000E-7 1.004E-4 1.000E-7 1.004E-4 1.403E-7

nx sxx(FD) sxx(ME) syy(FD) syy(ME) szz(FD) szz(ME)
64 1.606E-3 7.266E-8 1.606E-3 7.266E-8 (-) (-)
128 4.016E-4 1.708E-7 4.016E-4 1.708E-7 (-) (-)
256 1.004E-4 1.003E-7 1.004E-4 1.003E-7 (-) (-)

nx sxy(FD) sxy(ME) syz(FD) syz(ME) sxz(FD) sxz(ME)
64 (-) (-) 1.606E-3 1.138E-7 1.606E-3 1.138E-7
128 (-) (-) 4.016E-4 1.343E-7 4.016E-4 1.343E-7
256 (-) (-) 1.004E-4 1.533E-7 1.004E-4 1.533E-7

TABLE IV: The L2 norms of strain rate and vorticity errors at (t∗ = 4) in a decaying Taylor-Green flow.

nx ωx(FD) order ωx(ME) order ωy(FD) order ωy(ME) order ωz(FD) order ωz(ME) order
64 1.494E-1 (−) 1.690E-1 (−) 1.482E-1 (−) 1.563E-1 (−) 1.017E-1 (−) 2.631E-1 (−)
128 4.935E-2 1.598 4.282E-2 1.981 4.754E-2 1.640 3.851E-2 2.021 2.910E-2 1.805 6.877E-2 1.936
256 1.276E-2 1.951 7.430E-3 2.527 1.216E-2 1.967 6.416E-3 2.585 7.336E-3 1.988 1.253E-2 2.456

overall 1.775 2.254 1.803 2.303 1.896 2.196

nx sxx(FD) order sxx(ME) order syy(FD) order syy(ME) order szz(FD) order szz(ME) order
64 9.933E-2 (−) 7.895E-2 (−) 9.890E-2 (−) 7.926E-2 (−) 1.368E-1 (−) 9.364E-2 (−)
128 2.689E-2 1.885 1.847E-2 2.096 2.731E-2 1.856 1.837E-2 2.109 4.512E-2 1.601 2.365E-2 1.985
256 5.948E-3 2.177 3.829E-3 2.270 6.024E-3 2.181 3.484E-3 2.398 1.178E-2 1.937 4.363E-3 2.438

overall 2.031 2.183 2.018 2.253 1.769 2.211

nx sxy(FD) order sxy(ME) order syz(FD) order syz(ME) order sxz(FD) order sxz(ME) order
64 1.553E-1 (−) 9.850E-2 (−) 1.777E-1 (−) 1.217E-1 (−) 1.783E-1 (−) 1.269E-1 (−)
128 4.682E-2 1.730 3.114E-2 1.661 6.070E-2 1.550 3.058E-2 1.993 5.977E-2 1.577 2.933E-2 2.113
256 1.226E-2 1.933 6.771E-3 2.202 1.618E-2 1.908 6.644E-3 2.202 1.570E-2 1.928 6.725E-3 2.125

overall 1.831 1.931 1.729 2.097 1.752 2.119

the non-equilibrium moments, the mesoscopic computation of vorticity is expected to possess a second-order accuracy.

Through a detailed Chapman-Enskog analysis coupled with the concept of inverse design, we identify all the
necessary constraints required by the N-S equations. More importantly, we expose all the available degrees of freedom
in the model that can be utilized to achieve mesoscopic vorticity calculation. We have demonstrated, for the first
time, that, with 27 lattice velocities in the D3Q27 model, all the velocity and pressure gradients can be directly
computed from the non-equilibrium moments when the lattice Boltzmann model is properly designed. We argue that
at the hydrodynamic level, the equilibrium of the present MRT LB model does not need to follow the standard,
over-constrained LBGK equilibrium. Specifically, we have found that a proper prescription of anisotropy in the fifth-
order equilibrium moment can lead to appearance of the three vorticity components in the contracted fourth-order
non-equilibrium moment. The same design cannot be achieved with D3Q15 and D3Q19 lattice, since the desired
fifth-order moments are unavailable in those models. An asymptotic analysis shows that the mesoscopic vorticity
calculation in our model is of second-order accuracy.



21

TABLE V: The L2 norms of strain rate and vorticity errors at (t∗ = 8) in a decaying Taylor-Green flow.

nx ωx(FD) order ωx(ME) order ωy(FD) order ωy(ME) order ωz(FD) order ωz(ME) order
64 2.570E-1 (−) 4.736E-1 (−) 2.546E-1 (−) 3.161E-1 (−) 2.700E-1 (−) 8.547E-1 (−)
128 7.615E-2 1.755 1.533E-1 1.627 7.637E-2 1.737 7.780E-2 2.022 9.488E-2 1.509 2.429E-1 1.815
256 1.843E-2 2.047 2.965E-2 2.370 1.987E-2 1.942 1.681E-2 2.210 2.388E-2 1.990 4.809E-2 2.337

overall 1.901 2.000 1.840 2.116 1.750 2.076

nx sxx(FD) order sxx(ME) order syy(FD) order syy(ME) order szz(FD) order szz(ME) order
64 2.420E-1 (−) 2.771E-1 (−) 2.362E-1 (−) 2.589E-1 (−) 2.404E-1 (−) 2.393E-1 (−)
128 7.702E-2 1.652 9.185E-2 1.593 7.360E-2 1.682 8.678E-2 1.577 6.302E-2 1.932 7.065E-2 1.760
256 1.903E-2 2.017 2.218E-2 2.050 1.660E-2 2.148 1.961E-2 2.146 1.547E-2 2.026 1.700E-2 2.055

overall 1.834 1.822 1.915 1.861 1.979 1.908

nx sxy(FD) order sxy(ME) order syz(FD) order syz(ME) order sxz(FD) order sxz(ME) order
64 2.854E-1 (−) 4.110E-1 (−) 2.720E-1 (−) 2.650E-1 (−) 2.715E-1 (−) 3.479E-1 (−)
128 1.001E-1 1.511 1.487E-1 1.467 8.326E-2 1.708 7.774E-2 1.769 8.605E-2 1.658 1.188E-1 1.550
256 2.635E-2 1.926 3.563E-2 2.061 2.040E-2 2.029 1.735E-2 2.164 2.254E-2 1.933 3.053E-2 1.960

overall 1.718 1.764 1.868 1.966 1.795 1.755
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FIG. 8: Contours of vorticity in a lid-driven cavity flow: (a) FD ωx at nx/2 plane; (b) ME, same as (a); (c) FD, ωy
at ny/2 plane; (d) ME, same as (c); (e) FD, ωz at nz/2 plane; (f) ME, same as (e).

The resulting LB model has been validated by simulations of a decaying three-dimensional Taylor-Green vortex
flow at Re0 = 600π. The simulation results show that the modifications of irrelevant moments introduced in this
paper has no adverse impact on the physical accuracy and only a slight negative effect on the numerical stability
when compared to the standard LBM models without the capability of mesoscopic vorticity calculation. The strain
rate and vorticity calculated mesoscopically from the non-equilibrium moments are compared against the results
from the pseudo-spectral method. The second-order accuracy of the mesoscopic vorticity calculation is confirmed.
Furthermore, we briefly tested the present model in the simulations of a three-dimensional lid-driven cavity flow and
a uniform flow passing a sphere. These tests support the accuracy and robustness of our model and its mesoscopic
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vorticity calculation in the cases when solid boundaries are present.
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VI. APPENDIX: A TOP-DOWN INTERPRETATION OF THE MODEL DESIGN

In this appendix, we provide an alternative interpretation of our model design in terms of equilibrium distribution
functions. Let us divide the 27 equilibrium distribution functions into four groups: the 0-speed group α = 0; the
1-speed group α = 1, 2, ..., 6; the

√
2-speed group α = 7, 8, ..., 18; the

√
3-speed group α = 19, 20, ..., 26. Instead of

following the LBGK equilibrium distribution in Eq. (16), the equilibrium distribution in our model is modified as

f (eq)
α = wαδρ+ ρ0wα

[
b(α, 1)eα1u1 + b(α, 2)eα2u2 + b(α, 3)eα3u3

c2s
+

(eαiui)
2

2c4s
+
uiui
2c2s

]
(33)

where the first term inside the square brackets for the 1-speed group,
√

2-speed group and
√

3-speed group are
explicitly written as

f (1,eq)
α =

ρ0wα
c2s

(
3 + ζ ′1

4
u1eα1 +

3 + ζ ′2
4

u2eα2 +
3 + ζ ′3

4
u3eα3

)
, for α = 1, 2, ..., 6. (34)

f (1,eq)
α =

ρ0wα
c2s

(
3− ζ ′1

2
u1eα1 +

3− ζ ′2
2

u2eα2 +
3− ζ ′3

2
u3eα3

)
, for α = 7, 8, ..., 18. (35)

f (1,eq)
α =

ρ0wα
c2s

(ζ ′1u1eα1 + ζ ′2u2eα2 + ζ ′3u3eα3) , for α = 19, 20, ..., 26. (36)

Namely, the newly introduced adjustable parameters b(α, i), i = 1, 2, 3 are only functions of three scalar parameters ζ ′1,
ζ ′2 and ζ ′3. The standard equilibrium is recovered when ζ ′1 = ζ ′2 = ζ ′3 = 1. The above specific forms are derived directly
from the results of the bottom-up derivation presented in Section III. Note that the three coefficients have no impact
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FIG. 10: Vorticity contours in a plane cutting across the sphere center, for a uniform flow passing a sphere: (a)
standard MRT Rep = 50, (b) standard MRT Rep = 100, (c) present MRT, Rep = 50, with finite-difference

approximation, (d) present MRT Rep = 100, with finite-difference approximation, (e) present MRT, Rep = 50, with
moment equations, (f) present MRT Rep = 100, with moment equations.

on all the even moments of f
(eq)
α , provided that f

(1,eq)
α (eα) = −f (1,eq)

α (eᾱ) if eᾱ = −eα. This symmetry property is
preserved here. Here and later, the weighting coefficients wα remain identical to the values in the standard LBGK
equilibrium distributions, namely, 2/27, 1/54, 1/216, for the 1-speed,

√
2-speed, and

√
3-speed groups, respectively.

No change is made to the 0-speed group as it makes a null contribution to all moments except density. The essence
of our model design is to introduce three adjustable coefficients ζ ′1, ζ ′2, and ζ ′3 into the equilibrium distribution, in a

special manner, such that the first- and third-order moments of f
(eq)
α are unchanged, but the fifth-order moments of

f
(eq)
α are altered.

Now let us examine how the above goal is accomplished. In our model, the partial contributions of the 1-speed,√
2-speed, and

√
3-speed groups to first-order moments are, respectively,

6∑
α=1

f (1,eq)
α eα,i =

4

9
ρ0

3 + ζ ′i
4

ui, (37)
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18∑
α=7

f (1,eq)
α eα,i =

4

9
ρ0

3− ζ ′i
2

ui, (38)

26∑
α=19

f (1,eq)
α eα,i =

1

9
ρ0ζ
′
iui, (39)

where no summation is implied to the RHS for the repeated indices. Clearly, this specific design renders the summation
of the three partial contributions to the first-order moment unchanged, namely,

26∑
α=1

f (1,eq)
α eα,i = ρ0ui, (40)

which is identical to the first-order equilibrium moment of the standard LBGK model. Similarly, for the third-order
moment, the partial contributions of the 1-speed,

√
2-speed, and

√
3-speed groups are, respectively,

6∑
α=1

f (1,eq)
α eα,ieα,jeα,k =

4

27
ρ0

(
3 + ζ ′i

4
uiδjk +

3 + ζ ′j
4

ujδik +
3 + ζ ′k

4
ukδij

)
, (41)

18∑
α=7

f (1,eq)
α eα,ieα,jeα,k =

4

27
ρ0

(
3− ζ ′i

2
uiδjk +

3− ζ ′j
2

ujδik +
3− ζ ′k

2
ukδij

)
, (42)

26∑
α=19

f (1,eq)
α eα,ieα,jeα,k =

1

27
ρ0

(
ζ ′iuiδjk + ζ ′jujδik + ζ ′kukδij

)
. (43)

Therefore, the summation of three partial contributions are

26∑
α=1

f (1,eq)
α eα,ieα,jeα,k =

1

3
ρ0 (uiδjk + ujδik + ukδij) , (44)

which is again independent of ζ ′i and has an isotropic form identical to that in the standard LBGK model. Finally,
the partial contributions to the three non-trivial components of the fifth-order equilibrium moment are

6∑
α=1

f (1,eq)
α ‖eα‖4eα,i =

4

9
ρ0

3 + ζ ′i
4

ui, (45)

18∑
α=7

f (1,eq)
α ‖eα‖4eα,i =

16

9
ρ0

3− ζ ′i
2

ui, (46)

26∑
α=19

f (1,eq)
α ‖eα‖4eα,i = ρ0ζ

′
iui. (47)

Note here we focus on those components of the fifth-order equilibrium moment that are actually used in our model
(see Sec. II A and Sec. III), instead of the general form, in order to make a concise deliberation of the fifth-order
equilibrium moment. Different from the first and third-order equilibrium moments, the summation of the three partial
contributions yields

26∑
α=1

f (1,eq)
α ‖eα‖4eα,i = 3ρ0ui +

2

9
ζ ′iρ0ui, (48)

which is no longer isotropic as ζ ′i are set differently for different spatial directions. The unaltered first and third-
order equilibrium moments guarantee that the N-S equations are unaltered, while the modified fifth-order equilibrium
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moment introduces anisotropy to allow the three vorticity components to be recovered through the non-diagonal,

contracted fourth-order non-equilibrium moment Rij ≡
∑
f

(neq)
α |eα|2eαieαj . Namely, while Rij remains symmetric,

its non-diagonal components can be expressed, based on the Chapmann-Enskog expansion, as

Ryz = Rzy ≈ −ρ0τδt

[
2

3
+
ζ ′2 + ζ ′3

18

]
(∂yw + ∂zv) + ρ0τδt

(ζ ′2 − ζ ′3)

18
ωx, (49)

Rxz = Rzx ≈ −ρ0τδt

[
2

3
+
ζ ′3 + ζ ′1

18

]
(∂zu+ ∂xw) + ρ0τδt

(ζ ′3 − ζ ′1)

18
ωy, (50)

Rxy = Ryx ≈ −ρ0τδt

[
2

3
+
ζ ′1 + ζ ′2

18

]
(∂xv + ∂yu) + ρ0τδt

(ζ ′1 − ζ ′2)

18
ωz, (51)

which contain the three vorticity components explicitly when ζ ′1 6= ζ ′2 6= ζ ′3. These are also fully consistent with the
more general results shown in Eqs. (20a) to (20c).
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