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Based on phase-field theory, we introduce a robust lattice Boltzmann equation for modeling immis-
cible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying
the method proposed by Zu and He [Y. Q. Zu and S. He, Phys. Rev. E 87, 043301 (2013)] in
such a way as to improve efficiency and numerical stability. In particular, we employ a different
interface-tracking equation based on the so-called conservative phase-field model, a simplified equi-
librium distribution that decouples pressure and velocity calculations, and a local scheme based
on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two
distribution functions for interface tracking and recovery of hydrodynamic properties, the only non-
local variable in the proposed model is the phase field. Moreover, within our framework there is no
need to use biased or mixed difference stencils for numerical stability and accuracy at high density
ratios. This not only simplifies the implementation and efficiency of the model, but also leads to
a model that is better suited to parallel implementation on distributed-memory machines. Several
benchmark cases are considered to assess the efficacy of the proposed model, including the layered
Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble
in a duct. The numerical results are in good agreement with available numerical and experimental
data.
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I. INTRODUCTION1

Numerical modeling of multiphase flows remains a challenging subject in fluid mechanics. Despite significant2

advances in computational fluid dynamics (CFD), configurations featuring high density ratios and/or high Reynolds3

numbers remain intractable [1]. In addition, the interfacial region between immiscible fluids is typically of the order4

of nanometers, which makes it impractical for macroscopic CFD techniques to resolve these regions.5

As an alternative, diffuse-interface modeling represents a compelling approach for the numerical simulation of6

multiphase flows [2]. In diffuse-interface methods, the sharp interface between different fluids is replaced with a7

smooth transition region across which fluid properties change continuously, thereby removing abrupt jumps and8

potential singularities at the interface. Several diffuse-interface models exist [1]. In this study, we will use the so-9

called conservative phase-field model [3], which is a subclass of diffuse-interface models [4], for interface tracking10

purposes.11

Given the mesoscopic nature of interfacial flows, the lattice Boltzmann method (LBM) stands out as a natural12

candidate, and a well-established tool, with which the governing equations can be solved [5–7]. Historically, there13

are four major classes of lattice Boltzmann (LB) models for multiphase flows. These are the chromodynamic or14

color-gradient model [8], the pseudo-potential model [9, 10], the free-energy model [11], and the mean-field model [12].15

For the most part, the primitive forms of these models suffer from numerical artefacts and other restrictions such as16

the lack of Galilean invariance, large spurious velocities, and inability to model multiphase flows with large density17

contrasts [13]. Consequently, these models have been incrementally improved over the past few decades [14–23]. A18

good review of previous LB models and recent advancements in the field can be found in Refs. [21, 23].19

Despite continued progress in LBM for studying multiphase flows, there remains plenty of scope for further im-20

provement, particularly in situations where the density ratio, viscosity ratio, and/or the Reynolds number is high. In21

this study, we propose a novel LB model for direct numerical simulation of multiphase flows at high density ratios.22

Rather than using the traditional Cahn-Hilliard equation [4], the present model consists of an LB equation (LBE)23

for interface tracking [24] based on the conservative phase-field equation [3]. We also adapt and build on Zu and24

He’s [18] LBE for recovering the hydrodynamic properties. Compared with existing LB models based on advanced25

free-energy [15, 17] or phase-field models [16, 22], the proposed model is more efficient and more accurate, especially26

for configurations featuring large density ratios. Our model maintains stability and accuracy at high density ratios27

without needing to use mixed (combination of central and biased) finite-difference (FD) schemes as is the case in28

some advanced free-energy models [15]. Aside from the complexity in implementation, using mixed FD schemes is29

known to potentially compromise mass and momentum conservation [25]. The proposed model is also equipped with30

a multiple-relaxation time (MRT) collision operator [17, 26] to enhance stability when modeling flows with both small31

viscosities as well as large viscosity contrasts. Moreover, the proposed LBM consists of only one non-local variable, i.e.32

the phase field, for which FDs are required to calculate its derivatives. Limiting the non-locality of data in the model33

improves its parallel performance, particularly on GPUs, which in turn makes the model suitable for high-performance34

computing.35

We examine the accuracy of the proposed LBM by simulating three two-dimensional (2D) benchmark problems.36

The first is a gravity-driven, two-layer flow in a rectangular channel, which, in the context of color-gradient models,37

has been used to test corrections and improved accuracy and stability schemes at high density and viscosity ratios38

[19, 27]. The second benchmark case is the well-known Rayleigh-Taylor instability, for which the results are compared39

with existing numerical simulations. We use the model to simulate fluid properties similar to an air-water system40

at a relatively high Reynolds number, a case that to the best of our knowledge has escaped previously proposed LB41

models. The third and last benchmark is the buoyancy-driven motion of a planar Taylor bubble in a duct. For this,42

results of the bubble shape profile are compared to previous numerical findings and the rise velocity is compared with43

reported results from theoretical and numerical models as well as experimental studies, and good agreement is found.44

After highlighting the robustness of the model through the benchmark cases above, the computational efficiency is45

assessed against recent phase-field-based LB models.46

II. MACROSCOPIC EQUATIONS47

A. Interface tracking equation48

The interface-tracking equation in this study is built upon the Allen-Cahn equation [28] as opposed to the commonly49

used Cahn-Hilliard theory [29]. We use a specific version of the phase-field model [30] that was proposed by Sun and50

Beckermann [31] and reformulated in conservative form [3] to improve conservation properties. In what follows, we51

shall refer to this formulation as the conservative phase-field model [3]. In this model, the phase field, φ, assumes two52

extreme values, φL and φH, in the bulk of the light and heavy fluids, respectively. The phase-field equation governs53
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the evolution of the interface between the two fluids [3],54

∂φ

∂t
+ ∇ · φu = ∇ ·M

[(

∇φ− ∇φ

|∇φ|

[

1 − 4(φ− φ0)2
]

ξ

)]

, (1)

where t is time, u is the macroscopic velocity vector, M is the mobility, ξ is the interfacial thickness, and φ0 =55

(φL + φH)/2 indicates the location of the interface. The equilibrium profile of the phase field for an interface located56

at x0 is assumed to vary according to57

φ(x) = φ0 ±
φH − φL

2
tanh

(

x− x0

ξ/2

)

, (2)

which is typically used to set the initial condition for the phase field. The ± sign is chosen such that the minimum58

value of the phase field is assigned to the light fluid. For example, the plus sign is used for initializing an air bubble59

while the minus sign is used for a liquid drop.60

B. Navier-Stokes equations61

The continuity and momentum equations for incompressible multiphase flows are given by,

∂ρ

∂t
+ ∇ · ρu = 0, (3a)

ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p + ∇ ·
(

µ
[

∇u + (∇u)T
])

+ Fs + Fb, (3b)

where ρ and µ are the local fluid density and viscosity, respectively, p is the macroscopic pressure, Fb is a body force,62

and Fs is the surface tension force. In this work, the surface tension force takes the form63

Fs = µφ∇φ, (4)

where64

µφ = 4β(φ− φL)(φ − φH)(φ − φ0) − κ∇2φ, (5)

is the chemical potential for binary fluids. The coefficients β and κ are related to the surface tension, σ, and interface65

thickness, ξ, by β = 12σ/ξ and κ = 3σξ/2.66

III. LATTICE BOLTZMANN EQUATIONS67

A. LBE for interface tracking68

We propose the following LBE for tracking the interface between different fluids [24]69

hα(x + eαδt, t + δt) = hα(x, t) − hα(x, t) − h̄eq
α (x, t)

τφ + 1/2
+ Fφ

α (x, t), (6)

in which the forcing term is given by70

Fφ
α (x, t) = δt

[

1 − 4(φ− φ0)2
]

ξ
wαeα · ∇φ

|∇φ| , (7)

and hα is the phase-field distribution function, τφ is the phase-field relaxation time, and wα and eα are the weight71

coefficients and the mesoscopic velocity set, respectively. For the D2Q9 lattice used in this study w0 = 4/9, w1−4 = 1/9,72

w5−8 = 1/36 [32], and73

eα = c







(0, 0), α = 0
(cos θα, sin θα), θα = (α− 1)π/2, α = 1 – 4

(cos θα, sin θα)
√

2, θα = (2α− 9)π/4, α = 5 – 8
, (8)
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where c = δx/δt, and δx and δt are the length scale and time scale of the underlying lattice, respectively. On uniform74

grids, it is common practice to take δx = δt = 1 lu (lattice units). The equilibrium phase-field distribution function75

is defined as76

h̄eq
α = heq

α − 1

2
Fφ
α , (9)

where heq
α = φΓα and77

Γα = wα

[

1 +
eα · u
c2s

+
(eα · u)2

2c4s
− u · u

2c2s

]

(10)

is the dimensionless distribution function. The speed of sound in the system is defined as cs = c/
√

3. The mobility,78

M , is related to the phase-field relaxation time by79

M = τφc
2
sδt. (11)

The phase field is updated by taking the zeroth moment of the phase-field distribution function after the streaming,80

or propagation, step81

φ =
∑

α

hα. (12)

Then the density, ρ, is calculated by linear interpolation82

ρ = ρL + (φ − φL)(ρH − ρL), (13)

where ρL and ρH are the densities of the light and heavy fluids, respectively.83

Details of the conservative phase-field model have been previously discussed in the literature [22, 24]. However, it is84

worth noting that the current model for interface tracking is intended for immiscible (multicomponent), incompressible85

fluids as opposed to various other LB methods that are developed for the study of miscible (single-component) fluids86

[20]. A comparative study between the Cahn-Hilliard-based and Allen-Cahn-based LB models for the interface-87

tracking equation was conducted in Ref. [33]; however, no hydrodynamic interactions were considered. Moreover, in88

contrast to the D2Q9 lattice used in the present study, a less isotropic lattice (D2Q5) was used in Ref. [33]. It has89

been argued in Ref. [34] and shown in Ref. [35] that this type of lattice structure reduces accuracy in simulations.90

In the current phase-field formulation, we neglect a high-order temporal term for the sake of efficiency and locality91

of the model. Previous studies have analyzed this term (see Eq. (17) in Ref. [36]), which is related to the temporal92

derivative of the phase-field flux. Ren et al. [36] compared the complete formulation to the original scheme presented93

in Ref. [24], neglecting the nonlinear terms in their equilibrium distribution function. Meanwhile, Chai and Zhao [34]94

argued that using a linear equilibrium distribution function leads to additional numerical diffusion in the recovered95

advection-diffusion equation. Aside from the fact that having a temporal derivative in the scheme impedes the96

efficiency and implementation of the algorithm on parallel machines, we did not see any significant improvement in97

our results after inclusion of the high-order term.98

B. LBE for hydrodynamics99

In this study, we propose some improvements to the velocity-based LB approach proposed by Zu and He [18]. The100

LBE for hydrodynamics is defined as101

gα(x + eαδt, t + δt) = gα(x, t) + Ωα(x, t) + Fα(x, t), (14)

where the hydrodynamic forcing is102

Fα(x, t) = δt wα

eα · F
ρc2s

, (15)

and gα is the velocity-based distribution function for incompressible fluids with its modified equilibrium distribution103

given by104

ḡeqα = geqα − 1

2
Fα, (16)
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where105

geqα = p∗wα + (Γα − wα), (17)

and p∗ = p/ρc2s is the normalized pressure.106

Here, the modified equilibrium distribution function in Eq. (16) is defined by subtracting half of the forcing term107

(according to trapezoidal rule or Crank-Nicholson discretization) from the regular equilibrium distribution function108

to simplify the collision step, particularly when the MRT model is used [17]. After substituting Eq. (16) into Eq. (14)109

and rearranging, we obtain Fα(x, t) = δt

(

1 − 1

2τ

)

wα

eα · F
ρc2s

, which is consistent with Eq. (20) in Guo et al. [25] to110

leading order in velocity. This is also the same forcing term that was proposed and verified in Ref. [18]. Using this111

forcing term, Zu and He [18] derived the governing macroscopic equations. We have also examined the higher-order112

form of the forcing term, but did not observe any noticeable difference in the results. This is likely due to the fact113

that the external force F in multiphase LB models is small, i.e. |F | ∼ O(Ma2).114

The collision operator, Ωα, is defined in Eqs. (26) and (27), and the forcing term is [18]115

F = Fs + Fb + Fp + Fµ, (18)

where Fp and Fµ are two additional terms in the velocity-based formulation [18]. The pressure force can be written116

as117

Fp = −p∗c2s∇ρ, (19)

and the viscous force is (see Eq. (31) for implementation)118

Fµ = ν
[

∇u + (∇u)T
]

·∇ρ, (20)

where ν is the kinematic viscosity, which is related to the hydrodynamic relaxation time, τ , by,119

ν = τc2sδt. (21)

Given the link between the relaxation time and fluid properties, there are many ways to calculate the relaxation120

time from the phase field. First we discuss two of the more popular approaches, and then we propose a new technique,121

which will be shown to be more consistent and more accurate (see Sec. IV A). One approach is to use a harmonic122

interpolation, which favors lower values, to calculate the relaxation time [15]123

1

τ
=

1

τL
+ (φ − φL)

(

1

τH
− 1

τL

)

, (22)

where τL and τH are the relaxation rates for the light and heavy fluids, respectively. Another common approach is to124

use a linear interpolation, which typically favors larger values,125

τ = τL + (φ− φL) (τH − τL) . (23)

This, from Eq. (21), is equivalent to calculating the kinematic viscosity of the fluid using a linear interpolation.126

Alternatively, here we propose that the dynamic viscosity is first updated using a linear interpolation such that127

µ = µL + (φ− φL) (µH − µL) , (24)

where µL and µH are the viscosities of the light phase and heavy phase, respectively. After calculating the viscosity128

of the fluid, we can simply compute the relaxation time via129

τ =
µ

ρc2s
. (25)

As will be shown in Sec. IV A, Eq. (25) leads to the most accurate results in LB simulations.130

The simplest form commonly used for the collision operator is the single-relaxation-time (SRT) or Bhatnagar-Gross-131

Krook (BGK) model,132

ΩBGK

α = −gα − ḡeqα
τ + 1/2

. (26)
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Another popular choice is the more sophisticated multi-relaxation-time (MRT) model [26], which has been shown to133

be more accurate and more stable than the BGK model [17]:134

ΩMRT

α = −M
−1

ŜM (gα − ḡeqα ) , (27)

where M is an orthogonal matrix for transforming the distribution functions from physical space into moment space135

[26], and Ŝ is a diagonal relaxation matrix, which may take the following form [17]136

Ŝ = diag(1, 1, 1, 1, 1, 1, 1, sν , sν), (28)

where137

sν =
1

τ + 1/2
. (29)

One of the benefits of the LBM is that the deviatoric stress tensor can be locally obtained in terms of the hydrody-138

namic distribution function. For the BGK model, the viscous force in the i-direction (Fµ,i, i ∈ x, y), can be obtained139

from140

FBGK

µ,i = − ν

(τ + 1/2)c2sδt

[

∑

α

eαieαj(gα − geqα )

]

∂ρ

∂xj

, (30)

while for the MRT model141

FMRT

µ,i = − ν

c2sδt





∑

β

eβieβj
∑

α

(M−1
ŜM)βα(gα − geqα )





∂ρ

∂xj

. (31)

It is worth highlighting the main differences between the present model and the one put forth by Zu and He [18].
Aside from a major difference in the interface tracking LBEs, in that they use a Cahn-Hilliard type model while we
use a conservative phase-field model, there are subtle, but important, differences in the hydrodynamic LBEs. The
most notable is that Zu and He [18] used FDs to calculate the forcing term in Eq. (20). This adds the velocity
vector to the list of non-local variables (i.e. distribution functions and phase field), which can impede optimal parallel
computation. Another difference is that our equilibrium distribution function in Eq. (16) is not only modified to make
the collision step simpler, but is also calculated all at once as a vector. This is in contrast to the way the equilibrium
distribution function was written in Ref. [18], which distinguishes the particle distribution function at rest (α = 0)
with other directions. The third difference is that the velocity and pressure are coupled in Ref. [18] and, consequently,
an iterative, predictor-corrector scheme is required to update the hydrodynamic pressure and velocity. In our model,
after solving the LBE (14) using a routine collision-streaming sequence, the hydrodynamic properties are updated
independently according to

p∗ =
∑

α

gα, (32a)

u =
∑

α

gαeα +
F

2ρ
δt. (32b)

Note that the velocity is updated after the pressure and, as such, there is no need for the predictor-corrector scheme.142

Additionally, the gradient of density in Eqs. (19) and (30) can be replaced with the gradient of the phase field using143

Eq. (13),144

∇ρ = (ρH − ρL)∇φ, (33)

hence making φ the only nonlocal macroscopic variable in our multiphase LB model. This is beneficial for parallel145

computations on distributed memory machines. Instead of treating the eα ·∇φ terms as directional derivatives along146

the lattice links, as was done in Ref. [15], we compute the derivatives of the phase field in Eqs. (4), (5), (7), and (33)147

using second-order, isotropic centered differences [37–39], and then execute the dot product. Specifically, the gradient148

of the phase field in Eqs. (4), (7), and (33) is calculated by149

∇φ =
c

c2sδx

∑

α

eαwαφ(x + eαδt, t), (34)
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and its Laplacian in Eq. (5) is calculated by150

∇2φ =
2c2

c2s(δx)2

∑

α

wα [φ(x + eαδt, t) − φ(x, t)]. (35)

This enhances the computational efficiency of the proposed model when compared with the model proposed by Lee151

and Liu [15], who utilized central differences in the calculation of the forcing term for the equilibrium distribution152

function while employing mixed (central and biased) differences in the collision step. Using a combination of central153

and biased differences has been shown to compromise conservation of mass and momentum [25]. As to the collision154

model, we use Ωα = ΩMRT

α to obtain stable results at high Reynolds numbers.155

IV. RESULTS156

Before starting rigorous test studies in the following sections, it is worthwhile to discuss the choice of φL and φH157

in LB models. Based on our experience, it is better to use φL = −0.5 and φH = 0.5 when the density ratio is one158

(or when ρL ≃ ρH). This leads to perfect symmetry in the results. For example, in Section 5.3.2 of Ref. [22], a slight159

difference in the peak-to-peak values of the lift coefficient was observed for two antisymmetric setups (see Table 2 in160

[22]). This is because φL = 0 and φH = 1 was used for a density ratio of one. If we use φL = −0.5 and φH = 0.5 it leads161

to having exactly the same values for the peak-to-peak lift coefficients. On the other hand, using φL = 0 and φH = 1162

leads to more stable results when we have a noticeable density ratio. Particularly, at high density ratios, we might163

encounter numerical instability if φL = −0.5 and φH = 0.5. The reason for this is that LBM is weakly compressible,164

thereby the divergence of velocity is not exactly zero. As such, the advection term (∇ · φu) in Eq. (1) might not165

vanish in the bulk of the fluids if φ 6= 0. The compressibility issue is more problematic in the light (i.e. gas) phase166

than in the heavy (i.e. liquid) phase. Therefore, using φL = 0 for the light phase causes the advection term to vanish167

in the bulk, and therefore enhances numerical stability. Throughout the simulations presented in this paper we use168

φL = 0 and φH = 1, which gives φ0 = 0.5.169

A. Two-phase Poiseuille flow170

The gravity-driven flow of a two-layer fluid in a rectangular channel is a simple but informative benchmark for171

assessing multiphase LB models [19, 27]. Suppose we have a channel with periodic boundaries in the x-direction172

which is bounded by two walls at the bottom (y = 0) and top (y = L). The channel is filled with a light fluid from173

the bottom wall to the centerline (y = L/2) and a heavy fluid from the centerline to the top. The bulk properties of174

the fluids are ρL and µL in the lower half of the domain and ρH and µH in the upper half. A body force Fb = ρgx̂,175

where g is the magnitude of acceleration in the x-direction, is applied to the entire domain. In the absence of surface176

tension, the Navier-Stokes equation simplifies to177

d

dy

(

µ
dux

dy

)

+ ρg = 0, (36)

where ux is the x-component of the velocity vector. The density and viscosity of the fluids are given by

ρ(y) =
ρH + ρL

2
− ρH − ρL

2
tanh

(

2y − L

ξ

)

, (37a)

µ(y) =
µH + µL

2
− µH − µL

2
tanh

(

2y − L

ξ

)

. (37b)

We can solve Eq. (36) using a second-order, compact FD scheme and consider the result as the diffuse-interface178

solution.179

First let us evaluate the accuracy of the interpolation scheme for updating the relaxation time in Eqs. (22)–(25) by180

considering two cases. Denoting the density and viscosity ratios by ρ∗ = ρH/ρL and µ∗ = µH/µL, we fix the viscosity181

ratio µ∗ = 100 (τH = 0.5 lu) and consider one case with ρ∗ = 1 and another case with ρ∗ = 10. Here, the height182

of the channel is resolved using 64 grid points with ξ = 4 lu and g = 10−6 lu. The results are shown in Fig. 1.183

The velocity profiles are normalized by the maximum velocity in the channel obtained from the FD solution. When184

there is no density difference in the system, as is the case in Fig. 1(a), both Eq. (23) and Eq. (25) lead to accurate185

calculation of the velocity profile in the channel while Eq. (22) overestimates the expected solution. Increasing the186
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FIG. 1. Effect of using different interpolation schemes for updating the relaxation time in the layered Poiseuille flow at µ∗ = 100
(τH = 0.5 lu) with (a) ρ∗ = 1 and (b) ρ∗ = 10. The FD solution is shown by the solid back line, the black cross symbols
represent the use of the harmonic interpolation in Eq. (22), the blue symbols (I) represent the use of the linear interpolation in
Eq. (23), and the red circles represent the use of the dynamic viscosity to update the relaxation time according to Eq. (25).

density ratio to 10 in Fig. 1(b) reveals that using the local dynamic viscosity to update the relaxation time according187

to Eq. (25) gives us the most accurate solution. Therefore, we employ Eq. (25) to update the relaxation time in188

the simulations in the remainder of this section. The reason Eq. (22) over predicts the velocity is that, as shown in189

Fig. 2, the harmonic interpolation gives too much weight to the lower viscosity in the system. Similarly for the large190

density ratio case Eq. (23) does not weight density and viscosity appropriately, while Eq. (25) is the most physically191

consistent approach.192

Next, we compare the accuracy of three different LB models in calculating this layered Poiseuille flow problem. The193

first method is the standard, momentum-based phase-field LBM proposed in Refs. [16, 22], wherein central differences194

are employed to calculate the gradient of the phase-field. The second model is the standard, momentum-based LBM195

proposed in Refs. [15, 40], wherein mixed differences are employed to calculate the gradient of the phase-field. And196

the third model is the current velocity-based phase-field LBE.197

The steady-state velocity profile obtained using the FD scheme, as well as using the aforementioned LB models198

is shown in Fig. 3 for three different density ratios at µ∗ = 100 (τL = 0.5 lu). As can be seen in Fig. 3, using199

the momentum-based LBM with central differences [22] deteriorates the accuracy of the results, especially at higher200

density ratios. The results of the model proposed in Ref. [40] and the current LB model are both in good agreement201

with the FD results, although the current model performs best in all cases.202

The grid dependence of the results is also shown by conducting a convergence study using different grid resolutions203

and measuring the L2-norm of the numerical error according to204

‖δu‖2 =

√

√

√

√

√

∑

y

(ux − uFD

x )2

∑

y

(uFD

x )2
. (38)

Figure 4 shows the L2-norm of the error versus the number of grid points in the y-direction for ρ∗ = 1000 and205

µ∗ = 100 (τL = 0.5 lu) at a constant Cahn number Cn = ξ/L = 3/32. As can be seen, the current method produces206

the lowest error and also has the fastest convergence rate among all three models tested. It is worth noting that we207

use link bounce-back at the bottom and top boundaries, which in the case of single-phase flows would result in a208

second-order convergence rate [41]. For a two-layer Poiseuille flow, however, the relaxation times at the bottom and209

top of the domain are different, which leads to a shift in the actual wall-location as we refine the mesh. In other210
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FIG. 2. The behavior of the relaxation time using different interpolation schemes (ρ∗ = 10 and µ∗ = 100).
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(b)
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0
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1

FD
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LBM (mixed)
LBM (current)

ρ∗  = 1000

(c)

FIG. 3. Normalized velocity profile for the two-phase Poiseuille flow at µ∗ = 100 (τL = 0.5 lu) and density ratio of (a) 10,
(b) 100, and (c) 1000. The FD solutions are shown by solid back lines, the LB results of Ref. [22] are labeled “central” and
shown by green squares, the LB results of Ref. [40] are labeled “mixed” and shown by blue triangles, and the current results
are labeled “current” and shown by red circles.

words, the effective location of the wall, where the velocity is zero, is not necessarily aligned half-way between the211

boundary nodes and the adjacent fluid nodes [42]. That might explain why we do not observe a second-order rate of212

convergence.213
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FIG. 4. Convergence study for the layered Poiseuille flow at ρ∗ = 1000 and µ∗ = 100 (τL = 0.5 lu).

B. Rayleigh-Taylor instability214

The instability created when a heavy fluid layer lays above a lighter fluid within a gravitational field, g, is a common
multiphase flow benchmark problem [12, 18, 36, 43]. Perturbing the interface causes an instability called the Rayleigh-
Taylor instability, whereby the heavy fluid penetrates into the lower layer. This problem has been widely studied due
to its relevance in numerous natural and engineering phenomena [44]. Our setup consists of a domain [0,L]×[−2L, 2L],
in which wall boundaries restrict the vertical direction, and periodic conditions are applied horizontally. The top of
the domain consists of the heavy fluid (ρH, µH), while the light fluid (ρL, µL) is situated below this. The initial
interface position is a flat line at y = 0, which is then perturbed by a cosine function

x0 = 0.1 L × cos(2πx/L). (39)

The phase field is then initialized according to

φ(x) = φ0 +
φH − φL

2
tanh

( |x− x0|⊥
ξ/2

)

, (40)

where |x−x0|⊥ is the signed distance from any grid point to x0. It should be noted that two additional initialization215

strategies were tested. In the first, a sharp interface was used, while in the second the phase field was defined as216

φ = φ0 +
φH − φL

2
tanh

(

y − y0
ξ/2

)

, (41)

where y0 is the initial height of the interface. In all of the cases considered, we did not observe any significant difference217

between the final results.218

In order to compare the results of the current model to others existing in the literature, the dimensionless Atwood
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and Reynolds numbers are defined as

At =
ρH − ρL

ρH + ρL

, (42)

Re =
ρHU0L

µH

, (43)

where U0 =
√

gL is the reference velocity scale. In order to uniquely define all physical quantities, we need two
additional dimensionless parameters, namely the viscosity ratio µ∗ and the capillary number

Ca =
µH U0

σ
. (44)

Additionally, the numerical Péclet number is defined as219

Pe =
U0L

M
. (45)

For verification purposes, the computational parameters are specified consistently with Ref. [36]. A reference length220

of 256 lu is taken and a reference time is specified as t0 =
√

L/g At = 16000 lu, such that t∗ = t/t0 is dimensionless221

time. Other parameters are µ∗ = 1, Ca = 0.26, and ξ = 5 lu. In this section, the relaxation time is calculated222

through a linear update according to Eq. (23). It was found that the very low simulation viscosities used to obtain223

high Reynolds numbers caused numerical instabilities if the viscosity update in Eq. (25) was used, suggesting that224

the benefits we identified in the previous section may also come with potential shortcomings.225

The time evolution of the Rayleigh-Taylor instability for At = 0.500 is depicted in Fig. 5. Here, Re = 3000 and226

Pe = 1000 are chosen to match the flow regime found in previous studies [18, 36, 43]. The heavy fluid is observed to227

symmetrically penetrate the lighter fluid, prior to the generation of counter-rotating vortices. The notable instability228

of these vortices can be seen as they shed into a wake region behind the heavy liquid front.229

The results of the widely used momentum-based LBM using either isotropic central difference [22] or mixed difference230

[40] schemes, along with the benchmark data from previous studies [18, 36, 43] are compared with the currently231

proposed model. Figure 6 shows the dimensionless positions of the bubble and liquid fronts versus dimensionless time.232

It is clear that the results obtained using the current model agree well with previously published data. The results233

obtained using different LB schemes are also in close agreement with each other, suggesting reasonable accuracy for234

the case where the density ratio is relatively low.235

Currently, there exists few studies which analyze the high-density-ratio Rayleigh-Taylor instability using phase-field236

theory. Reference [36] looked to qualitatively assess this problem for a moderate density ratio at a high Reynolds237

number (ρ∗ = 99 and Re = 3000), and Ref. [45] presented results for a high density ratio at a moderate Reynolds238

number (ρ∗ = 1000 and Re = 200). Here we look to use the model we have proposed to capture both a high-density-239

ratio and a high-Reynolds-number flow (ρ∗ = 1000 and Re = 3000). The viscosity ratio for the simulation is 100 to240

match a system similar to air-water, and the Capillary number is 0.44. Figure 7 shows the time evolution where the241

model is seen to stably capture the propagation of both the high and low density fronts. To the best of our knowledge,242

this is the first published example of a phase-field LB model capable of capturing the Rayleigh-Taylor instability with243

both a high density ratio and a relatively high Reynolds number. This is particularly promising as the model proposed244

in Ref. [36] with an MRT scheme was reportedly not able to capture the situation investigated here.245

C. Planar Taylor bubble246

There is significant practical interest in the motion of long bubbles due to their relation to modeling the flow of247

liquid slugs commonly seen in the oil and gas industry, nuclear reactors, and chemical engineering. The variable rate248

of gas flow within a confined geometry such as a pipe or channel can lead to a number of characteristic interface249

topologies, commonly reported as flow regimes. At low gas flow rates a bubbly flow occurs where a large number of250

small, mostly spherical bubbles, rise through the fluid domain. Higher gas rates typically result in an increased rate of251

bubble coalescence, eventually forming a reduced number of larger bubbles that occupy nearly the entire cross-section252

of the domain. As these bubbles propagate, they form an elongated bullet-shape due to the wall confinement and253

are often referred to as a Taylor bubble. The Taylor bubbles are separated by liquid slugs, within which smaller gas254

bubbles may still be observed.255

As a single Taylor bubble rises through a dense fluid, the viscous, inertial, and interfacial forces acting on it can256

have significant influence on both its shape and its rise velocity. The shape of the Taylor bubble can be characterized257

by a rounded leading edge followed by an almost cylindrical or rectangular body depending on the flow domain.258
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(a)t∗ = 0 (b)t∗ = 1 (c)t∗ = 2 (d)t∗ = 3

FIG. 5. The evolution of a single mode Rayleigh-Taylor instability at At = 0.500 (ρ∗ = 3), Re = 3000, µ∗ = 1, Ca = 0.26, and
Pe = 1000.

The trailing edge shape depends strongly on the flow condition and liquid properties with flat, rounded, indented or259

jagged profiles reported in the literature. Flow separation in the wake can also be expected for Taylor bubbles at260

moderate Reynolds numbers, with the transition to separation observed at a Reynolds number between 13.4 and 32.6261

for tubular flows [46]. Increasing Reynolds number also indicates a transition to an inertial regime, in which viscous262

and interfacial forces have a lesser, or in some cases negligible, impact on the flow dynamics.263

In this section, the proposed model is used to simulate the rise of a planar Taylor bubble through stagnant fluid in264

an inertial regime. This case has been studied theoretically [47, 48], numerically [49, 50], and experimentally [48] by265

a number of authors, and a summary of these works can be found in [51]. Table I reproduces the findings of Ref. [51]266

to present the propagation speeds expected for this benchmark case. It is noted here that V ∗
∞

is the dimensionless267

rise velocity of the bubble, commonly referred to as the Froude number,268

Fr = V ∗

∞
=

ur

U0

, (46)

where ur is the rise velocity, U0 =
√

gL is the characteristic velocity, and L is the length of the channel in the y-
direction. The results presented here are determined under the assumption of small surface tension and a bubble rise
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FIG. 6. Time evolution of the Rayleigh-Taylor instability at At = 0.500 (ρ∗ = 3), Re = 3000, µ∗ = 1, Ca = 0.26, and Pe = 1000
for (a) bubble front position and the (b) liquid front position. Comparative results were extracted from Refs. [18, 36, 43]. The
value of yi defines the interface position at (a) x = 0 and (b) x = L/2 during the simulation.

TABLE I. Planar Taylor bubble results for dimensionless rise velocity (V ∗

∞
) with negligible surface tension, re-created from the

works of Ref. [51].

Authors Approach V ∗

∞

Birkhoff & Carter (1957) [47] Inviscid theory 0.23
Watson (in [47]) Experimental 0.22-0.23
Griffith (in [47]) Experimental 0.23
Collins (1964) [48] Inviscid theory 0.23
Collins (1964) [48] Experimental 0.22-0.23
Mao & Dukler (1990) [49] Numerical 0.22
Ha-Ngoc & Fabre (2004) [50] Numerical 0.22

Reynolds number,

Rer =
ρHurL

µH

≥ 100. (47)

In addition to the results provided in Table I, Ha-Ngoc and Fabre [50] provided the numerical results for the bubble269

Froude number as a function of the Eötvös number,270

Eo =
(ρH − ρL)gL2

σ
. (48)

They were able to conclude that at low surface tensions, the Froude number of the Taylor bubble was independent271

of the Eötvös number, tending towards Fr = 0.22. Additionally, the authors managed to predict the Taylor bubble272

shapes using the boundary element method for Eo = 10, 100, and 1000. In this work, we look to compare stabilized273

interface profiles, as well as the bubble rise velocity, with Eo = 100 using the proposed LBM.274

Figure 8 indicates the problem construction used to analyze the planar Taylor bubble. Here, a rectangular gas275

region with a semicircular front is initialized and a gravitational acceleration is applied acting against the direction276

of curvature. The bubble then propagates along the channel, transported by the liquid movement and gravitational277

effects. The simulation domain was defined as [10L × L], with L being equal to 259 lu and an outer layer of nodes278

flagged as solid surrounding this with full bounce-back applied. The fluid properties are µ∗ = 100 and ρ∗ = 1000279

(At = 0.998), typical of an air–water system, and the gravitational force Fb = −ρgx̂ is applied to the entire fluid. A280

reference time was defined as per Sec. IV B, with t0 = 24000. To match the flow conditions described in Ref. [50], we281

specify Rer = 200 using the expected Fr = 0.22 and Eo = 100.282

Figure 9 shows the time evolution of the Taylor bubble with the grey region representing fluid where φ = 1 and283

white region where φ = 0. The expansion of the liquid film as it passes the end of the bubble induces a recirculating284
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(a)t∗ = 0.0 (b)t∗ = 1.0 (c)t∗ = 1.5 (d)t∗ = 2.0

FIG. 7. The evolution of a single mode Rayleigh-Taylor instability at At = 0.998 (ρ∗ = 1000), Re = 3000, µ∗ = 100, Ca = 0.44,
and Pe = 1000.

x

y

ρH, µHρL, µL

Fb

FIG. 8. Domain schematic of the slug flow tests for the Taylor bubble rise. The fluid domain size is 10L × L, and the initial
bubble size is 3L × 4L/5.

wake region that causes extension of the trailing edge and is capable of liberating smaller bubbles from the initial gas285

region. Here the shearing force from the heavy fluid and the recirculation of the falling liquid layer was sufficient to286

cause a continuous breakup and coalescence-type behavior in the bubble wake. This behavior in the wake region was287

observed to have no significant impact on the shape of the Taylor bubble front or the rise velocity.288

Six contours of the stabilized shape profile found at the conclusion of the simulation are displayed in Fig. 10. Here289

we highlight that a diffuse-interface model was used for these simulations and, as such, contours of the phase field are290

graphed for comparison with the sharp-interface result in Ref. [50]. It is seen that the center of the diffuse interface291

produces a thinner Taylor bubble, but the curvature of the outer regions of the diffuse layer appear to match quite292
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FIG. 9. The time evolution of the planar Taylor bubble with snapshots taken at t∗ = 0, 4, 8, 12, 16, 20. The fluid properties are
defined by ρ∗ = 1000 and µ∗ = 100, while the flow condition is specified through Rer = 200 and Eo = 100.

well with the sharp interface solution.293
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FIG. 10. Contours of the phase field for a Taylor bubble at t∗ = 20 with Eo = 100 and Rer = 200. The results from Ref. [50]
were supplied by Dr. Jean Fabre allowing for the current LBM outputs to be compared with the profile obtained using the
boundary element method. The values xi and yi are used to define the interface location with respect to the bubble nose
located at (3,0).
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The steady rise velocity was found by tracking the position of the bubble front, where φ = φ0 = 0.5, at intervals294

of 0.5 t0 throughout the simulation. A linear regression was then performed using the final five data points with295

consistency checked against the remainder. The progression of the bubble front in intervals of t0 is displayed in296

Fig. 11 in comparison to the regression used to determine the velocity. This was additionally verified by assessing297

the average velocity of the entire gas bubble, as well as the instantaneous velocity at the front of the bubble where298

φ = 0.5. In the test case, a bubble Froude number of 0.217 was observed, which very closely matches the expected299

range of 0.22–0.23 from Table I.300
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FIG. 11. Rise of the Taylor bubble front (φ = φ0 = 0.5) versus time, where Eo = 100 and Rer = 200.

Overall, the results using the proposed LB model were shown to agree well with those based on the sharp-interface301

model as well as with experimental data in terms of the planar Taylor bubble shape and rise velocity. As was shown302

in Fig. 1, using a linear interpolation via Eq. (23), although not as accurate as using Eq. (25), is more accurate than303

using a harmonic interpolation via Eq. (22). Additionally, the work in both Sec. IV B and Sec. IV C has indicated304

that using the linear interpolation improves numerical stability in comparison to the dynamic viscosity update in305

Eq. (25), particularly when the relaxation time is small. Therefore, for the planar Taylor bubble results presented in306

this section, a linear interpolation of the relaxation time was used according to Eq. (23). It is noted that instability307

arises if the relaxation time is updated through the local viscosity via Eq. (25), again highlighting limitations of this308

approach.309

D. Computational efficiency310

For many applications of scientific and industrial relevance, the number of lattice sites is often substantial. Hence,311

efficient parallel performance is essential. The previous model, presented in Ref. [22], uses a stencil consisting of a312

single layer of neighboring cells, but we have shown in Sec. IV A that its accuracy deteriorates around the interface.313

In order to capture the interfacial dynamics more accurately, the model in Ref. [40] uses mixed differences, which314

requires two auxiliary lattice sites (two ghost cells) in each direction. The current model requires only a single stencil315

and is able to model the flow field at the liquid-gas interface with a high level of accuracy. In the following we aim to316

probe the computational efficiency of these models.317

To investigate the performance of the aforementioned phase-field models, we implemented a stationary bubble test318

on a square domain L × L with a bubble radius of R = L/4. Taking L = 5120 lu resulted in a test domain of319

approximately 26 million cells. With this setup, we analyzed the strong scalability of the methods. The domain was320

divided into smaller portions, inducing sub-linear parallelism. This is in contrast to ‘weak’ scaling, where the size of321

the mesh is kept proportional to the number of processors. The simulations were completed using the open-source322

TCLB solver [52] on the Prometheus cluster at Cyfronet, Krakow. This is equipped with CPU nodes fitted with two323

12-core Intel Xeon E5-2680 v3 processors and eight additional GPU nodes with two nVidia Tesla K40 cards on each.324

Figure 12 shows the performance of the TCLB solver for the various models implemented on a CPU architecture.325

It is clear that the compared methods have a similar performance, with the speed per node generally decreasing for326

higher numbers of utilized cores. For the current model, as in all the previous benchmark simulations, we implemented327

the MRT operator in the calculation of both the stress tensor and the collision step. In the computational results,328
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it is seen that the MRT formulation of the proposed model increases the computation required per node beyond the329

memory reduction benefit on the CPU architecture for this simulation domain.330
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FIG. 12. The strong scalability of the models on the TCLB solver on CPU.

Figure 13 shows the scaling of the TCLB code on a GPU architecture for the compared methods. As expected, the331

parallel performance can be seen to marginally decrease with core saturation (2880 CUDA cores per nVidia Tesla K40).332

It is on this parallel architecture that the benefit of the reduced stencil is realized. The difference between the CPU333

and GPU performances is well explained by the memory access patterns. Here it is clear that the CPU performance334

is computation-bound, whereas on the parallel architecture the performance is bound by memory. As a result of this,335

the mixed difference approach, which requires a larger computational stencil than the central difference and current336

model, sees a significant reduction in computational efficiency. In comparison on the CPU architecture, where the337

memory access speed is higher, there appears no significant distinction between the models for this simulation domain.338

It is often difficult to objectively compare the performance of GPU and CPU codes [53]. In the presented tests, the339

speed of a single CUDA core is substantially lower than a single CPU core. However, there are 2880 CUDA cores on340

a single GPU allowing it to vastly outperform a single CPU processor. One technique to compare these computing341

architectures is to look at the energy efficiency of the computation. The power consumption of a GPU node, consisting342

of two K40 processors was measured at 490.5 W. Whereas for a CPU node, with two processors consisting of 24 total343

cores, the power consumption was 277.0 W. However, this increase in power gives approximately a factor of four344

increase in lattice updates for the proposed model, outweighing the increased energy cost.345

V. SUMMARY AND CONCLUSION346

In this work, we have proposed a multiphase LBM for simulation of immiscible fluids at high density ratios.347

The conservative phase-field LBE was used to track the interface dynamics while a robust, velocity-based LBE was348

proposed to capture the hydrodynamics. Since the only non-local, macroscopic variable in the current model is the349

phase field, the proposed LB algorithm is well-suited to high-performance computing on massively parallel machines.350

It was shown that using isotropic central differences, which reduces the computational cost, is adequate for achieving351

a numerically stable and accurate LBM for multiphase flows at high density and viscosity ratios relieving us from352

the computational cost and complexity of using biased and mixed finite difference schemes. Additionally, numerous353

update rules were provided for the relaxation time across the interface. We found that a simple linear interpolation354

provides an increased stability, while updating the relaxation time via the dynamic viscosity was the most accurate355

approach.356

The proposed LB model was tested against the classical layered Poiseuille flow, where it was able to accurately357

capture the momentum equation at the phase interface. The velocity-based formulation was able to eliminate the358

non-physical velocity oscillations at the interface that are observed when using a momentum-based formulation with359

central differences. The stability and accuracy of the model in capturing complex interface topologies was assessed360
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FIG. 13. The strong scalability of the models on the TCLB solver on GPU.

through the Rayleigh-Taylor instability. The results from this were shown to closely match the results from the361

available numerical data in the literature. Furthermore, the model was used to examine the rise of a planar Taylor362

bubble, and the stabilized interface profile of the bubble front was shown to be in good agreement with previous363

numerical solutions. The terminal rise velocity was also found to approach the expected range from the available364

analytical, numerical, and experimental studies.365

Overall, the proposed LB formulation allows for accurate and efficient recovery of the hydrodynamics at high den-366

sity ratios whilst improving the locality of the LBE method, allowing it to better exploit the inherent computational367

efficiency of the LBM. Future work is under way to extend the model to three-dimensional lattice structures. Fur-368

thermore, a rigorous study of viscosity induced errors, improvements in Galilean invariance, and stability/accuracy369

analysis of the interface-tracking equation warrants further investigation.370
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