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The generation of the plasma current resulting from Bremsstrahlung absorption is considered.
It is shown that the electric current is higher than the naive estimates assuming that electrons
absorb only the photon momentum and using the Spitzer conductivity would suggest. The current
enhancement is in part because electrons get the recoil momentum from the Coulomb field of ions
during the absorption and in part because the electromagnetic power is absorbed asymmetrically

within the electron velocity distribution space.

I. INTRODUCTION

In the presence of external electromagnetic field col-
liding electrons and ions absorb the incoming radiation
through the process known as inverse Bremsstrahlung.
In Bremsstrahlung absorption, the electron receives addi-
tional recoil momentum from the ion besides the momen-
tum of the photon. Therefore, plasma electrons absorb
more than just the photon momentum from the incom-
ing radiation. The generated current is then larger than
one would get by assuming that electrons absorb just the
photon momentum. It was shown in [1] that this increase
in current is equal to 8/5.

However, the recoil is not the only mechanism that will
increase the current. Plasma electrons absorb the radi-
ation asymmetrically in velocity space; specifically, elec-
trons co-moving with the incoming photons will absorb
slightly more power than electrons going in the opposite
direction. Even in the absence of net momentum absorp-
tion, this asymmetric absorption in power can lead to
current drive. This is because the collision frequency in
plasma is speed dependent. Thus, upon absorbing energy
electrons going in the direction of the incoming radiation
will experience less resistance from the plasma than elec-
trons going in the opposite direction resulting in current.
This is called the asymmetric resistivity current drive
effect and is mostly known with respect to cyclotron ab-
sorption used to drive toroidal current in tokamaks [2, 3].
Moreover, even without the asymmetric resistivity effect
the fluid approximation is less precise in considering cur-
rent generation as opposed to momentum input, because
it assumes that all electrons get equal push in the same
direction, which is not the case for Bremsstrahlung ab-
sorption. In fact, the ability of electrons to retain current
is sensitive to both its location in velocity space and the
direction in which it is being pushed.

In this paper we rederive the result for the momentum
absorption rate and calculate the additional increase in
current due to the current drive effect. To derive the
current drive effect, it will be necessary to consider in
detail how exactly the momentum is absorbed within the
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electron velocity space. To do this we use the formalism
developed by Tsytovich [4-6].

II. PROBABILITY OF BREMSSTRAHLUNG

Consider Bremsstrahlung absorption for particles «
(electrons) due to the Coulomb collisions with much
heavier particles S (ions). To satisfy the conserva-
tion laws of momentum and energy, in each act of
the Bremsstrahlung absorption some recoil momentum
must be transferred from the electron to ions. We
can write down the momentum balance during inverse
Bremsstrahlung as follows:

p,, = pa + hk — haq, (1)
ps = pp + hq, (2)

where the primed values correspond to the quantities af-
ter the absorption, k is the wave vector of the photon,
and q is the recoil wave vector transferred from the elec-
tron to the ion. The conservation of energy is
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Here, we will use the diffusion approximation, when
hk, hq are small in comparison with the particle momen-
tum (hk, iq < py). In this approximation, the energy
conservation is simplified to

wk = (k—q) vy +qvg. (4)

Now consider the direct process of spontaneous
Bremsstrahlung emission. The momentum balance can
be written as:

P, = Pa — Tk + Iiq, (5)
Ps = Ps — ha. (6)

With such a definition of the recoil momentum q (no-
tice different signs in the definition of q for emission and


mailto:vmunirov@pppl.gov

nk Po=Pa+hk—hq Pa

Pl = Pa — hk+hq

Py =Ps—hq

P =ps +hq

(a) (b)

FIG. 1. Schematic diagram of Bremsstrahlung absorption (a)
and emission (b).

absorption), the energy conservation yields the same re-
lationship between velocities of the particles and param-
eters of the photon as for the inverse process (Eq. (4)).

A schematic diagram of the two processes is shown in
Fig. 1. Essentially inverse Bremsstrahlung can be con-
sidered as Compton scattering, by the incoming electron,
of the incoming photon k into the virtual photon of the
Coulomb field q (see Fig. 1a), while the Bremsstrahlung
emission can be considered as Compton scattering of the
virtual photons of the Coulomb field on the incoming
electron (see Fig. 1b).

It is clear, that due to time reversal symmetry, the
transition probability of the inverse and direct processes
are related to each other:

IB7 (k q)

B
Wpo,ps pcr+hkfﬁq,p;a+hq (k’ q)' (7)

Here wp” ps (k,a) and w}Pr (k,q) are the probabili-
ties of spontaneous Bremsstrafllung emission and inverse
Bremsstrahlung per unit time within dkdq. Note that
these probabilities must contain condition (4) as the ar-

gument of the delta function.

One must remember that, in the presence of ex-
ternal radiation, the true absorption due to inverse
Bremsstrahlung is always accompanied by the process
of stimulated emission. For example, for electromagnetic
waves (w = kc) and infinitely massive ions (vg = 0),
condition (4) implies that for inverse Bremsstrahlung the
change in the parallel momentum of the electron is ap-
proximately hw /v, while for stimulated Bremsstrahlung
emission this change is approximately —Hw/v. However,
these two processes do not completely compensate each
other because their probabilities are slightly different.

More generally, the evolution of the distribution func-
tion fg due to the processes of inverse Bremsstrahlung
and stimulated Bremsstrahlung emission is described by

4]

afa r o
e / wIBr (k. q) f2. [ nedkdadpy
+ [ wilr (k. q) f2 3 dkdqd
Wp, —hk+ha,ps—hq \ K Q) Jp,—hk+halps—nq kdKAQAPs
- / pa P3 (k q) fa f 7/Lkdkdqdpﬁ
+/ wEZJrhkth,ngrhq (k,q) fgaJrhkthfgﬁ-}-handkdqdpﬁ‘
Following Tsytovich [4-6], after Taylor expansion for

hk, hq < p, we get the Fokker-Planck equation for the
evolution of fg :
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where
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The normalization is such that the density of particles
is no = [f3 dpa = [ f§ dve, and the total number
of photons per volume is N,, = fnkdk, and ny is the
number of photons within dk.

The probability of spontaneous Bremsstrahlung emis-
sion for electromagnetic waves (w = kc) keeping terms of
the order of kv/w ~ v/c is given by [6]

k. Qeie%(S [wk — (k —q) v — qvg]
pn Ps ( q) 2 d(ew?)
h?miq* (wie — kva)™ =55 Caavs
kq 2
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This expression is only correct for Bremsstrahlung ig-
noring the polarization effects. By polarization effects we
mean that the plasma environment in which the electron
finds itself is influenced by the presence of the electron.
This approximation is good for dilute plasma. In gen-
eral, the probability of Bremsstrahlung is proportional
to ’ [ek X (MO‘ +MP + Mo‘ﬁ)} ’2, where M“ is the emis-
sion due to oscillation of « particles in the screened field
of B charges, M” is the emission due to oscillation of /3
particles in the screened field of o charges, and M*? is
the emission due to oscillation of the polarization clouds
around particles o and 3. While M? is small due to the



high ion mass, the term M®? can be comparable with
M®. Moreover, polarization effects may make electron-
electron and ion-ion collisions important as well. The po-
larization effects are especially important for longitudinal
waves, and must be almost always taken into account for
them (we consider only transverse electromagnetic waves
here) [4-6]. In Eq. (12) the polarization effects are ig-
nored and only M® term is retained; this requires the
plasma to be tenuous enough. Another approximation
used in Eq. (12) is non-relativistic velocities. In all sub-
sequent calculations, we also take unity dielectric func-
tion (¢ ~ 1), which is a good approximation for tenuous
plasma. We will also ignore plasma dispersive effects and
take wx = w = ke, and assume an infinite ion mass and
set vg =0, vo, = V.

III. MOMENTUM CHANGE

In this section let us calculate the rate of momentum
change for electrons during Bremsstrahlung absorption.
From Eq. (9) we can calculate the rate of momentum
absorption due to Bremsstrahlung as:

dp¥ /
=— [ S, .dpa, 1
dt Pa p ( 3)

so —Sp,, has the meaning of the rate of momentum ab-
sorption per dp, by electrons with momentum between
Po and pa + dpa.

For plasma with a spherically symmetric distribution
function and infinitely massive ions (v = 0) we can take
advantage of condition (4) and write

dp“)‘/_/ - %5
dt h(k—aq) Vg apa

pa pﬁf nxdkdqdpgdpa.

(14)
This suggests that the probability of the total absorption
(inverse Bremsstrahlung plus stimulated Bremsstrahlung
emission) in plasma with a spherically symmetric dis-
tribution function is proportional to the probabil-
ity of spontaneous Bremsstrahlung emission and is
(hwic/va) (010 £ /Opa) wE” ps (k,aq). For plasma near
equilibrium with Maxwell distribution function, which
for convenience we will consider, this probability becomes
(hwi/T) wT , (k.q) and is actually correct even for the
finite ion mass.

Consider the incoming electromagnetic radiation that
consists of photons with k = ke, and of the total inten-
sity I = ¢ [ hwnidk. Because of the condition (4) the
recoil momentum can be divided into the parts parallel
and perpendicular to the velocity component:

w—kv

Then the rate of momentum absorption directed along
the z-axis can be written as

hw
Xi

T pmpﬁ fou fpﬁnkdkdqdpﬁdpa (16)

To calculate the probability of Bremsstrahlung (12) we
express
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where we introduced 8 = v/c, used the expression for the
scalar quadruple product [e, X q] - [e. X V] = —q1 v,
and kept only the first order terms.

We can write the z-axis projection of the perpendic-
ular to the velocity component of the recoil momentum
as ¢, = g1 sinfsing,, , where 6 is the angle between
velocity and the z-axis, i.e. v, =wvcosf and v; = vsinf,
while ¢4, is the polar angle of ¢, in the plane perpen-
dicular to v. We then integrate over ¢,, from 0 to 27
and over dgqq1dq,. When we integrate over dq, it is
necessary to introduce a cutoff to get rid of a logarithmic
divergence. For definiteness, we will use the quantum me-
chanical cutoff (¢maz = mqv/h), which is correct when
the Born approximation can be applied (v > e?/h). In
the opposite classical limit (v < e2/h) the proper cutoff
iS @maz = Mat? /eqaep and the conclusions of the paper
should remain true but all logarithmic factors should be
replaced with In (mavg/weaeg).

Keeping only the leading logarithmic terms, the prob-
ability of Bremsstrahlung integrated over dq is then

/ pa,p[g (k q) dq
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which determines the absorbed power, and

[ b, e da
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(19)

which determines the amount of momentum change in
the direction perpendicular to the velocity. This is



needed to calculate the current. Note that while it is
not necessary to retain the first order terms in Eq. (18)
to calculate the absorbed power, one needs to keep them
while calculating current. Note also in Eq. (18) that elec-
trons moving in the direction of the photon (3, > 0) are
more likely to absrob energy than electrons moving in
the opposite direction (5, < 0). This is consistent with
the picture that an electron moving in the direction of
the photon can absorb its energy through a smaller an-
gle scatter than would an electron moving in the opposite
direction.

From Egs. (18) and (19) we can write the rate of mo-
mentum absorption as:
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Integrating over angle 6 we get

) fg‘dpnkdk.
(20)

dpy, 32 [ hw nﬁeﬁi@% My v?
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Therefore,
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Here « is the effective absorption coefficient:

4 [2 nangeges 2T
R = ngln — |, (23)
3V mremdwivy, hw
where v}, = T/m,. This absorption coefficient deter-
mines the total absorbed power density: P{}bs =al.
If we ignored the recoil momentum and assumed that

electrons absorb just the incoming photon momentum
hk, then the rate of momentum change would be:

dp¥, hiw
i a,f
i /hk—wpa ps

o f5 medkdqdpsdpa = %I
(24)
Thus, due to the recoil, electrons get 8/5 times more
momentum than they would have got absorbing only the
photon momentum, which is consistent with the result
obtained in [1]. This conclusion is true for any spherically

symmetric distribution function, not just a Maxwellian.

This additional momentum absorbed by electrons (as a
whole) is in the direction of the incoming radiation. The
ions (as a whole), on the other hand, absorb momentum
in the opposite to the incoming radiation direction such
that the total rate of momentum absorption for plasma
is equal to the rate of photon momentum absorption:

8al 3al

dp.  dpy. _dpb. _, dNGE ol

dt d 5¢ 5c dt dt

pt
(25)

It is curious that after averaging for spherically sym-
metric distribution functions the last two terms in Eq.
(16) cancel each other and the rate of momentum ab-
sorption becomes just

e f(sr22)

hw
x T pmpﬁfp fpﬁ

nkdkdqdpgdpy, (26)

where integration of wp . (k,q) over dq can be done

independently to get (18). pr pﬁ (k,q) dq has a zero
order term, which is even in v., and a first order term
O (B.), which is odd in v,. In Eq. (26) the first term k =
w/c is the momentum of the absorbed photon and it is
much smaller than the momentum coming from the recoil
(w/v) (v, /v). However, the photon term k& = w/c is the
same for all electrons and is multiplied by the zero order
term in pra s (k,q) dq, while the recoil term, which
depends on the velocity projection vz, has contribution
only from the first order term in [w5” , (k,q) dq, be-
cause the zero order term is the same for oppositely going
electrons and so gives zero contribution after averaging
over the distribution function. Thus, after multiplication
by the probability both terms give contributions of equal
order The coefficient next to the first order term in
Ik wpmp 5 (k,q) dq is positive, which comes from the fact
that Bremsstrahlung emission is the most pronounced in
the direction of the electron velocity [7]. Since also the
recoil term is proportional to v, we can immediately con-
clude that the averaged momentum gained by electrons
due to the recoil is in the positive z-axis direction.

IV. INVERSE BREMSSTRAHLUNG CURRENT

The time evolution of the current density can be put
as

dj e dpy
dt  m. dt

(27)

This is a fluid approach, since it takes into account only
how much momentum is absorbed by electrons, not which
electrons absorb the momentum.
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FIG. 2. The probability of Bremsstrahlung absorption in ar-
bitrary units versus the angle between the electron velocity
and the incoming photon direction cosf = v /v for g = 0.08.

The collision frequency vg, in Eq. (27) corresponds to
the Spitzer conductivity and can be approximated by the
following empirical formula [8]:

Z |2 0.39 r
Vsp = § — (0.295 + 085-|-Z> -5, (28)

s vth

where I' = w;; InA/47n and Z is the ion charge. From
Eq. (27) the stationary current density is

. e _,dpy,
wid = —— —. 29
I fluid Me Vsp dt (29)

Since the current density in the fluid approximation is
proportional to the rate of momentum absorption, the
current corrected for the recoil is 8/5 times higher than
the simple fluid estimate ignoring the recoil, and is equal
to

. 8 e al _; 20.4 evy, al
Huid = g e s T T 132 \mel ¢
¢ z (1 + 0485+Z) ©
(30)

However, the Spitzer conductivity is strictly applicable
only to the current produced by dc electric field, when
all electrons get equal acceleration in the same direction.
The current generation due to inverse Bremsstrahlung is
not equivalent to the action of dc electric field because
different electrons absorb different amount of power and
are pushed in different directions.

One example of the kinetic effects is the additional cur-
rent due to asymmetric absorption of radiation. Fig. 2
shows the integrated probability of absorption within df
given by Eq. (18) for electrons lying on the circle with
radius 8 = 0.08 in velocity space. We see that the
electrons going in the direction of the incoming photons
(0 < 0 < 7/2) absorb more radiation than electrons going
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FIG. 3. The momentum absorption rate per electron as a
function of cos = v, /v for B = 0.08: along the z-axis taking
into account the recoil (solid blue), along the z-axis taking
into account only the photon momentum (dashed red).

in the opposite direction (7/2 < # < 7). This asymmet-
ric absorption will create additional current because the
collision frequency in plasma is speed dependent and thus
electrons going in the direction of the incoming radiation
will experience less resistance from the plasma than elec-
trons going in the opposite direction resulting in more
current.

Fig. 3 shows, averaged over all possible recoils, the rate
of momentum absorption along the z-axis by an electron
with = 0.08 versus cosf = v,/v. —S, . is defined
by Eq. (14) and determines the rate of momentum ab-
sorption taking into account the recoil effect. —Sj . is
defined by Eq. (24) and determines the rate of momen-
tum absorption assuming that only the photon momen-
tum is absorbed. We can see that the recoil effect not
only changes the integrated (average) rate of momentum
absorption but radically alters the distribution of the ab-
sorbed momentum in velocity space. For —Sj . the mo-
mentum absorption rate is always positive, i.e. along
the z-axis, and does not strongly depend on cos 6, while
for —S,,. the momentum absorption rate varies greatly
with cos@ both in magnitude and sign. In considering
Bremsstrahlung absorption by a particular electron, the
natural directions are along the electron velocity and per-
pendicular to the electron velocity. When |cos (0)] is close
to 1, the velocity of the electron is either parallel or an-
tiparallel to the direction of the incoming photon and
so the change in momentum along the z-axis is deter-
mined mostly by the recoil parallel to the velocity, which
is about (hw/v) (v, /v) in each act of the Bremsstrahlung,
as was shown previously. For smaller values of |cos (0)]
the change in momentum along the z-axis is mostly de-
termined by the recoil perpendicular to the electron ve-
locity. This is why the absorption rate shown in Fig. 3
changes sign.

In general, the distribution function will evolve both



under the influence of Bremsstrahlung absorption and
under the influence of collisions:
afe
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and the time-evolution of the current should be described
more completely than Eq. (27) does by

—:—e/v pdp

Following [3] we can write the current density at time
t as the rate of pushing electrons times the ensemble-
averaged current difference:

Z/ PVTVAV)

(31)
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If the power is independent of time we can put integra-
tion inside the ensemble-averaged current and write for
a steady-state current:

|

where we expressed infinitesimal changes in energy and
velocity through w, k, q, changed from summation to
integration and introduced a Green’s function: x =
fo )) dr. In most cases it is possible to express
the Green s functlon as x(v) = v,v~! (v), where v~ ! can
be thought of as an effective collision frequency [9].

The expression in square brackets of Eq. (34) can be
understood as incremental current drive efficiency. Thus,
to find the generated current one needs to average the in-
cremental current drive efficiency over the power density
absorbed:
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The first term in square brackets of Eq. (35), which
is proportional to k, — ¢,, is the usual current due to
momentum injection along the z-axis, while the second
term, which is proportional to dv~1/dv, is the current
due to asymmetric absorption.

One might want to calculate the generated current by
summing the incremental currents instead:

]cd res /6]2 = _7/ k q 8v

o f5 mkdkdqdpsdpa

_ Ix
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where we used the wave induced flux in velocity space
Sy = m?2Sp. Eq. (36) follows from Eq. (33) if the power
absorbed is localized around certain velocity. Therefore,
Egs. (35) and (36) are identical when the absorption is
localized in the velocity space, but they produce differ-
ent results otherwise. In the present problem all elec-
trons are pushed by the incoming electromagnetic field
and Eq. (36) miscalculates the generated current density.

After integration by parts, Eq. (35) can be written as

X Twpa Ps

(36)
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(37)

The Green’s function and the corresponding effective
collision frequency v, generally speaking, can be found
only numerically. However, the high-velocity approxima-
tion exists [3, 10]:

3 9 2
-1 _ (Y + Vip U . (38)
ré6+2) réG+2)B8+2)
This expression has two shortcomings. First, it

uses the high-velocity approximation both for electron-
electron and electron-ion collisions. While for electron-
ion collisions this approximation is always good, it is
less so for electron-electron collisions. Since it is mostly
thermal electrons that absorb through Bremsstrahlung,
the high-velocity approximation will noticeably under-
estimate the current for low Z plasma. Second, this ex-
pression violates the momentum conservation in electron-
electron collisions. Thus, we expect that Eq. (38) is a
good approximation for high Z plasma, but for low Z
plasma the error in the current can be appreciable.

After straightforward calculations using v defined by
Eq. (38) we obtain from Eq. (35):

34.2 evf’h ol
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while Eq. (36) would only give factors 12.8 and 24.8 re-
spectively in the above formula.

For comparison, in the fluid approximation the cur-
rent density corrected for the recoil, which is given by
Eq. (30), can be represented as

Jftuid = €vg, /Sv,zdv. (40)

We can clearly see that Eq. (35) has an additional term
that is responsible for the current due to asymmetric ab-
sorption.

Because of the use of the high-velocity and momentum
conservation violating approximation for v, Eq. (39) un-
derestimates the current, especially for small Z. Reck-
oning that electron-electron collisions conserve current,
to remedy this problem we propose an alternative hybrid
expression, where the part of the current in Eq. (35) pro-
portional to k, — ¢, is substituted by the fluid expression
Eq. (30), while the part proportional to dv=!/0v is left
unchanged:

e ov—1u,
j rid — ] wid — —d P 7k7
Jhybrid = ] fluid . a0 o UV (v.k,q)
o 19.2 evf’h al 12.4 evf’h al
T wid T el ¢ 5+ 2) 3+ Z)ml ¢
(41)

If all electrons were to absorb equal amount of power,
then the part of the current in Eq. (35) proportional
to k, — q. would be exactly given by the fluid expres-
sion Eq. (30). In case of Bremsstrahlung absorption it is
mostly thermal electrons that absorb radiation and the
fluid formula overestimates the corresponding part of the
current. On the other hand, the second part of Eq. (41)
underestimates the current because of the high-velocity
limit for v. So all in all, Eq. (41) can be a decent approx-
imation for the current for all values of Z.

Fig. 4 shows the generated current given by the fluid
formula (30), by the current drive formula (39) keeping
one and two terms in Eq. (39), and by the hybrid expres-
sion (41) versus the ion charge Z. We see that for small
Z the current drive formula substantially underestimates
current making it even lower than the fluid prediction.
However, starting already with Z = 4 the current drive
estimate (39) gives higher current. For higher Z, when
electron-electron collisions become negligible, the ratio of
the current drive prediction to the Spitzer becomes sta-
ble and for infinite Z is around 1.7, so that for high Z
the generated current with the recoil and kinetic effects
taken into account is at least 2.7 higher than the naive
fluid estimate without recoil would suggest. The hybrid
expression is 1.3 times larger than the fluid estimate even
for Z = 1 and for Z going to infinity the increase is about
2. To get better and definite results for small Z plasma it
is necessary to use more accurate than Eq. (38) estimate
of the effective collision frequency v or perform computer
simulations.
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FIG. 4. The generated current density versus the ion charge
Z: fluid approximation with the Spitzer conductivity given
by Eq. (30) (solid blue), current drive approximation keeping
only the first term in Eq. (39) (dotted red), current drive ap-
proximation keeping both terms in Eq. (39) (dashed orange),
hybrid current given by Eq. (41) (dash-dotted green).

V. SUMMARY

We analytically considered the generation of
the plasma current resulting from electron-ion
Bremsstrahlung absorption using the following ap-
proximations: the polarization effects in Bremsstrahlung
are negligible; velocities are non-relativistic; recoil and
photon momenta are small in comparison with the
electron momentum; ions have infinite mass; waves are
electromagnetic with the dispersion relation w = kc;
and the plasma dielectric function is close to one.
The laser intensity is not too high, so that the quiver
velocity eE/mw is much smaller than the thermal
velocity. We also note that the logarithmic dependence
on velocity has been ignored throughout the paper and
In (mqev?/hw) has been substituted by In (27'/hw) in all
the equations.

We investigated how the momentum and energy are
absorbed by electrons within the velocity space and con-
firmed the result obtained in [1], namely that the aver-
aged momentum absorption by electrons with the recoil
taken into account is 8/5 times higher than the momen-
tum absorption assuming that electrons absorb just the
photon momentum. In addition, we demonstrated that
for high Z plasma the actual current with the kinetic ef-
fects taken into account is at least 2.7 times higher than
the naive fluid estimates without recoil would suggest,
both because electrons get the recoil momentum from
the Coulomb field of ions during the absorption and be-
cause electrons absorb power asymmetrically. We also
proposed a hybrid expression of fluid and kinetic descrip-
tions for the current that can be a good approximation
for all values of Z.

The calculation of the current generated from



Bremsstrahlung absorption is a fundamental problem of
the basic plasma physics. Thus, the results here ought to
be of interest in the different areas where radiation driven
currents and the generated magnetic fields are important.
Areas in which these effects might be important include

the radiation driven magnetic field in astrophysics [11-
13] and laboratory experiments that use lasers to drive
current [14], in particular for applications to inertial con-
finement fusion.
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