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An optical vortex is a light wave with a twisting wavefront around its propagation axis and null
intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of
applications, including optical communication, quantum information, superresolution microscopy,
and multi-dimensional manipulation of particles. However, accessible intensity of optical vortices
have been limited to material ionization threshold. This limitation might be removed by using
the plasma medium. Here we propose the design of suitably magnetized plasmas which, function-
ing as a q-plate, leads to a direct convertion from a high-intensity Gaussian beam into a twisted
beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent
phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations
demonstrate extremely high power conversion efficiency. The plasma q-plate can work in a large
range of frequencies spanning from terahertz to the optical domain.

I. INTRODUCTION

Manipulating intense laser beam using plasma as a
medium has unparalleled advantages compared with con-
ventional solid-state media because plasma can sustain
ultra-high intensities. Impressive applications in plas-
mas include backward Raman amplification [1–8], X-ray
lasers [9–11], plasma gratings [12–14], and plasma holog-
raphy [15]. Recently, there has been increasing inter-
est in generating and manipulating optical vortices [16–
19], which carry orbital angular momentum (OAM),
pointing to a variety of applications, including trap-
ping [18] and rotating [17, 20] suitable materials parti-
cles, imaging and probing physical and biological proper-
ties of matters [21–24], improving communication band-
width [25], and encoding quantum information in higher-
dimensional Hilbert spaces [26, 27].
Manipulation of laser wavefronts for generating optical

vortcies requires creating structured optical anisotropic-
ity. The task is more challenging in plasma because the
medium is inherently unstructured. Methods of produc-
ing intense optical vortices in plasma [28–30] had relied
exclusively on a plasma mirror structure, which quickly
deforms due to plasma expansion. Vieira et al. [31–
33] proposed that the use of stimulated Raman scatter-
ing in plasmas can lead to the amplification of optical
vortices to very high powers and OAM charge numbers.
However, the power conversion efficiency is restricted by
wave-wave coupling efficiency and subject to plasma in-
stabilities [34]. What is needed to process high-power
OAM is to employ plasma, but without reliance upon
the nonlinear interaction of plasma waves.
Actually, the azimuthal anisotropicity required for

OAM can be provided by the laser beam itself: A cir-
cularly polarized light has an intrinsic twisting phase
structure which carries spin angular momentum (SAM).
Remarkably, there exists a phase-only optical element,
called the q-plate [35], which can convert SAM of light
into OAM:

E0(r)êL,R
q-plate−−−−→ E0(r) exp(ilϕ)êR,L, (1)

where r, ϕ are the polar coordinates in the xy-plane, and
êL,R is the unit vector for left-hand (LH) and right-hand
(RH) circular polarizations. The OAM helicity number
(also called charge number) is denoted by l, and the SAM
helicity number is σ = ±1 for LH/RH circular polar-
izations. A q-plate is a thin optical birefringent phase
plate with its fast axis perpendicular to the laser prop-
agation direction. Its fast axes have certain topological
structures, rather than a homogeneous structure like a
half-wave plate. A circularly polarized laser beam after
passing through the q-plate is converted to one with the
opposite circular polarization and, more importantly, to
a helical wavefront.

We propose a plasma q-plate where a magnetic field
controls the optical fast axes. We demonstrate numer-
ically that it can generate an optical vortex with OAM
from a circularly polarized Gaussian laser. Such a plasma
q-plate has an intensity limit set by relativistic rather
than ionization effects, so that an ultra-intense OAM
laser beam can be generated. The laser mode conver-
sion relies on the anisotropicity of the dispersion relation
in a magnetic field, but does not require a resonant wave-
wave interaction. This avoids preparing exact wavevector
and frequency matching for lasers and plasmas, as re-
quired in previous plasma-based generation schemes [28–
33], thereby reducing the experimental complexity and
improving the engineering flexibility.

II. SCHEME

The proposed plasma q-plate is an optical element
which manipulates the laser phase through the optical
birefringence that is induced by the external magnetic
field in plasmas. The birefringence arises from different
dispersion relations of two eigenmodes of a laser when it
propagates perpendicular to the external magnetic field
B0 into a plasma. When the laser polarization is par-
allel to B0, its propagation is not affected by the mag-

netic field and its refractive index is n‖ =
√

1− ω2
p/ω

2.
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FIG. 1. Converting a Gaussian laser beam into an LG beam in magnetized plasma. An input Gaussian laser beam (a) is sent
through a plasma, which is mediated in an axial symmetric magnetic field generated by anti-Helmholtz coils (b). The wavefront
of the output laser beam (shown in c) becomes twisted. In a and c, the light red and blue shades show the isosurfaces of the
wavefront in which the electric fields are parallel and perpendicular to the azimuthal directions, respectively. The small green
circles show the polarization. The ticks show the instantaneous directions of the electric fields calculated using Eq. (4). In b,
the green shaded cylinder is the plasma and grey lines illustrate the magnetic field lines.

Here, ω is the laser frequency, ωp =
√

nee2/meε0 is the
plasma frequency where e is the natural charge, c is the
speed of light, ε0 is the vacuum permittivity, ne and me

are the electron density and mass, respectively. When
the laser polarization is perpendicular to B0, the gyro-
motion of electrons hybridizes the electromagnetic mode
and electrostatic mode, and the refractive index becomes

n⊥ =

√

1− ω2−ω2
p

ω2−ω2
c
−ω2

p

(

ω2
p

ω2

)

. Here, ωc = eB0/mec is

the electron gyrofrequency. The difference of refractive
indices for different polarization eigenmodes,

∆n = n‖ − n⊥, (2)

induces spatially varied phase shifts to the laser wave-
front depending on the angle between laser polarizations
and magnetic field directions. The end result is optical
birefringence, which converts a circularly polarized laser
beam into a linearly polarized one and further into a cir-
cularly polarized one with the opposite polarization chi-
rality. The magnetic field lines constitute the slow axes
of birefringence. It should be born in mind that absorp-
tion of laser in a cold plasma is negligible as long as the
laser frequency is away from the plasma resonances (in-
cluding plasma frequency and upper-hybrid frequency in
our discussion) or atomic transition frequencies [36].
To create a twisting laser wavefront, the plasma q-plate

needs to impose an azimuthally varying phase shift to
the Gaussian beam or plane wave. Specifically, we con-
sider an axial symmetric magnetic field whose lines are
along the azimuthal directions ϕ̂. A convenient way to
produce the required anisotropic magnetic field is to use
anti-Helmholtz coil pairs, as illustrates in Fig. 1. Each

anti-Helmholtz coil pair consists of two parallel coils car-
rying currents in the opposite directions. The magnetic
field in the middle of the coils is purely radial. By care-
fully arranging multiple pairs of anti-Helmholtz coils with
different radii and currents, one can produce an equal-
amplitude magnetic field within a certain range of radii
(see Appendix A for further details). The profile of the
magnetic field in our study is similar to a CUSP geome-
try [37, 38], which ensures magnetohydrodynamic stabil-
ity of plasma.

The input laser for the q-plate is a circularly polarized
Gaussian beam which has a homogeneous phase front.
Without losing generality, we take the example of an
LH circular polarization. In Fig. 1, we use red and blue
shaded planes to denote the phase isosurfaces, in which
the electric field oscillates in the same directions shown as
green ticks in the polarization circles. Locally, the elec-
tric field at each azimuthal angle can be decomposed as
the superposition of an ordinary polarization along the
direction of B0 and an extraordinary polarization per-
pendicular toB0. Note that the external magnetic field is
anisotropic hence the decomposition of laser polarization
depends on the azimuthal angle. Each phase isosurface
plane is divided into four quadratures which are consec-
utively dominated by ordinary polarization and extraor-
dinary polarization. In plasma, the extraordinary polar-
ization propagates at a larger phase velocity and hence
splits the laser isosurface leading to a curved wavefront.
At the output, the extraordinary polarization accumu-
lates a π-phase shift and flips its direction. Since the
ordinary polarization maintains its direction, the output
beam polarized becomes RH circularly polarized. The
wavefront curvature becomes so large that two adjacent
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FIG. 2. PIC simulation results of converting a Gaussian laser beam into an optical vortex using a plasma q-plate. a-c and
d-f show the beam intensity profile and angle of the electric field with respect to the x-axis at different cross-sections (labelled
on top of each plot), respectively. g-i and j-l show the normalized vector potential a’s of the RH and LH circularly polarized
components at different cross-sections, respectively. The three-dimensional plots m and n show isosurface of the normalized
vector potential field with red and blue colors denote a = ±0.03, respectively. The input beam (m) has a circular polarization
and beam waist of 5µm. The output beam (n) shows a double spiral structure.

phase isosurfaces of the same “color” connect to each
other thereby creating a continuous helical wavefront, as
shown in Fig. 1c.
More rigorous analysis of the optical effect of a mag-

netized plasma can be carried out using the Jones for-
malism [39]. It can straightforwardly describe the evolu-
tion of instantaneous electric field of fully polarized light
when it passes through optical devices. An input laser
Ein, which takes an LH circularly polarized profile, can

be represented by a Jones vector Ein =

(

Ex

Ey

)

=

(

1

i

)

E0

where E0 is the electric field of the input beam. The
two vector components Ex and Ey denote its horizon-
tal and vertical polarization with equal amplitude and a
π/2-phase difference. The plasma channel of an arbitrary
thickness, in general, partially transforms an LH circular
polarization into an RH one, or vice versa. Its optical
property can be modeled by a phase retarder

M = (cos
ξ

2
)I + (sin

ξ

2
)H, (3)

I =

(

1 0
0 1

)

, H =

(

cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)

,

where H is the Jones matrix of a half-wave plate with

its fast axis at the angle ϕ, and ξ = 2πL∆n/λ is the
phase retardation between the fast and slow axes. L
and λ denote the plasma length and laser wavelength
in vacuum, respectively. The output beam is determined
by the matrix product

Eout = MEin = (cos
ξ

2
)

(

1

i

)

E0 + (sin
ξ

2
)ei2ϕ

(

1

−i

)

E0.

(4)
If ξ is an odd integer multiple of π, the cos(ξ/2) term
vanishes indicating that the LH polarized input beam is
fully converted into a mode with the opposite polariza-
tion. More importantly, the output mode reveals an ex-
tra ϕ-dependent phase shift which up-converts the topo-
logical charge number by 2. The result in Eq. (4) also
shows that the input and output OAM modes have the
opposite circular polarizations. This property allows one
to isolate the generated optical vortex from the input
Gaussian beam by using, e.g., a polarized beam-splitter.

III. THREE-DIMENSIONAL SIMULATIONS

To demonstrate the wavefront manipulation using a
plasma q-plate, we conduct particle-in-cell (PIC) simula-
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FIG. 3. PIC simulation results of converting the charge number of an LG laser beam from l = −1 to l = −3 using a plasma
q-plate. a-c and d-f show the beam intensity profile and angle of the electric field with respect to the x-axis at different
cross-sections (labelled on top of each plot), respectively. g-i and j-l show the normalized vector potential a’s of the RH and
LH circularly polarized components at different cross-sections, respectively. The parameters for the magnetized plasma and
laser beam are identical to Fig. 2 except the initial OAM charge number.

tions of laser plasma interaction using code EPOCH [40].

The input laser beam is a high-intensity (2.74TW/cm2)
RH circularly polarized Terahertz Gaussian beam. It
has a frequency of ω = 2π × 3 THz and wavelength of
λ = 100µm. It is focused at the center of plasma channel,
with a waist of 1.6 mm at the focal plane. The plasma
channel has an electron density ne = 6.2779× 1016 cm−3

and plasma frequency ωp = 0.75ω. The external mag-
netic field takes an axial symmetric structure which is
generated by three anti-Helmholtz coil pairs (see Ap-

pendix B for more details). Specifically, its radial
component has magnitude Br = 10 T and the corre-
sponding cyclotron frequency is ωc = 0.1ω. Its axial
component is nonzero only at r < 50µm and Bz =
20(x/µm− 50) T. With this set of parameters, the bire-
fringence is ∆n = 0.01, which determines the plasma
length L = λ/(2∆n) = 5 mm.

We depict in Fig. 2a-c and d-f a snapshot of the op-
tical intensity and angle of the electric fields at the time
t = 36 ps when the laser front exits the plasma. Fig-
ure 2a shows the input Gaussian beam (l = 0) which has
an axial symmetric transverse profile with an intensity
peak located in the beam center. When it enters plasma,
the Gaussian mode begins to transform into a Laguerre-
Gaussian (LG) mode which has an intensity null in the
center and peak in the periphery. In the middle of the
plasma channel where the conversion ratio is near 50%,
the two different modes superimpose creating a narrow
line-shape intensity peak. In the same regions, the direc-
tion of electric field observed from Fig. 2e is a constant
revealing linear polarization. The intensity profile at the
output cross-section is shown in Fig. 2c. We can clearly
see that the intensity peak forms a ring of radius of about

0.7 mm. The electric fields oscillate only at tangential
angles, as shown in Fig. 2f. Thus, we conclude that the
output beam has a large component with an LG mode
with l = 2. The power conversion efficiency is found to
be as high as 83%. We also note that the output beam
has a finite intensity in the beam center within the radius
of about 0.2 mm, as shown in Fig. 2c. The small spot
of intensity peak is the residual of non-converted input
beam. This nonconversion is evident also from Fig. 2f.

Wavefront manipulation using a q-plate is accompa-
nied by the change of different circular polarizations.
We evaluate the mode conversion by decomposing the
laser beam into the LH and RH circular polarizations
and depict each component in Fig. 2. The decomposi-
tion is calculated by adding up the electric fields of two
planes separated at a quarter wavelength distance, i.e.,
[Eϕ(z)±Eϕ−π/2(z−λ′/4)]/

√
2 where λ′ = 150µm is the

laser wavelength in plasma and ± determines the helicity
of polarization. The OAM of light can be witnessed from
its instantaneous electric fields, e.g., Ex(r). It is usually
measured from the interference pattern of itself and a
linearly polarized reference beam at the same frequency.
The wavefronts of each circularly polarized component
are shown in Fig. 2g-n using their vector potentials nor-

malized as a = λ(µm)

√

I(W/cm
2
)/2.74× 1018. It is evi-

dent that RH circular polarization is associated with the
Gaussian beam profile and it is transformed into the LG
mode only when converted into the LH circular polar-
ization. The mode conversion immediately begins when
the beam enters plasma. The LH circular polarized com-
ponent in the output, shown in Fig. 2l, is characterized
by a four-lobe structure and two adjacent lobes have the
opposite phases.
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Figures 2m and n show three-dimensionally the iso-
amplitude surface of the RH and LH circular polariza-
tion components. The mode conversion can be clearly
seen from the changes of their spot sizes along the prop-
agation direction. Note that the mode conversion satu-
rates at about z = 4 mm. The central region retains its
intrinsic and structural helicity, while mode conversion
continues in the peripheral regions. This is because, near
the central axis, the dispersion relation significantly de-
viates from the idealized magnetic geometry assumed in
Eq. (2).

A unique property of the specific design of plasma q-
plate is that each photon does not transfer any optical
torque into plasma, although both of its SAM and OAM
are converted by the plasma. Actually, its SAM is exactly
converted into OAM which ensures the conservation of
total angular momentum. Continued propagation of the
output OAM beam in the magnetized plasma will convert
it into the original RH polarization and l = 0. However,
if the input beam has both SAM and OAM with identical
sign of helicity, a higher-order LG output beam can be
generated with l decreased by 2.

Figure 3 shows higher-order OAM generation. The
simulation set-up follows the example of Fig. 2, except
the input laser is replaced with one of l = −1. The beam
has a ring-shape intensity profile (shown in Fig. 3a) and
a single helical plane of electric fields (shown in Fig. 3d).
Decomposing the input field into two opposite circularly
polarizations yields only the RH polarized component,
shown in Fig. 3g. During propagation, it can be ob-
served that the RH component is gradually converted
into LH polarized. At the same time, the two-lobe struc-
ture (shown in Fig. 3h-i) transfers into a six-lobe profile
(shown in Fig. 3k-l). The phase plot of electric fields
angles eventually shows three singularities spinning in
the RH direction, indicating that the output beam has a
charge number l = −3.

IV. CONCLUSIONS

While the mechanism is only simulated here, we can
anticipate that the plasma q-plate will operate over a
large range of laser frequencies, spanning from terahertz
to infrared optical frequencies. The large range is en-
abled by the multiplicity of free parameters to choose,
namely, plasma density, plasma length, and magnetic
field strength. For a complete laser mode conversion, the
optimal plasma length is L = λ/(2∆n) = π/(ω∆n). Its
dependence on the laser frequency ω, plasma frequency
ωp and cyclotron frequency ωc is shown in Fig. 4. We find
that the optimal plasma length L decreases with larger ωc

and ωp until the laser frequency ω is below the “cut-off”

frequency (ωc +
√

ω2
c + 4ω2

p)/2. The laboratory plasma

that is created using gas ionization can reach a density
up to about 1021 cm−3, corresponding to a plasma fre-
quency of 2π×300THz. Practically, its homogeneity can

2 5 10 20 50 100 200 500 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 4. Contour plot of the birefringence ∆n with different
plasma frequencies ωp and gyrofrequencies ωc normalized to
the laser frequency ω. It also denotes the plasma length L

for complete conversion. The laser does not propagate in the
blank region on the top left corner.

be controlled in a length above 10 cm. Using cutting-edge
technology, the anti-Helmholtz coils pairs can offer the
maximum magnetic field strength of 100T, correspond-
ing to cyclotron frequency ωc ≈ 2π × 2.8THz. We take
a moderately high magnetic field Br = 10T and list ex-
amples of plasma parameters for completely converting
different lasers in Table I. One can find that the plasma
q-plate can be implemented with feasible experimental
parameters for a whole range of laser frequencies from
Terahertz to infrared regions.

TABLE I. A list of plasma parameters for complete conversion
of a Gaussian laser beam with different wavelengths into an
optical vortex.

Laser wavelength Plasma density Plasma length
100µm ∼ 6.3× 1016 cm−3 0.5 cm
10µm ∼ 8.2× 1018 cm−3 2 cm
1µm ∼ 9.2× 1020 cm−3 10 cm

Note that the q-plate mechanism is solely based on
the difference of optical path lengths for ordinary and
extraordinary polarizations. Given a uniform magnetic
field within the path of laser beam, plasma density fluc-
tuation leads to variance of refractive index and bire-
fringence. However, the condition of density homogene-
ity in the longitudinal direction is not important since
the power conversion ratio is proportional to cos(ξ) ac-
cording to Eq. (4), which suppresses the fluctuation of ξ
to the second order. Imperfect conversion due to large
density fluctuation can be compensated by adjusting the
strength of the magnetic field. A more relevant concern is
the restriction on the transverse homogeneity of plasma
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density; it leads to a mixture of high-order modes reduc-
ing the beam quality. In practice, plasma channels often
have higher density in the center than its periphery. A
possible solution is to appropriately arrange the strength
of magnetic field with lower magnitude in the center in
order to retain homogeneous birefringence.

APPENDIX A: ANTI-HELMHOLTZ COILS

An anti-Helmholtz coil (AHC) pair is formed by two
identical ring-shape wires shifted vertically and carrying
current in opposite directions. The magnetic field for
each circular current loop of current I and radius R dis-
placed from the center of two loops by a distance D is
given by

Bz =
µI

2π

1
√

(R+ ρ)2 + (z −D)2

×
[

K(k2)
R2 − ρ2 − (z −D)2

(R − ρ)2 + (z −D)2
E(k2)

]

, (5)

Bρ =
µI

2π

1

ρ

z −D
√

(R+ ρ)2 + (z −D)2

×
[

−K(k2) +
R2 + ρ2 + (z −D)2

(R − ρ)2 + (z −D)2
E(k2)

]

,

(6)

where

k2 =
4Rρ

(R+ ρ)2 + (z −D)2
, (7)

K(k2) and E(k2) are the complete elliptic integrals for
the first and second kind, respectively, ρ is the axial dis-
tance and z is the height. The Bρ near the middle of the
AHC increases at ρ < R and decreases when ρ > R. The

peak at ρ = R allows a quasi-homogeneous Bρ in a range
of radii by parallelly combining multiple AHC pairs. For
example, three AHC pairs with radii and currents (0.3R,
I/50), (0.5R, I/15), and (R, I), respectively, can create a
constant Bρ in the range 0.3R to 1.3R with a fluctuation
below 10%. The Bz component has a linear gradient in
the axial direction and is zero in the plane in the middle
of the AHC pairs.

APPENDIX B: PARTICLE-IN-CELL

SIMULATIONS

The three-dimensional (3D) particle-in-cell (PIC) sim-
ulations are conducted using the kinetic, full-relativistic
codes EPOCH. The simulation box dimensions are
5mm × 5mm × 6mm in the x − y − z directions and
it has been divided into 8000× 8000× 9600 cells with a
cell size of 1/16 of the laser wavelength in each dimen-
sion. The electrons are distributed in a cylinder in the
center of the simulation box along the z direction, with
a radius of 2.45mm in the x − y plane and a length of
5.5mm in the z direction. Each cell in the cylinder con-
tains 20 electrons and 20 protons. The space outside the
cylinder is set as vacuum. The electron temperature is
10 eV and proton temperature is 0.1 eV.
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