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Abstract
In a recent paper, M.R. Edwards, N.J. Fisch, and J.M. Mikhailova (Phys. Rev. Lett. 116,

015004 (2016)) reported that in electron-positron plasma stimulated Brillouin scattering is dras-

tically enhanced, while stimulated Raman scattering is completely absent. However, when theory

was compared to PIC (particle in cell) simulations, a discrepancy by at least a factor four appeared.

Authors correctly argued that the disparity might be due to the fluid approximation of the low-

frequency mode. They noted that a more precise analytic description of the acoustic resonance

requires a kinetic approach, which was beyond the scope of the mentioned paper. Here we deliver

the so far missing kinetic calculation. It shows quite good agreement with the PIC simulations

presented in the above mentioned paper by Edwards et al. The principal result of enhancement of

Brillouin scattering and absence of Raman scattering remains valid. The Brillouin enhancement fac-

tors depend on electron temperature and background particle density. These dependencies as well

as the transition to the well-known behavior of electron-ion plasma are discussed. It is also shown

that pulse amplification in electron-positron plasma crosses over to the strong-coupling regime when

the pump amplitude becomes large. Then, the fluid approximation becomes acceptable again.
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I. INTRODUCTION

The present work is stimulated by a recent paper [1] on electron-positron-plasma inter-

action with electromagnetic fields. Leptons (such as electrons) and anti-leptons (such as

positrons) dominated the mass of the early universe during the so called lepton era (approx.

10−4 up to a few seconds after the big bang, at temperatures up to 1012 K) [2, 3]. When

electrons and positrons collide, they can annihilate each other and energy is released in

the form of photons. In the lepton era, however, colliding photons in turn created more

electron-positron pairs. It is believed that electron-positron (e-p) plasmas still appear in the

environment of many astrophysical objects (e.g. quasars, pulsars, and black holes) as well

as in the accreation discs of young galaxies [1, 4–6]. Tsytovich and Wharton [7] launched

the idea of laboratory e-p plasma as a new research object. Shortly after, plasma based

techniques for science with positrons were discussed by several authors; see, e.g., the review

by Danielson et al. [8]. In the article on antimatter plasmas and antihydrogen, Greaves and

Surko [9, 10] summarized the work by a number of groups on trapping antimatter plasmas

and presented an overview of the promises and challenges in this field. First successful ex-

periments were reported by Jørgensen et al. [11], Cassidy et al. [12], as well as Chen et al.

[13]. Most recently, Sarri et al. [14] succeeded in generating neutral and high-density e-p

pair plasma in the laboratory. More experiments are planned, e.g. the PAX/APEX exper-

iment by the Max-Planck-Society in Germany [15]. However, the laboratory production of

e-p plasmas with the requisite of Ref. [1] in density, size and temperature can be expected

only in a rather distant future.

In principle, an e-p plasma is a quite exotic state of matter. However, it could exist

in laboratory experiment (with sufficient vacuum) for minutes or even hours before being

destroyed by annihilation. Pair annihilation is comparable to recombination in an "ordinary"

electron-ion (e-i) plasma. The latter, e.g., consists of electrons and protons (hadrons).

Electron-positron plasma allows the propagation of electromagnetic and electrostatic waves,

but the situation is quite different from that in e-i plasmas. While e-p plasmas show perfect

mass symmetry and perfect charge anti-symmetry, that will not be true in e-i plasmas. Most

of the fundamental features of an e-i plasma are due to the large mass asymmetry between

the negative and positive species. Thus, e-p plasmas will differ considerably.

With respect to the modes occurring in an e-p plasma quite controversial arguments
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appear. Within a fluid description, Zank and Greaves [16] calculated acoustic and Langmuir

branches. On the other hand, Liu and Liu [17] argued that, on the contrary to e-i plasmas,

no longer electrostatic acoustic-like waves in e-p plasma exist because of the absence of mass

difference. A similar argument was presented by Pedersen et al. [15]. They stated that in

an equal temperature e-p plasma no pressure-generated electric space charge field should

develop. Because of the same masses, the two species are expected to escape a high-pressure

region at the same rate, and no regular acoustic wave should appear. The conclusion that the

e-p plasma simply relaxes and eliminates the pressure perturbation through free streaming

of the particles contradicts, in principle, some acoustic mode results [1, 16] in an equal

temperature e-p plasma. Here we will show that the so called acoustic mode is actually

a (heavily damped) quasi-mode. The acoustic quasi-mode does not require a net charge

difference.

This situation becomes especially interesting when in e-p plasma pulse amplification

via scattering instabilities is considered. Three-wave interaction theory [18, 19] was first

developed for e-i plasma where it was frequently applied to practice [20–24]. Now, with

respect to three-wave interaction in e-p plasma, a similar controversial situation occurs as for

the already mentioned linear modes. Early papers [25–27] showed already that in an equal-

temperature e-p plasma coupling cannot occur with a Langmuir wave. The low-frequency

ponderomotive force arising from the beating of two high-frequency waves cannot create

the charge separation that is required for the existence of non-thermal Langmuir modes.

Edwards et al. [1] complemented that such an argument does not apply to stimulated

Brillouin scattering because the acoustic mode does not require a net charge difference. On

the other hand, Tinakiche et al. [28] calculated that, when increasing the positron density

to electron density ratio from 0 to 1 (maintaining quasi-neutrality of the plasma through

additional ions), the growth rates of stimulated Raman, Brillouin, and Compton scattering

processes in isothermal plasma tend to zero. Lopez et al. [29] also reported that some of

the couplings generally appearing in relativistic magnetized e-i plasmas are suppressed in

the e-p configuration. The most recent paper by Edwards et al. [1] clearly demonstrated by

PIC simulations that stimulated Brillouin scattering in an e-p plasma is strongly enhanced

when compared with an e-i plasma. The only weak point in their interpretation of the PIC

results is the application of fluid theory. They stated already their expectation that a kinetic

treatment will remove the discrepancy. Kinetic formulation of the three-wave interaction
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processes already exists in literature. For e-i plasma it has been applied to Raman [30] and

Brillouin processes [31]. Relativistic Eulerian Vlasov codes are available [32, 33]. Landau

damping in e-p plasma was considered in, e.g., Refs. [34] and [35].

We conclude from the discussion that a fluid description is not appropriate to fully un-

derstand the enhanced stimulated backscattering in an e-p plasma. In Ref. [1] this appeared

already in the disparity between theoretical fluid prediction and PIC simulation results. Here

we will show that the authors of Ref. [1] pointed out correctly the reason for the significant

difference. It stems from the heavy damping of the acoustic quasi-mode in an e-p plasma.

Indeed, a kinetic treatment confirms this probable cause. As a consequence of damping, the

parametric kinetic dispersion relation shows less Brillouin growth than a fluid description.

The question which we address here is whether, as a function of β = me
m
≤ 1 where me

is the electron mass and m is the mass of the positively charged plasma species (positron

or ion), the Brillouin scattering off heavily damped acoustic quasi-modes is still drastically

enhanced in comparison to the stimulated Raman scattering.

In general, we shall consider plasmas consisting of electrons (index κ = e, massme, charge

qe = −e, and temperature Te) and positively charged species (with mass m, charge q = e,

and temperature T ). The latter species might be positrons (index κ = p, m = mp ≡ me,

q = qp = e, and T = Tp) or ions (index κ = i, m = mi, q = qi = e, and T = Ti). As

characteristic parameters we introduce

α =
Te
T
, β =

me

m
=

 1 for e-p plasma,
me
mi
� 1 for e-i plasma,

(1)

Furthermore, we define the plasma frequency ωpκ =
√

4πn0e2

mκ
and the thermal velocity vth,κ =√

Tκ
mκ

of species κ. Here, n0 is the constant background particle density n0 = nκ0. The

Debye lengths are λDκ =
vth,κ
ωpκ

. The index κ runs over all particle species, i.e. κ = e, p, i.

Later we shall use another index σ which only runs over the positively charged species, i.e.

σ = p, i. The index σ = p always indicates positron while the index σ = i should indicate

ion (e.g. proton), but we take the freedom to vary m continuously in order to demonstrate

the transition from e-p to e-i plasma. In that sense the parameter β will be considered in the

region 0 < β ≤ 1. The main emphasis, however, will be on e-p plasma. As just mentioned,

the additional freedom in the mass m will allow the straightforward comparison with known

results for e-i plasmas.
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The paper is organized as follows. Next, in Sec. II we briefly summarize what is known

for electrostatic modes in e-p plasma. The kinetic formulation of Sec. III for parametric

processes in e-p plasma leads to a dispersion relation. Its solution can be compared to the

results from a fluid approximation. In Sec. IV we show that the kinetic treatment supports

the enhancement of Brillouin amplification in e-p plasma, although at a lower level than

predicted by fluid theory. We conclude by a short summary in Sec. V.

II. ELECTROSTATIC (QUASI-)MODES IN AN ELECTRON-POSITRON PLASMA

A. Fluid model predictions

Fluid models for non-relativistic e-p plasma were discussed by several authors. With

respect to the corresponding longitudinal modes, one might follow, e.g., Zank and Greaves

[16] or the supplementary material of Ref. [1] for details. A question arises with respect

to the equation of state, whether the adiabatic or isothermal approximation should be used

[36]. Since for the acoustic mode in an e-p plasma the phase velocity might not be small with

respect to the electron thermal velocity, as a compromise an effective adiabatic coefficient Γκ

(which should not be confused with the relativistic factor γ or later on with the growth rate)

has been introduced. For 1D propagation it varies between 1 and 3. When one combines

the pressure P obtained from the ideal gas law P = nT (with temperature T in eV such

that no Boltzmann constant appears) with the adiabatic relation P ∼ nΓ, one easily finds

dP

dx
= ΓT

dn

dx
. (2)

That has been used in Ref. [1] with appropriate values for Γe and Γσ in the region 1 ≤

Γe,σ ≤ 3. Of course, a kinetic treatment will not suffer from such an indecisiveness.

A fluid treatment [1, 16] leads for an e-p plasma with β = 1 to the result

ω2 = ω2
pe + V 2

e k
2 ± ω2

pe , (3)

where the upper sign is for the Langmuir mode

ω2 = 2ω2
pe + V 2

e k
2 , (4)

and the lower sign for the acoustic mode

ω2 = V 2
e k

2 . (5)
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Here, Ve =
√

Γevth,e. Nothing is said about the damping. The damping can only be deter-

mined by a kinetic theory.

B. Kinetic results

The Landau damping of longitudinal waves in isotropic pair plasmas is well-known, even

in the relativistic regime [34]. For the simple(r) non-relativistic case, standard procedures

can be applied. Using, e.g., Eq. (4.214) together with Eq. (4.192) of Ref. [36] we have for

arbitrary β

k2λ2
De = −[1 + ζeZ(ζe)]−

λ2
De

λ2
Dσ

[1 + ζσZ(ζσ)] , σ = p, i , (6)

where

ζe =
ω√

2kvth,e
, ζσ =

ω√
2kvth,σ

=

√
α

β
ζe , (7)

and Z(ζ) is the plasma dispersion function. We may rewrite (6) in the form

1 + α + k2λ2
D + ζZ(ζ) + α

√
α

β
ζZ

(√
α

β
ζ

)
= 0 , ζ ≡ ζe , λD ≡ λDe , (8)

with α = Te/Tp and β = 1 for an e-p plasma. In the appendix of Ref. [34], for α = β = 1

the dispersion relation is given in the form

∆ = ∆(ζ) ≡ 1 +
1

2
k2λ2

D + ζZ(ζ) = 0 , (9)

in complete agreement with the above formulation.

Having in mind that ζ ≡ x− iy is a complex quantity, one must ensure the simultaneous

solution of <(∆) = =(∆) = 0, as discussed in Ref [34]. Figure 1 shows the areas <(∆) ≥ 0

with the borderlines of <(∆) = 0 on the one hand and the areas =(∆) ≥ 0 with the

borderlines of =(∆) = 0 on the other hand. The intersection points of the borderlines yield

the solutions of the dispersion relation in terms of x and y. The case shown in Fig. 1

is for S = kλDe = 0.1 and α = β = 1. One finds several low-frequency roots. For the

following discussion, only the branch with smallest damping y will be of relevance. In any

case, since at the low-frequency points of intersection y ∼ O(x), damping is significant.

Actually, significant damping occurs over a few cycles. That explains why one does not

expect such an oscillation to exist for a long time. It makes plausible why many authors

object to the existence of acoustic modes in equal temperature e-p plasma. The above
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FIG. 1. Numerical (graphical) procedure to solve Eq. (9). Shown are the areas <(∆) ≥ 0 (yellow)

with the borderlines of <(∆) = 0 on the one hand and the areas =(∆) ≥ 0 (blue) with the

borderlines of =(∆) = 0 on the other hand, for S = kλDe = 0.1 and α = β = 1. The function ∆(ζ)

is defined in (9), and x = <(ζ), y = −=(ζ).

discussion shows that only heavily damped acoustic quasi-modes do exist. Nevertheless, via

parametric processes such a quasi-mode can be driven. Often, this process is called Compton

scattering or quasi-mode scattering instead of Brillouin amplification [25].

Besides the heavily damped acoustic quasi-modes also a high-frequency Langmuir mode

exists. It occurs at the lower right corner in Fig. 1. For the parameters used for the figure,

Landau damping is extremely small (y → 0). Whether this always holds for the Langmuir

modes being involved in Raman scattering is still open. It depends on the wave-number (or

parameter S = kλDe). We will come back to this point when evaluating the Raman growth

in dependence on β.

III. PARAMETRIC EXCITATION IN KINETIC FORMULATION

In this section we calculate dependence of the Raman and Brillouin growth rates on β.

Although our main interest is for β = 1 (e-p plasma), the argument for Brillouin enhance-

ment and Raman suppression [1] needs a consideration of the wider β-range. Similar to Ref.
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[37] we start with Maxwell’s equations and the Vlasov equation,

∂

∂t
fκ + v · ∇fκ + qκ

(
E +

1

c
v ×B

)
· ∇pfκ = 0 , κ = e, p, i , (10)(

∇2 − 1

c2

∂2

∂t2

)
A⊥ = −4π

c
j⊥ , (11)

∇2φ = −4πe (nσ − ne) , σ = p, i . (12)

We introduced the vector potential A, the electrostatic potential φ, the distribution function

fκ for species κ = e, p, i, speed of light c, perpendicular electric current density j⊥, particle

density nκ, velocity coordinate v, electric field E, and magnetic field B = ∇×A. We start

with a fully relativistic formulation, and simplify later to the non-relativistic limit.

For 1D applications, we assume that the distribution function fκ only depends on the

pulse propagation direction z, and make the ansatz

fκ (z,p, t) = nκ0gκ (z, pz, t) δ

(
px +

qκAx
c

)
δ

(
py +

qκAy
c

)
, (13)

where δ denotes the Dirac-delta-distribution. With nκ0 ≡ n0 we obtain

nκ (z, t) = n0

∫ +∞

−∞
dpz [gκ (z, pz, t)] , (14)

j⊥ (z, t) = −e
2n0

mec
A (z, t)

∫ +∞

−∞
dpz

[
β
gσ
γσ

+
ge
γe

]
, σ = p, i . (15)

The Lorentz factor γκ is given as

γκ =

√
1 +

(
pz
mκc

)2

+

(
eA (z, t)

mκc2

)2

, κ = e, p, i . (16)

Inserting Eqs. (13)-(16) into the initial system (10) - (12) leads to(
∂2

∂z2
− 1

c2

∂2

∂t2

)
A =

ω2
pe

c2
A

∫ +∞

−∞
dpz

[
β
gσ
γσ

+
ge
γe

]
, (17)

∂2

∂z2
φ = −4πen0

∫ +∞

−∞
dpz [gσ − ge] , σ = p, i , (18)

∂

∂t
gκ +

pz
mκγκ

∂

∂z
gκ+

[
−qκ

∂

∂z
φ− mκ

2

(
e

mκc

)2
1

γκ

∂

∂z
A2

]
∂

∂pz
gκ = 0. (19)

In order to determine the parametric dispersion relation for the system (17) - (19), we

linearize the equations with respect to a consistent stationary solution. We assume to zeroth

order circularly polarized light with

A0 =
1

2
(A0⊥e + c.c.) , A0⊥ = A0e

i(k0z−ω0t) , (20)
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that propagates in a homogeneous plasma [gκ0(z, pz) ≡ gκ0(pz)]. Here e = ex + iey is the

polarization vector. With this definition we have |A0| = A0. The ponderomotive pressure

due to A0 will not cause any charge separation, and if we require additionally that gκ0 is

symmetric in vz, we have φ0 = 0.

Let the perturbations A1, φ1, and gκ1 be such that

A1 =
1

2
(A1⊥e + c.c.) ,

A1⊥ = A+e
i(k+z−ω+t) + A−e

i(k−z−ω−t) ,

φ1 = φ̃ei(kz−ωt) + φ̃∗e−i(k
∗z−ω∗t) ,

gκ1 = g̃κe
i(kz−ωt) + g̃∗κe

−i(k∗z−ω∗t) ,

where k+ = k0 + k, k− = k0− k∗ (and ω± analogously). The asterisk indicates complex con-

jugate (c.c.). Introducing the dimensionless vector potential as a = eA/mec
2, and selecting

the resonant terms that are first order in the perturbations, leads to the relativistic kinetic

dispersion relation for arbitrary positively charged species (σ = p for e-p plasma and σ = i

for e-i plasma)

D+D− =
ω2
pea

2
0

4
(D+ +D−)

[
I4 −mec

2k (F + I3)
]
, (21)

where

In = βn−1Iσn + Ien , σ = p, i , (22)

Iκn =

∫ +∞

−∞
dpz

[
1

γn−1
κ0

∂gκ0/∂pz
vzk − ω

]
, n = 1, 2, 3, Iκ4 =

∫ +∞

−∞
dpz

[
gκ0

γ3
κ0

]
, (23)

D± = −ω2
± + c2k2

± + ω2
pe

∫ +∞

−∞
dpz

[
β

γσ0

gσ0 +
1

γe0
ge0

]
, (24)

F =
4πe2n0I

2
2

k − 4πe2n0I1

. (25)

In the non-relativistic limit we have γκ0 ≈ 1, Iκ4 ≈ 0, and we take the 1D-distribution

function to be Maxwellian

gκ0 =
1

mκvth,κ
√
π
e−v

2
z/v

2
th,κ . (26)

Furthermore, since then Iκ1 = Iκ2 = Iκ3 we may identify the integrals Iκn with the electric

susceptibilities χκ (see e.g. [36]) via

Iκn = − 1

kmκv2
th,κ

[
1 +

ω√
2mκvth,κ

Z

(
ω√

2mκvth,κ

)]
= − k

meω2
pe

χκ . (27)
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For predominant resonance with the downshifted light wave we have D− ≈ 0. Inserting into

Eq. (21) yields

a2
0c

2k2

4D−
=

1 + χσ + χe

χe
[
1 + (1 + β)2 χσ

]
+ β2χσ

, (28)

with D− = −ω∗−2 + c2k∗−
2 + (1 + β)ω2

pe. This form of the kinetic dispersion relation incor-

porates the susceptibilities

χe ≡ χkin
e =

1 + ζeZ(ζe)

k2λ2
De

, χσ ≡ χkin
σ = α

1 +
√
α/βζeZ(

√
α/βζe)

k2λ2
De

. (29)

The definition of a0 is the same as in Ref. [19]. When the pump intensity I is measured in
W
cm2 and the laser wavelength λ0 in µm we have [36]

a0 =
√

7.3× 10−19 λ2
0 I . (30)

In the following we will exemplify all results for λ0 = 800 nm. Then, a laser intensity

I = 1014 W
cm2 will lead to a0 = 0.0068352.

Equation (28) is the basis for the following discussion. It contains both, Raman and Bril-

louin amplification. From here we can recover the dispersion relation in fluid approximation

by substituting

Raman: χe → χflu,R
e = −

ω2
pe

ω2
, χσ → χflu,R

σ = 0, (31)

Brillouin: χe → χflu,B
e =

1

k2λ2
De

, χσ → χflu,B
σ = −

ω2
pσ

ω2
, (32)

where χkin
κ denotes the kinetic and χflu,R/B

κ the fluid susceptibilities for Raman (R) or Brilloun

(B), respectively. Obviously, in the Brillouin case (with α � 1), the fluid description is

based on the assumption that a low-frequency mode is involved whose phase velocity is

large compared to the ion thermal velocity and small compared to the electron thermal

velocity. However, for an e-p plasma, the limiting thermal velocities (of electrons and ions)

approach each other. Then, phase and thermal velocities become of the same order, resulting

into scattering off a heavily damped low-frequency quasi-mode.

The growth rate Γ will be calculated from

Γ = =ω , (33)

where ω is the solution of the dispersion relation with the largest imaginary part.
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Summarizing so far, Eq. (28) is the non-relativistic kinetic dispersion relation for arbitrary

positively charged species. Note that in the limit β → 1, thus for an e-p plasma, we arrive

at the dispersion relation presented already by Shukla et al. [25] (where we have to replace

a0 by a0/2 because of different amplitude notation).

IV. KINETIC EFFECTS VS. FLUID PREDICTION

When we compare the results of the fluid approach [1] with the present kinetic treatment,

several parameters may play an important role: mass ratio β, temperature T , temperature

ratio α, background density n0, and pump amplitude a0. We will work out the different

dependencies in the following.

A. Typical e-p plasma (β = 1) and comparison with β � 1 plasmas

● ●
●

●
●

●
●

●
●

0 0.2 0.4 0.6 0.8 1

2

4

6

8

β

Γ
[p
s-
1
]

FIG. 2. Growth rate Γ vs. mass ratio β obtained by solving different dispersion relations. In dashed

red and dashed blue fluid predictions are shown for Raman and Brillouin instability, respectively.

The solutions of Eq. (28) with kinetic susceptibilities (29) are depicted by black dots for Raman

and the solid black line for Brillouin, respectively. Parameters are α = 1, Te = 20 eV , n0 = 1019

cm−3, and laser intensity I = 1014 W/cm2.

We start with a consideration of the same parameter regime as in Ref. [1]. Figure 2
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summarizes the main part of the new findings which may be appreciated in the best manner

when comparing to Fig. 4 of Ref. [1]. First, let us concentrate on an e-p plasma with β = 1

and α = 1. Within a fluid calculation we completely agree with the fluid results of Ref. [1].

The fluid growth rates are shown in Fig. 2 by the dashed red line for Raman and the broken

blue line for Brillouin, respectively. However, the full kinetic treatment with χkin
κ leads to

significantly different results in the case of Brillouin amplification. The latter is shown in

Fig. 2 by the solid black line. The kinetic prediction for Raman amplification (black dots

in Fig. 2), on the other hand, completely agrees with the fluid results. Note, however, the

relatively small electron temperature Te = 20 eV. Raman amplification is still suppressed in

an e-p plasma. Brillouin amplification is still enhanced, however less than predicted by the

fluid description, but in agreement with the PIC simulations of Ref. [1].

Besides the e-p plasma, Fig. 2 shows the maximum growth rate Γ in the whole region

0 < β ≤ 1 for Raman and Brillouin scattering, respectively. For Raman, fluid and kinetic

results agree, but for Brillouin the correct kinetic description shows a reduction in a broad

region. The cross-over between Raman and Brillouin at β ≈ 0.4 in Fig. 2 still means

that for an e-i plasma the Raman process dominates while for an e-p plasma only Brillouin

appears with significant enhancement [1]. An e-i plasma with hydrogen ions (protons) has

β = 1/1836, and usually [19] it is considered for α = Te
Ti
� 1. Then the kinetic prediction

agrees with the results obtained by solving the fluid dispersion relation [19].

B. Temperature dependence

The growth rates depend on temperature. This can be recognized from Fig. 3 where we

show results for three temperature values, T = 20, 70, and 120 eV, respectively. In general,

the smaller the temperature, the larger are the growth rates. Note that in Fig. 3 we have

chosen the temperature ratio α = 1 such that always Te = T .

For Brillouin amplification in the regime 0 < β ≤ 1, it is the ion temperature which can

cause a considerable reduction due to ion Landau damping. For an e-i plasma, Andreev et

al. [38] and Lehmann et al. [39] have shown that for the fixed temperature ratio α ≥ 10

a variation of the electron temperature between 10 and 1000 eV has little influence on the

growth rate. Here, we have decided to concentrate on the equal temperature α = 1 case since

for an e-p plasma this is the most plausible scenario. On the other hand, for e-i plasmas,
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FIG. 3. Growth rate Γ vs. mass ratio β in kinetic description (28) for different temperatures

T , namely 20 eV (solid lines), 70 eV (dotted lines), and 120 eV (dashed lines), respectively. The

temperature ratio is fixed to α = 1. Shown are the Brillouin growth rates in black (within the

shaded area) as well as the Raman growth rates in red. Other parameters are n0 = 1019 cm−3 and

I = 1014 W/cm2.

the α-value will depend strongly on the plasma production method.

Raman amplification depends on the electron temperature. Following an estimate pre-

sented in Ref. [28] we may predict an upper limit for the electron temperature, above which

Landau will prevent significant Raman amplification. For the density value n0 = 1019 cm−3

and the critical density nc ≈ 1.74 × 1021 cm−3 used in Fig. 3, one expects [28] that only

for Te ≤ 73 eV Landau damping will be less important. Thus, for the three temperatures

shown in Fig. 3, the first (20 eV) is far below this limit, but the second one (70 eV) is close

and the third (120 eV) is considerably above. In agreement with the theoretical prediction

[28], in Fig. 3 the two latter cases show a considerably lower growth rate than the first one,

at least for low values of β, for which the cited theory applies.

C. Density dependence

Increasing the particle density leads to an increase of both, Brillouin as well as Raman

amplification. Figure 4 shows the corresponding results for two density values. Although

13



both, Raman as well as Brillouin growth, increase with increasing density, the effect is more

pronounced for Brillouin amplification. Thus in dense e-p plasmas the Brillouin enhancement

will be very large, even much larger than the Raman process in e-i plasma.

Raman

Brillouin

0 0.2 0.4 0.6 0.8 1
0

5

10

15

β

Γ
[p
s-
1
]

FIG. 4. Growth rate Γ vs. mass ratio β in kinetic description (28) for different background

densities. Shown is the Brillouin growth rate (black lines) in comparison to the Raman growth rate

(red lines). The solid lines are for n0 = 1019 cm−3 while the broken lines are for n0 = 1020 cm−3.

Other parameters are α = 1, T = 20 eV, and I = 1014 W/cm2.

D. Transition to the strong-coupling regime in an e-p plasma

So far we fixed the pump amplitude a0 to a reasonably small value. Figure 5 now shows

for an e-p plasma the variation of Γ with a0. We recognize two curves which generalize

for an e-p plasma (β = 1) the Brillouin result of Fig. 2, which was obtained in there for

a0 = 0.0068352, to a broader range of the pump amplitude a0. The graph is for λ0 = 800

nm, leading to a critical density nc =
meω2

0

4πe2
≈ 1.74× 1021 cm−3 � n0 = 1019 cm−3.

The kinetic Brillouin result (solid curve) is compared to fluid prediction (dashed curve)

[1]. We recognize the already reported reduction due to significant kinetic effects (damping)

in an e-p plasma. The discrepancy is large for small pump amplitude and almost disappears

for strong pump amplitudes. For small a0, both lines in Fig. 5 show a linear increase with
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FIG. 5. Growth rate Γ in dependence of pump amplitude a0 for an e-p plasma (β = 1). The solid

line represents the kinetic Brillouin growth rate Γ as obtained from Eq. (28). The broken line

follows from the fluid description with susceptibilities (32) Parameters are α = 1, T = 20 eV, and

n0 = 1019 cm−3.

a0. By fluid theory the prediction is [1]

Γ =
cka0

2
√

2

√
2ω2

pe

kVe (ω0 − kVe)
∝ a0 , (34)

were ω0 = 2πc
λ0

is the pump frequency. These predicted values agree with the left part of

the broken line in Fig. 5. However, the correct curve (solid line) has much smaller values,

but a larger slope than predicted by fluid theory. That means that with increasing a0 the

discrepancy between fluid and kinetic results becomes less pronounced. For larger a0, a

cross-over to a different a0-dependence occurs (for a0 & 0.02 in Fig. 5). This is true for

both curves in Fig. 5. Indeed, when we solve the full fluid dispersion relation we obtain

the dashed curve which also shows the mentioned cross-over. Such a cross-over is known as

transition from weak to strong coupling. In the strong-coupling regime, the fluid and kinetic

descriptions converge towards each other. At larger a0, growth occurs with Γ ∝ a
2/3
0 . This

is typical for strong coupling [18].
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V. SUMMARY AND CONCLUSIONS

In the present paper we reassured that in an unmagnetized e-p plasma the resonant

three-wave interaction between a finite pump electromagnetic wave and a Langmuir wave

cannot occur. The ponderomotive force, arising from the beating of the pump and scattered

wave, does not create the charge separation that is required for the existence of non-thermal

Langmuir waves [25–27]. That argument does not apply to Brillouin scattering because

the acoustic mode does not require a net charge difference [1]. However, as is shown here,

the low-frequency mode is a heavily damped acoustic quasi-mode. Nevertheless it can be

driven by an external pump. The scattering off an acoustic quasi-mode is enhanced in an

e-p plasma when compared with the situation of "traditional" e-i plasmas. In dense e-p

plasmas the Brillouin enhancement will be very large, even much larger than the Raman

process in e-i plasmas. However, a fully kinetic treatment becomes necessary. It is shown

here that the latter provides a completely consistent scenario with PIC simulations of Ref.

[1]. Additionally, we have conducted Vlasov simulations. So far the simulations were carried

out in the linear regime only and allowed us to determine the growth rate numerically. We

found excellent agreement with the analytic predictions. At present we upgrade the Vlasov

simulations to the nonlinear regime. All Vlasov simulation results and their interpretation

will be the object of a forthcoming publication.
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