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Abstract
We investigate a time-dependent extension of the Tonks-Langmuir model for a one-dimensional

plasma discharge with collisionless kinetic ions and Boltzmann electrons. Ions are created uniformly

throughout the volume and flow from the center of the discharge to the boundary wall due to a self-

consistent, zero-order electric field. Solving this model using a particle-in-cell simulation, we observe

coherent low-frequency, long wavelength unstable ion waves which move toward the boundary with

a speed below both the ion acoustic speed and the average ion velocity. The maximum amplitude of

the wave potential fluctuations peaks at ≈ 0.09Te near the wall, where Te is the electron temperature

in eV. Using linear kinetic theory, we identify this instability as slow ion acoustic wave modes which

are destabilized by the zero-order electric field.
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I. INTRODUCTION

The Tonks-Langmuir (TL) model [1] is a seminal theory for the low-pressure discharge

and the plasma-sheath transition region [2–4] which predicts the time-independent ion ve-

locity distribution function, plasma density, and electrostatic potential profile spanning the

plasma and sheath. The TL model is an open system wherein ions are created ex nihilo,

leading to the establishment of a zero-order electric field which accelerates ions to the walls.

The TL model has played a major role in our understanding of plasma discharges and

aided in advancing modeling in plasma materials processing, diagnostics, lighting, plasma-

spacecraft interactions and many more applications. It has been tested experimentally [5–8]

and several extensions have been developed to more accurately model certain discharges

including different models for sourcing the ions [9–12], asymmetric discharges [13], colli-

sional plasmas [14], finite source temperature [15–17], different electron models [18, 19], and

electronegative discharges [20].

The TL model is a steady-state model (i.e. ∂/∂t = 0 where t is time), but recent

work has shown that microinstabilities driven by the relative drift between ions and elec-

trons [21, 22], or different ion species [23, 24], can arise in low pressure discharges and may

significantly influence transport via wave-particle scattering [25]. It is natural to question if

microinstabilities arise in a time-dependent Tonks-Langmuir model [15], and, if so, to what

extent they might modify the steady-state solutions. Recent work has suggested that the

Tonks-Langmuir model may be susceptible to instabilities, and potential oscillations near

the ion plasma frequency have been observed in particle-in-cell simulations [26]. Generic

ion-acoustic instabilities have been invoked to explain experimentally measured anomalous

thermalization of ions near the sheath edge [22].

In this work we report a new type of low frequency instability in a time-dependent

extension of the Tonks-Langmuir model. The model consists of the time-dependent ion

Vlasov equation with an ion source and Boltzmann electrons which are coupled through the

plasma potential by Poisson’s equation. Direct numerical solutions reveal long-wavelength

unstable acoustic waves which are excited near the center of the discharge and move with

speeds well below the ion acoustic speed. The instability, which is driven by the zero-

order electric field, is fundamentally different than the standard ion-acoustic type instability

which is driven by the relative drift between ions and kinetic electrons. In fact, standard
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ion-acoustic instabilities are not possible in this model because the electron density is solved

via the Boltzmann density relation, precluding inverse electron Landau damping, which is

the mechanism by which the standard ion-acoustic instability grows.

Although essential features of the observed instabilities are nonlinear, linearization of the

time-dependent TL model equations reveals the mechanism responsible for their excitation.

In particular, slow ion-acoustic waves are excited directly by the zero-order electric field

as predicted by the linear dispersion relation and first introduced by Fried, Gell-Mann,

Jackson and Wyld [27]. These waves, which are convected to the wall by the ion flow,

are fundamentally different than standard ion-acoustic instabilities because they are driven

directly by the free energy in the zero-order electric field, rather than by a differential flow

and are present even in the absence of a differential flow.

This paper is organized as follows. Section II describes the time-dependent extension of

the TL model. In Sec. III we present numerical solutions of the model and demonstrate

the existence of unstable acoustic modes. Section IV describes the linear theory both for a

general steady-state ion velocity distribution function (IVDF), and for a Maxwellian IVDF.

Results from the linear theory are given in Sec. V and show that the theory predicts an

unstable wave whose features match the instability observed in the simulation. Conclusions

are presented in Sec. VI.

II. THE TONKS-LANGMUIR MODEL

In the Tonks-Langmuir (TL) model [1] a plasma with a single positive ion species with ion

charge e and massM and Boltzmann electrons is created in the region between two large flat,

perfectly absorbing electrodes (i.e. walls). The system is assumed to be a one-dimensional

slab geometry, where x = 0 at the center of the discharge (Fig. 1). A steady-state, self-

consistent potential φ (x) is established between the walls. Ions are born at rest (i.e. cold)

and are accelerated to the walls by the self-consistent electric field, creating a non-Maxwellian

ion distribution function f(x, v), where v is the ion velocity. Electrons are assumed to be in

thermal equilibrium with a temperature Te. The rate of ion creation may be either uniform

or proportional to the electron density [2]. We consider the case of a uniform ion source,

which may be due to a small component of high energy electrons [15], e.g. a multidipole

confined filament discharge.
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Figure 1. Schematic of the Tonks-Langmuir discharge model. Cold ions are created and then

accelerated to the walls by the self-consistent electric field.

The steady-state TL model can be formulated as follows. The ion distribution function

f (x, v) is a self-consistent solution of a time-independent Vlasov equation

v
∂f

∂x
+
eE

M

∂f

∂v
= S (x, v) , (1)

where E = −dφ/dx and S (x, v) is the ion source term. The ion number density

ni (x) =

ˆ
f (x, v) dv (2)

and electron density is given by the Boltzmann relation

ne = ne0 exp

(
eφ

kBTe

)
, (3)

where kB is Boltzmann’s constant and ne0 is the electron density for φ = 0, which is typically

at the center of the discharge x = 0. The electron and ion densities are linked through the

self-consistent potential φ by Poisson’s equation

d2φ

dx2
= − e

ε0
(ni − ne) , (4)

where ε0 is the permittivity of free space. Boundary conditions are φ = 0 at the center of

the discharge (so ne = ne0 ≈ ni) and φ = φw < 0 at the wall x = L. For the TL model with

ions born at rest and a spatially uniform source

S (x, v) = νne0δ (v) (5)

where ν is a creation rate of ions per unit time and δ (v) is the Dirac delta function. Equations

(1)-(5) make up the time-independent TL model.
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This model can be recast as a single integro-differential equation [1, 2, 4] for φ (x). In

particular, the Vlasov equation is solved using the method of characteristics to give an

expression for the ion density at a position where the potential is φ (x),

ni (x) =

√
M

2e

ˆ x

0

νne0dx
′√

φ (x′)− φ (x)
(6)

which can be substituted into Poisson’s equation to give the full plasma sheath equation [4]

d2φ

dx2
= − e

ε0

[√
M

2e

ˆ x

0

νne0dx
′√

φ (x′)− φ (x)
− ne0 exp

(
eφ

kBTe

)]
. (7)

This equation is non-dimensionalized using

η = − eφ

kBTe
, ζ =

x

Lν
, Lν =

√
2

ν

√
kBTe
M

, λD =

√
ε0kBTe
e2ne0

, (8)

where Lν is called the ionization length and λD is the electron Debye length at the center

of the discharge. The dimensionless plasma sheath equation is

λ2D
L2
ν

d2η

dζ2
=

ˆ ξ

0

dζ ′√
η (ζ)− η (ζ ′)

− e−η. (9)

Solutions depend on a single parameter–the squared ratio of the Debye length to the ion-

ization length. For the system to be a plasma λD � Lν and in the plasma approximation

(strict charge neutrality) λD/Lν = 0. Plasma solutions are effectively independent of λD/Lν

for λD/Lν � 1 and then the only length scale is Lν . Exact analytic solutions are known in

the plasma approximation [2, 4].

To build a time-dependent TL model we need only replace Eq. (1) with the time-

dependent ion Vlasov equation

∂f

∂t
+ v

∂f

∂x
+
eE

M

∂f

∂v
= S (x, v) , (10)

while Poisson’s equation [Eq. (4)] is unchanged. The model now includes standard ion

acoustic waves with an ion acoustic speed

cs =

√
kBTe
M

(11)

and ion plasma oscillations with a frequency

ωpi =

√
ne0e2

ε0M
, (12)

where λD = cs/ωpi. Since electrons are massless, the time-dependent TL model does not

include electron waves or electron Landau damping.
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III. TIME-DEPENDENT SOLUTIONS

We use a particle-in-cell (PIC) code to compute solutions of the time-dependent TL

model, where the trajectories of the ion particles are the characteristic curves of the ion

Vlasov equation (10). Even though the time-independent system has symmetry around

x = 0, we simulate the entire system from wall to wall, x = −L to x = +L. The ion

source rate ν, which is an eigenvalue of the TL model [4], is adjusted until the time-averaged

potential at the center of the discharge is approximately zero. Simulation parameters are:

grid spacing ∆x = 1/4λD, time step ∆t = 1/16ω−1pi , wall potential φw = −5kBTe/e. The

grid is 4096∆x in extent, so that the total system length is 1024λD and the distance from

the center of the simulation box to the wall is 512λD. Simulations are run to a final time

tf = 7000ω−1pi which is well into the steady-state regime. Ion particles are added uniformly

in space using a “quiet start” method [28], and 1024 ions in a simulation cell corresponds to

the density ne0. We add 258 ion particles per ∆t. In steady-state the simulation contains

3.6× 106 ion particles.

Space-time plots of the dimensionless potential η [Fig. 2(a)] display the expected back-

ground of standard ion acoustic waves and ion-plasma oscillations together with slow acoustic

waves. To emphasize the fluctuations, we subtract the time-averaged potential 〈η〉 to give

δη = η − 〈η〉 as shown in Fig. 2(b). Ion acoustic waves with a phase velocity cs [Eq. (11)]

are observed near the center of the discharge propagating in both the positive and negative

directions. These waves originate near the plasma-sheath boundary and propagate back

into the system. In addition to standard ion acoustic waves which propagate at cs, there

are long-wavelength, large-amplitude acoustic waves that originate near the center of the

discharge and move to the walls with speeds well below cs. Near the center of the discharge,

where the instability is first discernible, the wavelength is ∼ 7 − 10λD and increases to

∼ 40− 50λD near the edge of the discharge due to increasing wave speed. The paths of the

perturbations are roughly parabolic in time so that their velocity (in the laboratory frame)

increases with distance from the center of the discharge.

The power spectral density (psd) of the potential fluctuations δη as a function of distance

x from the center of the discharge averaged over a time interval 1024 ω−1pi is shown in Fig.

3. The power is dominated by the slow acoustic modes. A narrow peak is seen in the psd

at ω = 0.048ωpi which grows with increasing distance from the center of the discharge.
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Figure 2. Steady-state space-time plots of (a) dimensionless potential η = −eφ/kTe and (b) the

potential fluctuations δη (x, t) = η (x, t)−〈η〉 (x) computed by subtracting the time-averaged poten-

tial. The dashed lines in (b) show the ion acoustic speed cs [Eq. (11)]. Standard ion acoustic waves

are visible near the center of the discharge with a speed cs, while the long-wavelength fluctuations

move with a speed well below cs.

This verifies the existence of a quasi-coherent low frequency unstable acoustic wave which

originates near (but not at) the center of the discharge. Several additional higher-frequency

modes with lower powers are also visible. Closer to the wall, the instability shows evidence

for saturation due to increased power in higher frequency modes, where the energy in the

higher frequency modes becomes comparable to the energy in the lowest frequency mode.

The effect of the instability on the ion distribution function f (x, v) is shown in Fig. 4. In

Fig. 4(a) we average over a time interval 13ω−1pi which is about one-tenth of the instability

period. This reflects the instantaneous effect of the instability on ion phase space. As seen

previously in the potential fluctuations, the instability begins to grow near the center of the

discharge and the wavelength increases with the wave speed as we move toward the wall. In

addition, long wavelength features are modulated by shorter wavelengths corresponding to

higher frequency modes. In Fig. 4(b) we average over a time interval 128ω−1pi which is about
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Figure 3. Power spectral density (psd) vs distance from the center of the discharge and frequency

normalized the the ion plasma frequency at the center of the discharge ωpi. A spectral peak with

nearly constant frequency which grows with distance from the center of the discharge is found

indicating an unstable acoustic mode.

one period of the dominant unstable mode. In this case, the spatial fluctuations average

nearly to zero, while the temporal fluctuations widen the distribution function in velocity

space, leading to a broadening of the steady-state distributions predicted by TL theory [15].

In Fig. 5 we show the dependence of the velocity of the unstable acoustic wave (normalized

to the ion acoustic speed) on position and compare it to the average ion speed 〈v〉. The

perturbation velocity is significantly below the ion acoustic speed cs, which was previously

seen qualitatively in Fig. 2. The perturbation velocity is also below the average ion velocity.

Consequently, the unstable modes are propagating in the −x direction with speeds less than

the average ion velocity and so are convected to the wall by the ion flow. In addition, since

they have long wavelengths and their speed in the ion frame is significantly less than cs these

waves are not described by the standard ion acoustic dispersion relation.

Root-mean-squared (rms) potential fluctuations δηrms and the maximum fluctuations

δηmax are shown in Fig. 6, where

δηrms =
√〈

(η − 〈η〉)2
〉
. (13)

The ratio δηmax/δηrms is approximately constant, with an average value of 3.4 which is
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Figure 4. Time-averaged ion velocity distribution function f (x, v). (a) The average is taken over

13ω−1pi so the the effect of the instability on ion trajectories is evident. (b) The average is taken over

128ω−1pi which corresponds roughly to one period of the instability. Note that spatial fluctuations

average to nearly zero.

consistent with a Gaussian distribution of fluctuations. There is a small peak near the center

of the discharge where short-wavelength ion plasma fluctuations push ions off the potential

maximum. The fluctuation level then decreases to the background level until the instability

begins to grow at x/L ≈ 0.2. The growth of the instability is linear (i.e. exponential) in x,

where δηrms ∝ ekix, where ki = 0.0094/λD is the spatial growth rate. As discussed above,

near the wall the instability saturates at δηrms = 0.025 and δηmax = 0.09, i.e. if the electron

temperature Te = 1 eV then the maximum potential fluctuation is δφ = 0.09 V.

The effect of varying the system length L is shown in Fig. 7, where we show the δηrms

vs distance from the center of the discharge for L = 256, 384 and 512 λD. In this case we

have rescaled x by L. We find that δηrms (x/L) is essentially independent of L. This can

be explained by recalling that the solution of the cold-source TL model in the plasma limit

(λD → 0) depends only on a single length scale Lν . Consequently, for the case where the

system is a large but finite number of Debye lengths in extent, the system length L ∝ Lν
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shown for comparison. Speeds are normalized by the ion acoustic speed. The speed of the unstable

waves is less than the average ion velocity, indicating that the unstable mode is propagating in the

−x direction but is carried to the wall by the ion flow.

0.001

0.01

0.1

0 128 256 384 512
position x/λD

δηmax

δηrms

po
te

nt
ia

l fl
uc

tu
at

io
ns

Figure 6. Root-mean-square (rms) (blue) and maximum (red) of potential fluctuations. The dashed

line gives a linear spatial growth rate of 0.0094/λD.
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Figure 7. Root-mean-squared (rms) potential fluctuations vs normalized position x/L for system

lengths L = 256, 384 and 512 λD. The spatial dependence of the fluctuations is effectively indepen-

dent of L indicating the fluctuations are a feature of the time-dependent TL model in the plasma

approximation λD/L� 1.

is essentially the only length scale and all results in the plasma limit should be self-similar

when rescaled by L. This demonstrates that the observed instability scales as we would

expect if it is a feature of the time-dependent TL model in the plasma limit. In this case,

there is a single universal spatial growth rate ki = 4.8/L.

We investigate the dispersion relations by examining two-dimensional Fourier transforms

of the fluctuation data δη (Fig. 8) in four regions each 128λD×512ω−1pi in size. The transform

amplitude will be greatest along the normal modes of the system, which will trace out the

branches of the dispersion relation ω (k), where k = 2π/λ is the wave number. These are

computed in the lab frame, and so the plasma flow distorts ω (k) for both positive and

negative wavenumbers. Figure 8(a) shows the dispersion relation near the center of the

discharge where the ion flow velocity is small. Two distinct waves types are observed. First,

there is a standard ion acoustic wave with an acoustic speed cs which bends over to the ion

plasma frequency ωpi for large k and which propagates in both the upstream and downstream

directions. Second, there are two slow acoustic modes each with a nearly constant speed

� cs and which move only in the +k direction. As discussed above, these waves actually
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Figure 8. Average dispersion relations in the lab frame found by taking the two-dimensional Fourier

transform of the potential fluctuations δη for regions 128λD × 512ω−1pi vs distance from the center

of the discharge. For example, in (b) the spatial domain extends from x = 128λD to 256λD. The

white dashed lines in (a) give the ion acoustic speed cs for a stationary plasma. A standard acoustic

wave with a speed cs is visible together with slow acoustic modes with speeds less than cs in the

lab frame which propagate in the −x direction and are carried to the wall by the ion flow.

propagate in the −x direction but are convected in the +x direction by the ion flow. These

are the unstable acoustic modes. As we move towards the wall, the ion flow distorts both

the standard acoustic mode and the unstable modes, while an increasing amount of wave

energy is concentrated in the unstable modes with more energy at longer wavelengths.

IV. LINEAR INSTABILITY THEORY

The Tonks-Langmuir model consists of the Vlasov-Poisson equations with an ion source

and appropriate boundary conditions. As shown in the previous section, numerical solutions

demonstrate that the time-dependent TL model has an acoustic-type instability. In this

section, we linearize the ion Vlasov-Poisson system, including a zero-order electric field

which drives the instability, and derive the linear dielectric function both for general and

Maxwellian ion velocity distribution functions. In Sec. V we show that this leads to an
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instability that matches the observed characteristics seen in the PIC solutions.

The linearized ion Vlasov equation [Eq. (10)] neglecting the source term,

∂f1
dt

+ v
∂f1
∂x

+
e

M
E1
∂fo
∂v

+
e

M
Eo
∂f1
∂v

= 0, (14)

can be solved using the method of characteristics. Here, fo(x, v) and Eo(x) are the steady-

state velocity distribution function and electric field, which are assumed to vary on spatial

scales much longer than the perturbed quantities f1(x, v, t) and E1(x, t). Integrating the

equation of motion Md2x′/dt′2 = eEo from time 0 to t subject to the end point conditions

x′(t′ = t) = x and v′(t′ = t) = v gives

f1(x, v, t) = f1(x
′, v′, t′ = 0)− e

M

∂fo
∂v

ˆ t

0

dt′E1(x
′, t′) (15)

where x′ = x − vτ + 1
2
(eEo/Mi)τ

2, v′ = v − (eEo/M)τ and τ = t − t′. Taking the Fourier

transform in space and the Laplace transform in time leads to

f̂1(k, v, ω) =
if̃1(k, v

′, t′ = 0)

ω̄f
− e

M

iÊ1(k, ω)

ω̄f

∂fo
∂v

(16)

where
1

ω̄f
≡ −i

ˆ ∞
0

dτ exp{i[(ω − kv)τ + αEτ
2]} (17)

is the inverse frequency response associated with the unperturbed characteristic and

αE ≡
1

2

e

M
kEo (18)

is an angular acceleration associated with the zero-order electric field.

Calculating the ion density perturbation from n1,i =
´
d3vf1 and inserting the result

into the linearized Poisson’s equation, d2φ1/dx
2 = −e(n1,i − n1,e)/εo, along with the linear

Boltzmann density relation for electrons ne,1 = noeφ/(kBTe) leads to the linear dielectric

function

ε̂(k, ω) = 1 +
1

k2λ2D
+

e2

εokM

ˆ
dv

∂fo/∂v

ω̄f
. (19)

Note that the integral in Eq. (17) can be evaluated in terms of tabulated functions: ω̄−1f =
√
πwE exp(w2

E)erfc(wE)/(ω − kv), where wE ≡
√
−i(ω − kv)/(2

√
αE).

A qualitative understanding of the mechanism responsible for the observed TL instability

can be obtained by approximating the steady-state ion distribution function as a Maxwellian,
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fM = no exp[−(v−ui)2/v2T i]/(
√
πvT i), where ui is the ion flow speed and vT i is the ion thermal

speed. With this, Eq. (19) can be written as

ε̂(k, ω) = 1 +
1

k2λ2D
−
ω2
pi/(k

2v2T i)

(1− iξi)
Z ′
[(ω − kui)/kvT i√

1− iξi

]
(20)

where Z is the plasma dispersion function [29] and the prime denotes a derivative with

respect to the argument. Here,

ξi ≡
2ekE/M

k2v2T i
=

1

kλi
(21)

quantifies the influence of the electric field. This can also be described in terms of the length

scale λi ≡ Ti/(eE). In the limit E → 0 the well known field-free electrostatic dielectric

function is returned. A representation of the dielectric function similar to Eq. (20) was first

obtained by Fried, Gell-Mann, Jackson and Wyld [27]; see also Refs. [30, 31].

V. LINEAR INSTABILITY RESULTS

Figure 9 shows that the zero-order electric field rotates the wave mode locations in fre-

quency phase-space. The lines in the curves represent the solution of Eq. (20) for Re{ε̂} = 0

and Im{ε̂} = 0 for the conditions given in the caption. The crossing points of these lines

represent the wave modes. Throughout this section, k is taken to have a positive value and

the alignment of the direction of k with reference to the electric field is indicated by the sign

of the electric field. It was observed that a positive value of E causes the mode locations to

rotate clockwise, and negative values caused them to rotate counter clockwise. For the finite

value eE/(Te/λD) = −0.001 shown, the growth rate of modes with a positive sign of the real

frequency increase, and those with negative real frequency decrease, due to E. The single

pole in panel (b) for which Im{ω} > 0 indicates a linearly unstable mode which propagates

only in the direction opposite E in the ion frame.

The growth rate of this instability is found to increase with electric field strength and

be peaked at a wavelength that is significantly longer than the electron Debye length. The

real frequency corresponding to the maximum growth rate is approximately an order of

magnitude lower than the ion plasma frequency. Figure 10 shows the dispersion rela-

tion computed from Eq. (20) for five values of the electric field strength eE/(Te/λD) =

0,−0.0001,−0.0005,−0.001 and −0.005. These values are typical of those in steady-state
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Figure 9. Roots of the linear dielectric function from Eq. (20) with kλD = 0.05, Te/Ti = 10 and

ion flow speed ui = 0: Re{ε̂} = 0 (red solid lines), Im{ε̂} = 0 (blue dashed lines). Circles are the

crossing points, which represent wave modes. (a) No electric field (E = 0) and (b) with electric

field eE/(Te/λD) = −0.001. The electric field leads to a growing mode.

TL solutions. For small electric fields there are a wide range of unstable wavenumbers with

similar small growth rates. For stronger electric fields the growth rate peaks at shorter

wavelengths. The real frequency is observed to deviate from the standard acoustic solutions

with a phase velocity cs [Fig. 10(b) black line] at long wavelengths.

For weak electric fields, only long wavelength modes are predicted to be unstable, and

the growth rate is small. For these modes in particular, it is instructive to consider the

fundamental scale separation condition underlying linear theory; that the wavelengths (λ =

2π/k) be much shorter than the gradient scale LE of the background. Since the electric

field is the only steady-state field in this case, LE is estimated based on the gradient scale

of the electrostatic potential LE ' Te/|eE|, where Te indicates a characteristic value of the

electric potential, referenced to the center of the discharge, in the region of interest. Taking

the eE/(Te/λD) = −0.001 case as an example, the shortest wavelength of unstable modes is

approximately 30λD, whereas LE ' 1000λD. For these modes, the assumed scale separation

is well satisfied. However, the assumption can be violated for very long wavelengths (kλD .

0.01) as shown in Fig. 10.
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Figure 10. (a) Growth rate, and (b) real angular frequency of the linear dispersion relation computed

from Eq. (20). The common data in each curve was Te/Ti = 10 and ion flow speed ui = 0. The

five chosen values of the electric field are indicated in the legend.

The electric field drive mechanism for this instability is fundamentally different than the

familiar ion-acoustic instability. This is emphasized in Fig. 11, which shows that the growth

rate of the instability does not depend on the ion flow speed ui . Here, five ui values ranging

from 0 to −2cs are shown; negative values correspond to the TL model situation where the

ion flow is in the same direction as the electric field (−k̂ in this case). Each of the growth

rate curves here is indistinguishable. In contrast, ion-acoustic instabilities are driven by the

relative drift between electrons and ions and highly influenced by the value of ui [25]. The

standard ion-acoustic instability is not possible in the model of Eq. (20) because it requires

a differential flow between two plasma components. The only influence ion flow has on the
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relation computed from Eq. (20) with Te/Ti = 10, and eE/(Te/λD) = −0.001 at the five values of

ui/cs indicted in the legend. All five curves are shown for the growth rate, but are indistinguishable

demonstrating that the growth rate is independent of the average ion velocity.

wavenumber k6D

10-4 10-3 10-2 10-1 100 101

gr
ow

th
ra

te
.
=!

pi

#10-3

-1

0

1

2

3

4

5

k6D

10-4 10-3 10-2 10-1

!
=
!

pi

10-3

10-2

10-1

Figure 12. Growth rate and angular frequency (inset) of the linear dispersion relation computed

from Eq. (20) for Te/Ti = 10, eE/(Te/λD) = −0.001 and 〈v〉 /cs = 0 for four distinct wave modes.

observed instability is to doppler shift the real mode frequency in the lab frame.

A further observation distinguishing this instability from more familiar types is that

multiple wave modes with different wave velocities may be unstable. Figure 12 shows an
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Figure 13. (a) Profiles of electric field (red), ion flow speed (dashed line), rms ion speed (dash-

dotted line) and density (blue line) from the steady-state TL model (Ref. [15]). (b) The computed

maximum linear growth rate computed from Eq. (20) using the parameters from panel (a). (c)

Growth rate and (d) real frequency of the instability at the four spatial locations indicated in the

legend.

example of four such unstable modes. These modes correspond to the positive real frequency

modes shown in Fig. 9. Although only one of the modes shown in this figure has a positive

growth rate at kλD = 0.05, the parameter determining the magnitude of the rotation in

the frequency phase-space is ξi = eE/(kTi); either increasing E or decreasing k increases

the rotation. For sufficiently small k, multiple modes can have a positive growth rate, as

shown in the dispersion relation in Fig. 12. However, the scale separation assumed for the

linearization breaks down at these long wavelengths. In this context, it is also worth noting

that these normally damped modes represent kinetic modes, which are known to be the

branches through which nonlinear transfer of energy occurs [32, 33].

Figure 13 shows the predicted linear growth rate for parameters obtained from solutions

of the steady-state cold TL model. The electric field, density, average ion speed, and root-

18



mean-square (rms) ion speed were obtained from the analytical expressions for steady-state

solutions of the TL model in [4] and [15] and are shown in panel Fig. 13(a). The linear

dispersion relation was computed at each point along the profile using Eq. (20) with values

for the density, average ion speed and effective ion temperature (Te/Ti = 2/u2rms) from the

cold TL model. The linear dielectric function from Eq. (20) assumes that the distribution

is Maxwellian, which differs from the highly non-Maxwellian TL distribution, so the results

obtained in this way are an approximate, rather than an exact evaluation of the linearized

cold TL theory.

Figure 13(b) shows the maximum growth rate vs position. It is observed to be largest

near the sheath, but also larger near the center of the discharge where the instability begins

growing. Although the electric field is weaker toward the center, Te/Ti is largest there.

Data are omitted for x/L . 0.2 because in this region the ion temperature in the cold TL

model becomes unphysically small indicating that finite ion source temperature effects are

important. Moving from the center toward the sheath, the growth rate decreases, presumably

due to the decrease in Ti having a comparatively more significant influence on the growth

rate than the slight increase of E. Close to the sheath edge, the larger electric field leads to

a substantial rise in the peak growth rate. Figures 13(c) and (d) show the growth rate and

real angular frequency of the instability at four locations. These show that for x/L = 0.25,

close to where the instability begins growing, there is a well-defined peak in the growth

rate which fixes the instability frequency and wavelength–the most unstable wavelength is

∼ 10λD, and that the corresponding real frequency ω ≈ 0.1ωpi. Both of these predictions are

in qualitative agreement with the numerical solutions. In particular, the instability begins to

grow near the center of the discharge with a well-defined frequency and initial wavelength.

As the wave propagates to the wall, the wave speed in the lab frame increases and the

wavelength must increase to keep the frequency constant.

VI. CONCLUSIONS

We have solved the time-dependent extension of the Tonks-Langmuir model [1, 2, 4,

15] computationally. We observe standard ion acoustic waves which are created near the

sheath-plasma boundary and propagate across the discharge at the ion acoustic speed cs.

Significantly, we also observe unstable acoustic modes that begin growing near the center
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of the system and saturate near the sheath-plasma boundary. The unstable modes have

frequencies well below the ion plasma frequency and wavelengths which increase from ∼

7−10λD near the discharge center to ∼ 40−50λD near the discharge walls. The root-mean-

squared fluctuation amplitude δφrms ≈ 0.025kTe/e where Te is the electron temperature, or

the maximum fluctuation δφ ≈ 0.09kBTe/e or about 10% of the electron temperature in eV.

An analysis of the linearized Vlasov-Poisson system indicates that the instability corresponds

to slow acoustic modes which are destabilized by the zero-order electric field and which are

convected to the walls by the ion flow. In particular, the instability begins to grow around

x/L ≈ 0.2, where L is the distance from the center of the discharge to the wall. The

frequency is set at this point, and the wavelength increases and the wave velocity in the lab

frame increases as the unstable modes move to the wall.
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