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The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hy-
potheses. The first of these is that a system of dislocations, driven by external forces and irreversibly
exchanging heat with its environment, must be characterized by a thermodynamically defined effec-
tive temperature that is not the same as the ordinary temperature. The second hypothesis is that
the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated de-
pinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this
theory followed by examples of its use in analyses of experimentally observed phenomena including
strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

I. INTRODUCTION

In 2010, Eran Bouchbinder, Turab Lookman and I
published a paper (LBL) [1] with almost the same ti-
tle as this one. In that paper, we used statistical ideas
that had emerged in theories of amorphous plasticity to
construct a theory of dislocations in deforming polycrys-
talline solids. More recently, I have used this thermody-
namic dislocation theory in analyses of a variety of ex-
perimentally observed phenomena including the depen-
dence of strain hardening on strain rate and tempera-
ture, grain-size (Hall-Petch) effects, yielding transitions,
adiabatic shear banding, and the interplay between ther-
mal and mechanical effects in determining responses to
varying histories of deformation. [2, 4–6]

The ways in which I understand the thermodynamic
theory have evolved in recent years, and some of my
original presentations need to be improved and put into
proper perspective. My purposes here are to clarify the
logical structure of the theory, to summarize its main ac-
complishments so far, and to point out the directions in
which it needs to be extended.

The thermodynamic dislocation theory is qualitatively
different from other theories in this field, both in its first-
principles starting point and its predictive capabilities.
The most common conventional theories either are de-
scriptions of single dislocations, and thus do not touch
on central issues such as strain hardening; or else they
are attempts to construct empirical models of dislocation
driven plastic deformation based directly on experimen-
tal observations. Neither of these approaches has proven
to be as useful in applied materials science as, for exam-
ple, quantum theories of electronic properties or statis-
tical theories of pattern formation. The thermodynamic
theory of dislocation-enabled plasticity is an attempt to
bring this central part of materials science up to a level
of applicability comparable to those other parts of the
field.

The thermodynamic theory starts with two unconven-
tional assumptions. The first of these is that a system
of dislocations, driven by external forces and irreversibly
exchanging heat with its environment, must be character-
ized by a thermodynamically well defined effective tem-

perature that coexists with the ordinary temperature but
is not the same as it. In my opinion, there is nothing
speculative about this assumption; I believe that it fol-
lows from basic principles of nonequilibrium statistical
thermodynamics.

Second, the thermodynamic theory is based on a spe-
cial physical assumption – that the overwhelmingly dom-
inant mechanism controlling plastic deformation is ther-
mally activated depinning of entangled pairs of disloca-
tions. So far as I know, no other investigators have ex-
plored such an assumption. Most commonly, the pro-
posed empirical relations between stress, strain, strain
rate, temperature, etc. are multi-parameter fits to ex-
perimental data, based loosely on pictures of indepen-
dent dislocations impeded by various kinds of obstacles
as they move through a lattice. These empirical fits do
reveal the importance of an activation mechanism, but
provide no specifics about what that mechanism might
be. In contrast, the depinning model contains just two
physics-based parameters: the pinning energy and a di-
mensionless ratio of two length scales that determines
how that energy barrier is reduced by a stress field. There
are limitations to the range of validity of this model but,
within that range, it has turned out to be remarkably
successful.

The next two sections of this paper, Secs. II and III,
are devoted, respectively, to the effective temperature
and the depinning model. In both of these sections,
the analysis pertains only to steady-state deformations,
where the nonequilibrium aspects of the problem are rel-
atively easy to understand. Nonequilibrium thermody-
namics has been a difficult and controversial subject for
at least a century. In 2009, Bouchbinder and I wrote a se-
ries of papers about this topic largely because we needed
a basic understanding of it in order to solve problems in
amorphous plasticity.[7] I repeat the necessary parts of
that analysis at the beginning of Sec. IV in preparation
for a systematic derivation of the equations of motion
for the thermodynamic dislocation theory. Then, in the
following sections, I summarize applications of this the-
ory, discuss its limitations, and point to important open
questions.
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II. ELEMENTARY DEGREES OF FREEDOM

AND THE EFFECTIVE TEMPERATURE

The thermodynamic dislocation theory starts with
the assertion that a plastically deforming polycrystalline
solid must be described by two distinct sets of elemen-
tary degrees of freedom, distinguished most importantly
by the time scales on which they move. One set of these
degrees of freedom consists of the configurational coordi-
nates that determine the mechanically stable positions of
all the atoms, including the positions of the dislocations.
These configurations change slowly during macroscopic
plastic deformation. The other set of degrees of freedom
consists of the fast kinetic-vibrational variables that de-
scribe small fluctuations about the stable configurations.
The average energy of these fluctuations is proportional
to the ordinary temperature T . Their motions occur on
microscopic time scales, of the order of 10−10s or less,
very much smaller than the time scales ordinarily associ-
ated with mechanically driven deformation.

To a good approximation, the configurational and the
kinetic-vibrational degrees of freedom describe a pair of
weakly coupled subsytems of the deforming system as
a whole. Operationally, we can think of these subsys-
tems as if they were two separate entities, with differ-
ent temperatures and subject to different external forces,
connected to each other only by a poor heat conduc-
tor. These subsystems do exchange energy when groups
of atoms undergo irreversible rearrangements. The con-
figurational subsystem briefly acquires energy from the
kinetic-vibrational subsystem, and returns about the
same amount of energy to it when the atoms fall into new
stable positions. These rearrangements occur on micro-
scopic time scales but, unless the solid is near its melting
point, they are rare events. Thus, on average, the con-
figurational motions are macroscopically slow.

To explore this picture without going into unnecessary
detail too early in the presentation, it is useful to think
of a slab of material lying in the plane of an applied
shear stress, undergoing only steady-state deformation,
and to focus only on the dislocations. The dislocation
lines oriented perpendicular to this plane are driven by
the stress to move through a forest of entangling disloca-
tions lying primarily in the plane, thus producing shear
flow. Let the area of this slab be A, and let its thickness
be a characteristic dislocation length, say L. Denote the
configurational energy and entropy of the slab by U0(ρ)
and S0(ρ) respectively. Here, ρ is the areal density of dis-
locations or, equivalently, the total length of dislocation
lines per unit volume. The entropy S0(ρ) is computed by
counting the number of arrangements of dislocations at
fixed values of U0 and ρ.

The dislocations are driven by the applied stress to
undergo motions that are chaotic on deformation time
scales; that is, they explore statistically significant parts
of their configuration space. According to Gibbs, this
configurational subsystem must maximize its entropy;
that is, it finds a state of maximum probability. It does

this at a value of the energy U0 that is determined by the
balance between the input power and the rate at which
energy is dissipated into the kinetic-vibrational subsys-
tem, which serves here as the thermal reservoir. The
method of Lagrange multipliers tells us to find this most
probable state by maximizing the function S0−XU0, and
then finding the value of the multiplier X for which U0

has the desired value. Define X to be proportional to
the inverse of an effective temperature Teff , i.e. 1/X =
kBTeff ≡ χ. Thus, the system finds a minimum of the
free energy

F0 = U0 − χS0, (2.1)

which, for the moment, is simply a function of ρ.
We already can draw some interesting conclusions.

Note first that minimizing F0 in Eq. (2.1) determines
the steady-state dislocation density, say ρ0, as a func-
tion of the steady-state effective temperature, say χ0. In
the simplest approximation, U0 = AeD ρ, where eD is
a characteristic energy of a dislocation of length L. As
in LBL, I omit the conventional logarithmic correction
for elastic energy primarily because it muddies the alge-
bra unnecessarily, but also because I am not sure it is
correct for present purposes. The elastic interactions be-
tween dislocations could induce screening correlations in
ways not properly described by the logarithmic approx-
imation. The following arguments will be clearest, and
the agreement with experiment will not be impaired, if
we simply assume that the single-dislocation energy eD
already includes elastic contributions.
Similarly, we can estimate the ρ dependence of the en-

tropy S0 by dividing the area A into elementary squares
of area b2, where b is an atomic length scale, roughly
the length of the Burgers vector, and then counting the
number of ways in which we can distribute ρA line-
like dislocations, oriented perpendicular to the plane,
among those squares. The result has the familiar form
S0 = −Aρ ln(b2 ρ) + Aρ. Thus, minimizing F0 with re-
spect to ρ produces the usual Boltzmann formula,

ρ0 =
1

b2
e− eD/χ0 . (2.2)

We see that an appreciable density of dislocations re-
quires a value of χ = χ0 that is comparable to eD, which
is enormously larger than the ambient thermal energy
kB T .
Next, note that χ is a measure of the configurational

disorder in the material, in direct analogy to the way in
which the ordinary temperature determines the strength
of low-energy fluctuations. As such, χ0 must be a func-
tion primarily of the plastic shear rate ǫ̇pl, which we
can think of as the rate at which the system is being
“stirred,” i.e. the rate at which the atoms are being
caused to undergo rearrangements. If this shear rate is
so slow that the system has time to relax between re-
arrangement events, then the steady state of disorder is
determined only by the number of atomic rearrangements
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that have occurred and not by the rate at which they oc-
curred. That is, χ0 must be some nonzero constant below
a characteristic shear rate whose value is of the order of
atomic frequencies, i.e. very large. It follows that ρ0 is
also nearly independent of shear rate for normally slow,
steady-state deformations.

In Section III, I argue that the driving stress is de-
termined primarily by the density of dislocation entan-
glements. Thus, a constant ρ0 means a nearly (but not
quite) constant steady-state stress over a wide range of
low to moderate shear rates. This is what is observed ex-
perimentally. As shown in LBL and also here in Sec.III
and in Fig. 1, the steady-state stress for room tempera-
ture copper increases by less than a factor of 2 between
strain rates of 10−3 s−1 and 108 s−1. In LBL, we also
showed that the steady-state value of χ becomes notice-
ably strain-rate dependent above rates of the order of
109 s−1; and we were able to understand the strong-shock
results at the higher strain rates by using a glass-theory
analogy to write a simple relation between χ and strain
rates up to about 1012 s−1. In this paper, however, I want
to focus only on the slower deformations because they can
be understood in much simpler, more fundamental ways.

Nevertheless, there is an aspect of the transition from
constant to strain-rate dependent values of χ that illus-
trates the power of the effective-temperature concept.
In LBL, we suggested that this transition might have
a universal geometric interpretation, roughly analogous
to the Lindemann criterion according to which crystals
melt when thermal vibration amplitudes are of the or-
der of a tenth of the lattice spacing. In that spirit,
we suggested that the value of χ0/eD might correspond
to a dislocation density of the order of (10 b)−2, i.e.
eD/χ0 ∼ 2 ln(10) ∼ 4. The resulting value χ0/eD ∼ 0.25
is remarkably close to what we find in our analyses of a
wide range of experimental data.

III. DEPINNING MODEL

The depinning model is literally a mathematical de-
scription of the entangled dislocations that Cottrell and
Nabarro compared to a “bird’s nest” because of its sup-
posedly intractable complexity.[8] In fact, it is that com-
plexity that allows a simple statistical analysis to be ac-
curate. In this model, the dislocations are immobilized by
being pinned to each other. These pinning interactions
can be broken infrequently by ordinary thermal fluctua-
tions. When a pin is broken, the unpinned segment of
a dislocation line moves – in effect, instantaneously – to
a nearby pinning site. There is no useful distinction be-
tween stored and mobile dislocations in this picture; all
segments of all the dislocations are immobile (i.e. pinned)
almost all the time. Nor is there any role to be played
by Peierlsian drag forces.

The depinning theory starts with Orowan’s relation
between the plastic strain rate ǫ̇pl, the dislocation density

ρ, and the average dislocation velocity v:

ǫ̇pl = ρ b v, (3.1)

where b, as before, is the magnitude of the Burgers vec-
tor, roughly a lattice spacing. If a depinned dislocation
segment moves a distance of about ℓ ≡ 1/

√
ρ between

pinning sites, then v ∼ ℓ/τP , where 1/τP is a thermally
activated depinning rate given by

1

τP
=

1

τ0
e−UP (σ)/kBT . (3.2)

Here, τ0 is a microscopic time of the order of 10−12 s,
and UP (σ) is the activation barrier.
UP (σ) must be a decreasing function of the stress σ.

For dimensional reasons, σ should be expressed in units
of some physically relevant stress, which we can identify
as the Taylor stress σT for the following reason. Suppose
that a pinned pair of dislocations must be separated by
a distance b′ in order to break the bond between them.
If these dislocations remain pinned to other dislocations
at distances ℓ, then this displacement is equivalent to a
strain of order b′/ℓ = b′

√
ρ and a corresponding stress of

order µ b′
√
ρ, where µ is the shear modulus. Thus

σT (ρ) = µ
b′

ℓ
≡ µT b

√
ρ. (3.3)

This is the Taylor stress with µT = (b′/b)µ, rederived
here by an argument not very different from the one that
Taylor used in his 1934 paper.[9] As in LBL, we then
write

UP (σ) = kB TP e−σ/σT (ρ), (3.4)

where kB TP is the pinning energy at zero stress. The
exponential function in Eq. (3.4) has no special signifi-
cance; in all applications so far, its argument σ/σT varies
by no more than a factor of two or three. Note, however,
that µT now may contain dimensionless factors that have
been suppressed by this choice of exponential stress de-
pendence. Note also that σ denotes only the magnitude
of the stress in this formula, because this part of the anal-
ysis determines only the scalar time scale τP . Directional
information will appear in other parts of the stress-strain
relations when stresses and strains become tensors.
The resulting formula for the strain rate ǫ̇pl is

ǫ̇pl =
b

τ0

√
ρ exp

[

− TP

T
e−σ/σT

]

. (3.5)

Now solve Eq.(3.5) for σ as a function of ρ, ǫ̇pl and T :

σ = σT (ρ) ν(ρ, ǫ̇
pl, T ), (3.6)

where

ν(ρ, ǫ̇pl, T ) = ln
(TP

T

)

− ln

[

ln
( b

√
ρ

ǫ̇plτ0

)

]

. (3.7)
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The quantity ν(ρ, ǫ̇pl, T ) is a very slowly varying function
of its arguments, consistent with the observation that the
Taylor stress is a good approximation to the true stress in
most circumstances, and also with the observation that
the steady-state stress is generally a very slow function
of the strain rate.

This extremely weak rate dependence of the steady-
state stress is a remarkable feature of polycrystalline plas-
ticity. So far as I know, however, it has not been empha-
sized in the dislocation-theory literature, nor has there
been any attempt to explain it other than to include the
steady-state stress as a fitting parameter, analogous to
the yield stress, in empirical formulas. In Fig. 1, I have
reproduced some results from LBL showing the steady-
state stress as a function of strain rate for copper, for two
very different temperatures T = 1173K and 300K, over
twelve decades of strain rate. In plotting these curves, I
have used Eqs. (3.6) and (3.7) with parameters shown in
the figure caption. The two points marked on each curve
are taken from the strain-hardening data shown in Figs.
2 and 3. The fact that the behavior shown in Fig. 1, span-
ning such a wide range of temperatures and strain rates,
can be reproduced accurately by the thermodynamic dis-
location theory with just a few physics-based parameters
seems to me to be strong support for the basic validity
of this theory.
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FIG. 1: (Color online) Log-Log plot of the steady-state
stresses as functions of strain rate for copper at temperatures
T = 1173K (lower curve) and 300K (upper curve). Param-
eters are TP = 40, 800K, τ0 = 10−12 s−1, and χ0/eD ∼= 0.25.
The values of µT are 1343MPa and 1600MPa for the higher
and lower temperatures respectively. The four data points are
taken from the stress-strain curves shown in Figs. 2 and 3

IV. NONEQUILIBRIUM EQUATIONS OF

MOTION

We now must move away from the steady-state as-
sumption in order to study time dependent phenomena
such as yielding and strain hardening. This means that
we need a careful treatment of the nonequilibrium as-
pects of these situations, especially a description of the
flow of energy and entropy through both the configura-
tional and kinetic-vibrational subsystems. The following
discussion is based on my presentation in [2] which, in
turn, is based on [7]. In the latter reference, look espe-
cially at Sec. IV for a discussion of the proper definition
of internal state variables.
It is conceptually simplest to keep the model intro-

duced in Sec. II. That is, visualize the system as a thin
slab of area A, thickness L, with spatially uniform but
time dependent stresses and strains lying in the plane
of the slab. This geometry directly models experiments
in which such a slab undergoes simple shear; but it also
can be used to describe compression and torsional tests
by rescaling the stress and/or the elastic modulus by di-
mensionless factors of order unity. (See [6].)
Assume, as in Sec. II, that the total internal energy of

this system can be written as the sum of configurational
and kinetic-vibrational parts:

Utotal = UC(SC , ρ) + UR(SR). (4.1)

Here, UC(SC , ρ) is the same configurational energy that
was introduced earlier except that now it contains not
just dislocation energy but also the energies associated
with all the other structural degrees of freedom. In prin-
ciple, we can include other state variables among the ar-
guments of UC , e.g. the grain size or the density of stack-
ing faults, etc. if we think that those variables might be
time dependent and dynamically relevant. I will not do
that here, but will point to situations where those extra
variables might be important. The function SC(UC , ρ)
is the total entropy of the configurational subsystem, in-
cluding all structural degrees of freedom, computed by
counting the number of configurations at fixed values of
UC and ρ. By definition, the effective temperature is

χ =

(

∂UC

∂SC

)

ρ

. (4.2)

UR(SR) is the kinetic-vibrational energy of this system,
whose entropy is SR. For most purposes, this subsystem
serves as a thermal reservoir. Its temperature is the or-
dinary thermal temperature

kBT ≡ θ =
∂UR

∂SR
. (4.3)

Both χ and θ will need to be determined by their own
equations of motion.
Next, assume that we can write

UC(SC , ρ) = U0(ρ) + U1(S1), (4.4)
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and, correspondingly,

SC(UC , ρ) = S0(ρ) + S1(U1), (4.5)

where U0 and S0 are, respectively, the energy and en-
tropy of the dislocations as introduced in Sec. II, and U1

and S1 are the energy and the entropy of all the other
configurational degrees of freedom. As before,

U0(ρ) = Aρ eD; eD = LγD, (4.6)

where γD is the dislocation energy per unit length; and

S0(ρ) = −Aρ ln(b2ρ) +Aρ. (4.7)

The usual thermodynamic analysis for this system is
not trivial. It goes as follows. The first law is:

U̇total = V σ ǫ̇pl = U̇C + U̇R

= χ ṠC +

(

∂UC

∂ρ

)

SC

ρ̇+ θ ṠR, (4.8)

where V = LA is the volume, σ is the shear stress, ǫ̇pl is
the plastic shear rate, and V σ ǫ̇pl is the mechanical power
delivered to the system by external forces. (Variations of
the reversible elastic energy cancel out of this equation.)

Use Eq.(4.8) to evaluate ṠC , and write the second law in
the form

ṠC + ṠR =
1

χ
W +

(

1− θ

χ

)

ṠR ≥ 0, (4.9)

where

W = V σ ǫ̇pl −
(

∂UC

∂ρ

)

SC

ρ̇ (4.10)

is the difference between the power delivered to the sys-
tem and the rate at which energy is stored in the form of
dislocations.
Equation (4.9) is the sum of independent inequalities

that, according to an argument originally due to Cole-
man and Noll [10], must be satisfied separately. Non-

negativity of the term proportional to ṠR implies that
the heat flux Q, defined here to be positive when heat
is flowing from the configurational subsystem into the
thermal reservoir, is

Q = θṠR = K (χ− θ), (4.11)

where K is a non-negative thermal transport coefficient.
For present purposes, assume that the mechanical

power, V σ ǫ̇pl, is always positive. Therefore, the remain-
ing inequality is

(

∂UC

∂ρ

)

SC

ρ̇ ≤ 0. (4.12)

Use Eqs. (4.4) and (4.5) to write UC = U0+U1(SC−S0),
so that

(

∂UC

∂ρ

)

SC

=
∂U0

∂ρ
− χ

∂S0

∂ρ
≡ ∂F0

∂ρ
; (4.13)

where

F0(ρ) ≡ U0(ρ)− χS0(ρ) (4.14)

is the same ρ-dependent free energy that was defined in
Eq.(2.1).
Equation (4.12) is satisfied by writing an equation of

motion for ρ in the form

ρ̇ = −M ∂F0

∂ρ
, (4.15)

where M is a non-negative rate factor. As before,
Eqs.(4.6) and (4.7) imply that ∂F0/∂ρ = 0 when

ρ = ρ0(χ) =
1

b2
e− eD/χ, (4.16)

which is the same Boltzmann formula that appeared in
Eq. (2.2) except that Eq. (4.16) is valid for non-steady-
state values of χ.
It is simplest to rewrite Eq.(4.15) in the linearized form

ρ̇ = M̃
[

1− ρ

ρ0(χ)

]

. (4.17)

The factor M̃ must be proportional to the power per
unit volume σ ǫ̇pl, which is the only relevant rate in the
problem, and which has the dimensions of energy per unit
volume per unit time. The left-hand side of Eq.(4.17) has
the dimensions of length (of dislocations) per unit volume
per unit time. Thus, writing this equation in the form

ρ̇ = κρ
σ ǫ̇pl

γD

[

1− ρ

ρ0(χ)

]

(4.18)

is dimensionally correct and identifies the dimensionless
factor κρ as the fraction of the input power that is con-
verted into dislocations. The second term on the right-
hand side of Eq.(4.18) then can be interpreted as the rate
at which dislocations are annihilated as required by the
second law. With this detailed-balance argument, there
is no need to model specific annihilation mechanisms.
Having derived an equation of motion for ρ, return now

to Eq.(4.8) and rewrite this first-law equation in a form
suitable for deriving an equation of motion for χ:

χ ṠC = V σ ǫ̇pl −
(

∂UC

∂ρ

)

SC

ρ̇−Q. (4.19)

Use the decompositions in Eqs.(4.4) and (4.5) to write
the left-hand side as

χ ṠC = χ
∂S1

∂χ
χ̇+ χ

∂S0

∂ρ
ρ̇ ≡ V ceff χ̇+ χ

∂S0

∂ρ
ρ̇, (4.20)

which defines the effective heat capacity V ceff =
χ∂S1/∂χ. Next, make a similar expansion of the right-
hand side of Eq.(4.19), and note that the term propor-
tional to ∂S0/∂ρ cancels out, leaving

V ceff χ̇ = V σ ǫ̇pl − ∂U0

∂ρ
ρ̇−Q. (4.21)
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According to the analysis in Sec. II, χ is comparable
to the mesoscopically large energy eD, so that χ ≫ θ
and Q ≈ Kχ in Eq.(4.11). We also know from Sec. II
that the steady-state value of χ, except at extremely high
strain rates, is the constant χ0. Thus we can write K =
V σ ǫ̇pl/χ0, so that, with Eq.(4.6), the equation of motion
for χ becomes

ceff χ̇ = σ ǫ̇pl
[

1− χ

χ0

]

− γD ρ̇. (4.22)

The last term in this equation accounts for energy storage
in the form of dislocations.

The corresponding equation of motion for the kinetic-
vibrational temperature θ = kBT is

(cp ρd
kB

)

θ̇ = β σ ǫ̇pl −K2 (θ − θ0), (4.23)

where cp is the thermal heat capacity per unit mass, ρd
is the mass density, and 0 < β < 1 is a dimensionless
constant known as the Taylor-Quinney factor that deter-
mines what fraction of the input power is converted di-
rectly to kinetic-vibrational heat. K2 is a thermal trans-
port coefficient and θ0 = kB T0 is the ambient tempera-
ture.

Finally, we must write an equation of motion for the
stress σ. This is not a trivial issue because, to inter-
pret experimental data, we need to describe both elastic
and plastic deformations and yielding transitions from
one to the other. That is, we cannot limit ourselves to
the relation between the stress and only the plastic de-
formation rate as in Eq. (3.6). On the other hand, all
of the preceding analysis is based on the rule that only
properly defined state variables are allowed as arguments
of the internal energy or entropy functions. A large part
of the conventional literature on plasticity violates this
rule by using the plastic deformation as a state variable,
which is illegal. Plastic deformations (as opposed to de-
formation rates) can be defined only with respect to fixed
reference states; but, by definition, irreversible processes
forget their histories of past deformation. Thus, we are
not allowed to use mathematical devices like the popular
Kroner-Lee decomposition of elastic and plastic displace-
ments. So far as I can see, the only reasonable alternative
is the “hypoelastoplastic” approximation in which the
elastic and plastic strain rates are assumed to be simply
additive, i.e. the total strain rate is ǫ̇ = ǫ̇el + ǫ̇pl, and

σ̇ = µ ǫ̇el = µ (ǫ̇ − ǫ̇pl), (4.24)

where µ is the elastic shear modulus. This approximation
should be accurate so long as µ is large and the elastic
strains are small. In other circumstances where the elas-
tic and plastic deformations cannot be disentangled in
this way, new kinds of physical approximations will be
needed.

V. SCALING AND DIMENSIONLESS

VARIABLES

In preparation for using the nonequilibrium equations
of motion in interpreting experimental data, it is use-
ful to transform to dimensionless variables and thus to
identify the relevant dimensionless physical parameters.
All of the systems of interest, for the moment, are un-
dergoing spatially uniform shear at constant (elastic plus
plastic) rates ǫ̇. Therefore, let Q = ǫ̇ τ0. Then, replace
the time t by the total strain ǫ, and let τ0 ∂/∂t → Q∂/∂ǫ.
(The partial derivatives remind us that these functions
eventually will depend on position as well as time.) Let

q = ǫ̇pl τ0, ρ̃ = b2 ρ, χ̃ = χ/eD, and θ̃ = T/TP . All of
these dimensionless quantities are functions of ǫ.
In these scaled variables, the equation of motion for

the dislocation density, Eq. (4.18), becomes

∂ρ̃

∂ǫ
= κρ

σ q

γ̃D Q

[

1− ρ̃

ρ̃0(χ̃)

]

, ρ̃0(χ̃) = e−1/χ̃, (5.1)

where γ̃D = γD/b2 = eD/b2L. The plastic strain rate q
defined in Eq. (3.5) and in the preceding paragraph is

q(ǫ) =
√

ρ̃ exp
[

− 1

θ̃
e−σ/σT (ρ̃)

]

; σT (ρ̃) = µT

√

ρ̃.

(5.2)
Its inverse, Eq. (3.6), is

σ = σT (ρ̃) ν̃(ρ̃, q, θ̃), (5.3)

where

ν̃(ρ̃, q, θ̃) = − ln(θ̃)− ln

[

ln

(√
ρ̃

q

)]

. (5.4)

The equation of motion for the effective temperature,
Eq. (4.22), becomes

ceff
∂χ̃

∂ǫ
=

σ q

Q

(

1− χ̃

χ̃0

)

− γD
∂ρ̃

∂ǫ
. (5.5)

Similarly, the equation of motion for the scaled, ordinary
temperature, Eq. (4.23), is

∂θ̃

∂ǫ
= K(θ̃)

σ q

Q
− K2

Q
(θ̃ − θ̃0). (5.6)

where K(θ̃) = β kB/(TP cp ρd), and K2 is the rescaled
thermal transport coefficient. Finally, the stress equa-
tion, Eq. (4.24), becomes

∂σ

∂ǫ
= µ

[

1− q(ǫ)

Q

]

. (5.7)

The conversion factor κρ on the right-hand side of
Eq. (5.1) may usefully be reinterpreted by using an im-
portant discovery by Kocks and coworkers.[11] Those in-
vestigators found that the onset slope for strain hard-
ening in copper, Θ0 ≡ (1/µ) (∂σ/∂ǫ)onset, is very nearly
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constant over a wide range of strain rates and temper-
atures. Figures 2 and 3 show the stress-strain curves
for copper on which much of the original LBL theory
was based. In particular, Fig. 3 shows two stress-strain
curves for room temperature copper at strain rates dif-
fering by a factor of 106. The slopes of these two curves
near the origin are indistinguishable from each other, and
there is no visible yield stress.
To understand this behavior, remember that harden-

ing begins when the deformation switches from elastic
to plastic, that is, when q ∼= Q. In copper, apparently
ρ̃ ≪ ρ̃0 when this happens, so that Eq.(5.1) has the form
∂ρ̃/∂ǫ ∼= κρ σ/γ̃D ∼= κρ ν̃ µT

√
ρ̃/γ̃D. Assume that we can

neglect the extremely slow dependence of ν̃ on ρ̃, so that
we can write

Θ0 =
1

µ

∂σ

∂ǫ
=

1

µ

∂σ

∂ρ̃

∂ρ̃

∂ǫ
∼= κρ

µ2
T ν̃2

2µ γ̃D
. (5.8)

Note that ρ̃ has cancelled out of this expression for Θ0,
and that there is no strain-rate dependence. Moreover,
this result is likely to be independent of temperature be-
cause γ̃D and the elastic moduli ought to scale thermally
in the same ways. Thus, we have recovered Kocks’ result.
Now, Eq.(5.1) can be rewritten in the form

∂ρ̃

∂ǫ
= κ1

σ q

ν̃2 µT Q

[

1− ρ̃

ρ̃0(χ̃)

]

, (5.9)

where the original conversion factor is

κρ = (2µ γ̃D/ν̃2 µ2
T )Θ0, (5.10)

and

κ1 =
2µ

µT
Θ0. (5.11)

The quantity γ̃D has cancelled out in Eq. (5.9), so that
the prefactor κ1 in Eq.(5.11) is completely determined by
directly observable quantities, at least for copper.
A similarly rewritten version of Eq.(5.5) is

∂ χ̃

∂ǫ
= κ2

σ q

µT Q

[

1− χ̃

χ̃0
− γ̃D κ1

µT ν̃2

(

1− ρ̃

ρ̃ss(χ̃)

)]

∼= κ2
σ q

µT Q

(

1− χ̃

χ̃0

)

. (5.12)

Here I have deleted the storage term in the second version
of this equation because I have not yet found an exper-
imental situation in which it seems significant. The di-
mensionless prefactor is κ2 = µT /ceff . Unlike κ1, whose
value can, in principle, be determined directly from ex-
periment via Eq.(5.11), the coefficient κ2 must (so far)
be determined by fitting the data. Apart from the rel-
atively unimportant factor ν̃−2 in Eq. (5.9), the dimen-
sionless prefactors κ1 and κ2 play comparable roles in
these equations.
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FIG. 2: (Color online) Experimental data and theoretical
stress-strain curves for copper at T = 1173K, for strain rates
0.066 s−1 (lower blue curve) and 980 s−1 (upper red curve).
The parameters used for computing both theoretical curves
are κ1 = 3.1, κ2 = 120, χ0 = 0.25, and µT = 1343MPa. The
initial values of ρ̃ are 10−6 for both cases; but the initial value
of χ̃ is 0.22 for the lower curve and 0.18 for the upper one.
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FIG. 3: (Color online) Experimental data and theoretical
stress-strain curves for copper at T = 298K, for strain rates
0.002 s−1 (lower blue curve) and 2, 000 s−1 (upper red curve).
The parameters used for computing both theoretical curves
are κ1 = 3.1, κ2 = 11.2, χ0 = 0.25, and µT = 1600MPa.
The initial values of ρ̃ and χ̃ are 10−6 and 0.18 respectively.

VI. COMPARISONS WITH EXPERIMENT

The predictions of Eqs. (5.2), (5.4), (5.7), (5.9), and
(5.12) have been tested against a variety of experimental
observations. The remarkably accurate agreement be-
tween the theory and these observations, while still lim-
ited in scope, makes it seem likely to me that this uncon-
ventional theory is fundamentally correct. But there are
uncertainties that tell us where to look harder both theo-
retically and experimentally. There are also places where
the theory implies that conventional interpretations of
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experimentally observed phenomena are incorrect.

Copper and the onset of hardening: The data points
shown in Figs. 2 and 3 were taken from [12–14]. In the
LBL analysis, we started by using the high-temperature
steady-state data in Fig. 2, and the steady-state versions
of Eqs. (3.6) and (3.7), to find that TP

∼= 40, 800K and
µ/µT

∼= 31, which we assumed to be material-specific
parameters, independent of strain rate and temperature.
Note that, in Fig. 2, the steady-state stresses show no
signs of thermal softening (unlike the situation for alu-
minum to be considered next).

Kocks and Mecking [11], and the graphs shown in
Fig. 3, tell us that Θ0

∼= 1/20 and thus, from Eq. (5.11),
κ1

∼= 3.1. This is the value of κ1 that has been used for
all four curves shown here, at all four strain rates and at
the two different temperatures. The story is different for
κ2, which appears to be strongly temperature dependent
but not strongly strain-rate dependent in these cases. At
room temperature, we find κ2

∼= 11.2 but, at T = 1173K,
κ2

∼= 120. In other words, the effective disorder temper-
ature χ̃ moves toward its stationary value more rapidly
than does the density of dislocations ρ̃, and this behav-
ior is amplified at higher temperatures T . This effect
can be seen directly in the figures. In plotting the curves
shown here, we did not use the thermal equation of mo-
tion, Eq. (5.6). Apparently, the thermal conductivity of
copper is large enough that these systems remain close
to their nominal ambient temperatures throughout the
deformations.

Yield stresses and thermal softening in aluminum: The
situation described in the preceding paragraphs for cop-
per changes markedly in the stress-strain curves for alu-
minum shown in Fig. 4. The experimental data shown
here is taken from Shi et al [15]; and the theoretical anal-
ysis is from [6]. These curves are for T = 573K, for three
different strain rates 0.25 s−1, 2.5 s−1, and 25 s−1 . In [6],
we also showed curves for T = 673K and 773K at the
same three strain rates, as well as analogous results for
a steel alloy. We assumed that all nine of the aluminum
samples tested by Shi et al. were prepared identically,
and therefore we used a single set of system parameters
obtained by a least-squares fit to the data. The values of
those parameters are shown in the figure caption.

The most obvious new feature of these curves is that
they exhibit yielding transitions at three different yield
stresses for the three different strain rates. Unlike any
other dislocation theories, the thermodynamic theory
predicts these yielding transitions as functions of sam-
ple preparation. The values of the yield stresses and the
shapes of the elastic-to-plastic transitions are determined
by the initial values of the dislocation density ρ̃i and the
effective temperature χ̃i, which are state variables deter-
mined by the prior history of deformation.

A magnified view of these three theoretical yielding
transitions is shown in Fig. 5. Here we see a linear elastic
stress function with large slope µ, rising rapidly from zero
strain, and levelling off sharply but smoothly at three dif-
ferent plastic stresses determined by the three different
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FIG. 4: (Color online) Experimental data and theoretical
stress-strain curves for aluminum at T = 573K, for strain
rates 0.25 s−1 (lower blue curve), 2.5 s−1 (middle black curve),
and 25 s−1 (upper red curve). The parameters used for
computing all theoretical curves are κ1 = 0.97, κ2 = 12,
χ0 = 0.249, TP = 24, 000K, and µT /µ = 0.040. The ini-
tial values of ρ̃ and χ̃ are 0.0035 and 0.224 respectively for all
cases.
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FIG. 5: (Color online) Magnified stress-strain curves for alu-
minum showing the yielding transitions seen in Fig. 4 at ǫ ∼= 0.

total strain rates ǫ̇. This behavior is governed by the
extremely strong stress sensitivity of q(ǫ) in Eq. (5.2),
which produces the rapid ǫ-dependence of the stress in
Eq. (5.7). It is important to recognize that this behavior
is the converse of the extremely slow strain-rate depen-
dence of the steady-state stress illustrated in Fig. 1. The
depinning model is playing a central role in explaining
two major, apparently disparate features of dislocation-
enabled plasticity.
A second way in which these stress-strain curves for

aluminum differ from those for copper is that, in Fig. 4,
especially at the largest strain rate, there is clear evidence
of thermal softening; the stress decreases at large strains.
This effect is even more visible at the higher temperatures
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discussed in [6]. To account for it, we have used Eq. (5.6),
and have set

K(θ̃) = K0

[

1 + c1 TP (θ̃ − θ̃1)
]

, (6.1)

with fitting parameters (the same for all ambient tem-
peratures and strain rates): K0 = 7.0 × 10−6, c1 =

0.0257, and TP θ̃1 = 573K. This temperature depen-
dence of the thermal conversion factor K produces an
interesting nonlinear behavior of the sample temperature
θ̃. We also used experimentally measured temperature-
dependent values for the shear modulus µ. Note that,
in this case, we are using the thermodynamic dislocation
theory to discover thermal properties that we will need,
for example, in order to predict fracture toughness or
adiabatic shear banding. In other words, this theory is
becoming predictive and potentially falsifiable.
Hall-Petch effects: Perhaps the most unexpected re-

sult of the thermodynamic theory to date is its uncon-
ventional interpretation [5] of the Hall-Petch grain-size
effects.[16] This result illustrates how the thermodynamic
theory can be used as a framework for studying differ-
ent physical mechanisms. Although the depinning model
is physically quite specific, the general thermodynamic
equations, e.g. Eqs. (5.9) and (5.12) with their dimen-
sionless conversion factors κ1 and κ2, leave room for ex-
ploring other parts of the underlying physics.
In [5], I reanalyzed the stress-strain measurements by

Meyers et al. [17] for room temperature copper with a
range of grain diameters, d = 9.5, 25, 117, and 315µm,
and for two very different strain rates 10−3 s−1 and 3 ×
103 s−1. Because there are no yield stresses in this data, I
could use Eq. (5.11) to evaluate κ1 directly as a function
of d. The result was that

κslow
1

∼= 2 +
21√
d
, κfast

1
∼= 2 +

60√
d
, (6.2)

for the slow and fast cases respectively. This is exactly
the form of the Hall-Petch formulas, which ordinarily de-
scribe directly observable yield stresses or flow stresses
instead of internal system parameters. The only differ-
ence is that the terms proportional to d−1/2 here are
larger than the constant terms for all but the largest val-
ues of d; i.e. the values of κ1 seem to be dominated by
the grain-size effects. To test these results, I carried out
a series of computational strain-hardening experiments.
That is, I computed the values of ρ̃ and χ̃ at ǫ = 0.1 in
the original measurements, and then used those values
as initial conditions for computing a new set of stress-
strain curves. The new curves had yield stresses and,
as expected, those artificial yield stresses obeyed a Hall-
Petch formula of the form σy = σ0+const. /

√
d. But the

constant in this formula was always substantially smaller
than σ0

Apparently, stress concentrations proportional to
d−1/2 at the edges of the grains amplify the strengths
of dislocation sources, resulting in larger dislocation den-
sities and correspondingly larger yield stresses. Thus, the
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FIG. 6: (Color online) Rate-hardening anomaly. The four
curves, from bottom to top, show stresses as functions
of strain rate for copper, for four different strains, ǫ =
0.05, 0.10, 0.15, and 0.20. The dashed curve at the top is the
theoretical steady-state prediction.

Hall-Petch effect is not caused primarily by dislocation
pile-ups at grain boundaries as has conventionally been
assumed.[16] On the contrary, the H-P behavior seems
to be caused almost entirely by increased rates of dislo-
cation formation described by the conversion coefficient
κ1.
Rate-hardening anomaly: To end this summary of ex-

perimental checks of the thermodynamic dislocation the-
ory, I briefly mention the rate-hardening anomaly that
seemed puzzling when not properly understood as a tran-
sient phenomenon in the context of a nonequilibrium
theory. The topic again involves the physical content
of the conversion coefficient κ1. The material is the
same room-temperature copper whose stress-strain be-
havior is shown in Fig. 3. The anomaly is the abrupt
increase of the flow stress when measured as a function
of strain rate at fixed values of the strain in the range
0.05 < ǫ < 0.20.[12, 13] The experimental results and the
theory are shown in Fig. 6. The theory involves noth-
ing more than including in κ1 a rate dependent factor
(1 +Q/Q0), where Q0/τ0 = 4× 104 /s, corresponding to
the location of the anomaly along the strain-rate axis. I
presume that this is a grain-size effect, i.e. that the rate
at which dislocations are created at grain boundaries in-
creases with strain rate.
There are many issues left unresolved by the preceding

discussion. For example, we do not yet have a physics-
based model for predicting how the conversion coefficient
κ1 depends on both the grain size and the strain rate.
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More important, as yet we have no physical basis for
understanding the values of the coefficient κ2 that de-
termines the rate at which the effective temperature of
disorder is increased by external driving forces. Why, for
example, does κ2 seem to increase as a function of the
ordinary temperature? Does this really happen? Or are
we somehow misunderstanding the onset of hardening in
the high-temperature stress-strain curves in Fig. 2?

VII. MECHANICAL PROPERTIES: ADIABATIC

SHEAR BANDS

The most important outstanding challenge for a dislo-
cation theory is to explain the mechanical properties of
metals and alloys. What are the mechanisms by which
dislocations control brittleness and ductility? How do
they determine fracture toughness and the dynamics of
crack propagation?
The shear-transformation-zone (STZ)[18, 19] theory of

amorphous plasticity provides only limited guidance. It
seemed unusual and controversial about a decade ago,
primarily because it used an effective temperature in
nonequilibrium solid mechanics. Now, however, it is be-
ing used successfully in multidimensional situations to
predict, for example, the fracture toughness of metallic
glasses.[20, 21] But STZ’s and dislocations are fundamen-
tally different kinds of flow defects. STZ formation is a
softening mechanism; the larger the density of STZ’s, the
more easily the system deforms in response to stress. In
contrast, dislocations are hardening defects; the denser
they are, the more they are entangled with each other,
and the more stress is needed to drive deformation.
It has been understood for decades that thermal soft-

ening is related to failure in polycrystalline solids. In the
present thermodynamic theory, softening occurs via the
formula for the plastic strain rate ǫ̇pl in Eq. (3.5), where
a very small increase in temperature produces a large
increase in strain rate. This strongly nonlinear relation
between strain rate, temperature, and stress already has
played a central role in explaining sharp yielding transi-
tions and the like. It must be especially important for un-
derstanding the dynamics of crack tips, where the shape
of the tip determines the local stress concentration, which
controls the local spatially dependent deformation rate,
which in turn controls the local rate of heat generation
and thus feeds back into the strain-rate formula. But this
is a difficult mathematical and computational problem
because the stress field is very stiff; it relaxes toward its
stationary values much more rapidly than does the plas-
tic deformation field. This is the problem that Rycroft
and colleagues have solved for metallic glasses.[20, 21]
Addressing it for polycrystalline solids should be high on
our list of priorities.
In the absence of a realistic fracture theory, the best I

have been able to do so far is to address the problem of
adiabatic shear banding (ASB). There is a large body of
literature, extending over more than three decades, de-

voted to shear banding instabilities in metals and alloys.
For example, see [22–24]. This subject is important; the
banding instability is generally recognized as a principal
failure mechanism in rapidly stressed structural materi-
als. It may often be a precursor to true fracture.

The “adiabaticity” of ASB refers to the idea that these
banding instabilities are caused by thermal softening in
situations where heat flow is slower than plastic defor-
mation. A local increase in strain rate produces a local
increase in heat generation that, in turn, softens the ma-
terial and further increases the local strain rate. The re-
sult is a runaway instability if the heat is unable to flow
away from the hot spot more quickly than new heat is
being generated there. Thus, we are looking at a delicate
balance between thermal and mechanical behaviors.

So far as I know, the best ASB measurements available
for analysis are those of Marchand and Duffy (MD).[22]
In the next paragraphs, I present an oversimplified anal-
ysis of just one part of the MD data. My purpose is
not to provide a detailed theory of the MD results anal-
ogous to the theories of strain hardening in copper and
aluminum described previously in Sec. VI. As I write,
my colleagues K.C. Le and T.M. Tranh are working on
that more ambitious project, using all of the MD data for
different strain rates and temperatures in an attempt to
understand that data in realistic detail. Here, however, I
want to use only the simplest example in order to explore
the ways in which the thermodynamic dislocation theory
is able to describe strongly unstable processes such as
ASB. I already have done this in [5], where I showed how
the thermodynamic theory describes ASB in a fictitious
material that I called “pseudocopper.” Such an analysis
becomes more meaningful when carried out in compari-
son with real observations.

The points shown in Fig. 7, taken from MD Fig. 8, de-
scribe the results of two room-temperature stress-strain
experiments. The red circles are stresses measured at
a high strain rate, ǫ̇ = 3300 s−1, for which the stress
drops abruptly at a shear banding instability at ǫ ∼= 0.5.
The blue triangles are quasistatic stresses measured at
ǫ̇ = 10−4 s−1, for which the stress rises slowly and
smoothly. These measurements were carried out on thin
steel tubes subjected to torsional stresses at constant
strain rates. For present purposes, it suffices to model
this system as a thin strip of width W in an xy plane,
with the y axis (−W ≤ y ≤ W ) parallel to the tube and
the x axis wrapped around a circumference. The equiva-
lent strip is subject to simple shear parallel to its x axis.
To initiate the instability experimentally, a line defect
was inscribed along a circumference, which is equivalent
theoretically to making a narrow perturbation along the
x axis at y = 0, as in Eq. (7.3) below.

The only spatial dependence of the plastic deforma-
tion is in the y direction. Thus the equations of motion
for the state functions ρ̃ and χ̃, Eqs. (5.9) and (5.12),
remain unchanged, except that these functions and the
dimensionless strain rate q now depend on y as well as
ǫ. In principle. Eq. (5.6) should be modified by adding a
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FIG. 7: (Color online) Stress-strain curves for adiabatic shear
banding in steel. The experimental data is from Fig.8 of
Marchand and Duffy [22]. The upper curve (red) is for strain
rate ǫ̇ = 3300 s−1, the lower (blue) is for 10−4s−1. The sys-
tem parameters for both curves are: TP = 6 × 105 K, T =
300K, µ = 5 × 104 MPa, µT = 1200MPa, χ̃0 = 0.25, κ1 =
4, K0 = 2 × 10−6, andK1 = K2 = 0. For the upper
curve, κ2 = 16, and the initial values of the parameters are
ρ̃i = 0.008, χ̃i = 0.19. The inscribed line defect is given by
Eq.(7.3) with δ = 0.017, y0 = 0.05. For the lower curve,
κ2 = 5, ρ̃i = 0.007, χ̃i = 0.22.

diffusion term proportional to K1:

∂θ̃

∂ǫ
= K0

σ q

Q
+

K1

Q

∂2θ̃

∂y2
− K2

Q
(θ̃ − θ̃0); (7.1)

but I will not use that term here. All of the terms on the
right-hand side of Eq. (7.1) may play important roles in
a more complete analysis of the MD data.
In this geometry, the stress remains constant as a func-

tion of y. I have found it computionally convenient to
enforce the latter constraint by writing

∂σ

∂ǫ
= µ

[

1− q(ǫ, y)

Q

]

+M
∂2σ

∂y2
, (7.2)

and using a large value of the “diffusion constant” M =
105 to suppress y variations in σ. I model the inscribed
line defect by choosing the initial value of the effective
temperature to be:

χ̃(0, y) = χ̃i − δ e−y2/2 y2

0 , (7.3)

where y is measured in units of W ; i.e. I set W = 1.
The values of the system parameters used for solving

these equations are shown in the caption to Fig. 7. I have
chosen them as follows. First, I made rough estimates of
steady-state stresses for the two curves shown in Fig. 7
and used these, along with Eqs. (3.6) and (3.7), to esti-
mate TP and µT . I did the same thing to estimate the
initial values ρ̃i at the yield points. The effective elas-
tic shear modulus µ can be obtained directly from the
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FIG. 8: (Color online) Relative plastic strain rates q(ǫ, y)/Q
at strains ǫ = 0.45, 0.47, 0.49, and 0.497, for the top stress-
strain curve shown in Fig. 7. For increasing ǫ, these shear
flows are increasingly concentrated in a narrowing band cen-
tered at y = 0.
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FIG. 9: (Color online) Temperature in degrees K as a function
of strain ǫ at the center of the band, y = 0, for the top stress-
strain curve shown in Fig. 7.

initial slopes of these curves, which are visible here un-
like in most other yield-stress measurements. The ratio
µ/µT

∼= 40 has roughly the same order of magnitude as
has been found for other materials. The theory leading to
Eq. (3.3) says that this ratio should be a material-specific
geometric constant.
Next, I made a strong adiabatic approximation by set-

ting K1 = K2 = 0 in Eq. (7.1). Setting K1 = 0 means
that there is no intrinsically physical length scale in this
model, not even a diffusion length. The thermal con-
version coefficient K0 is primarily responsible for deter-
mining the strain at which the shear-banding instability
occurs; I have chosen it accordingly. The values of the
conversion factors κ1 and κ2 were chosen primarily to fit
the shapes of the stress-strain curves at intermediate val-
ues of ǫ. As expected, κ1 is independent of strain rate.
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The different values of κ2 look suspicious to me; perhaps
this is the result of ignoring some thermal effects and
therefore having to use unrealistic values of κ2 in order
to fit the data. Finally, I have reduced the initial param-
eter χ̃i for the upper curve in order to fit the overshoot
seen just above yielding in most of the MD results.
The abrupt stress drop at ǫ ∼= 0.5 on the fast curve

in Fig. 7 indicates the sudden onset of a shear band-
ing instability. Figures 8 and 9 show what is happening
in more detail . Figure 8 shows the normalized strain
rate q(ǫ, y)/Q at four different values of ǫ as the sys-
tem approaches the transition. At first, shear localiza-
tion occurs relatively slowly. But, at about ǫ = 0.49, this
nonlinear process accelerates rapidly. The plastic strain
rate becomes sharply concentrated near y = 0, causing
a sudden increase in the temperature there. The stress
decreases uniformly across the system, causing the strain
rate to fall toward zero everywhere except in the increas-
ingly hot band where the runaway instability is occurring.
Fig. 9 shows the temperature at the center of the band.
By ǫ ∼= 0.49, this temperature has reached about 800K,
which is consistent with the value measured by MD as
shown in their Fig. 20. I find this consistency to be reas-
suring because I did not adjust any parameters to achieve
it. On the other hand, the extremely rapid collapse of the
band shown in Fig. 8, and the apparent divergence of the
temperature above ǫ ∼= 0.49 seen in Fig. 9, tell me that
both my theory and my numerical analysis have lost their
validity at and beyond that point.
The real question, of course, is what this localized

meltdown might have to do with ordinary fracture. It
is highly unlikely that thermal singularities of this kind
occur at crack tips in real metals and alloys. Remem-
ber that the strain rate in Eq. (3.5) is just as strongly
sensitive to changes in the stress as to changes in the
temperature. Thus, a small change in the stress caused
by a change in the curvature of a crack tip could produce
a runaway instability without melting. This is why the
spatially dependent fracture calculations seem so urgent.

VIII. CONCLUDING QUESTIONS

The thermodynamic dislocation theory provides a first-
principles framework in which to reexamine our current
ideas about the mechanical behaviors of metals and al-
loys. Here are some questions that might be parts of that
reexamination.

The thermodynamic theory makes no explicit reference
to crystal symmetries or distinctions between different
kinds of dislocations. It assumes that all such distinc-
tions are contained in parameters such as the conversion
coefficients κ1 and κ2 and, perhaps, in the dimension-
less ratio between µT and µ. Is this correct? Or do we
need some more elaborate change in the theory, for ex-
ample, different density variables ρ̃ for different kinds of
dislocations?
In Sec. II, I ignored the logarithmic term in the en-

ergy that accounts for elastic interactions between dis-
locations. Am I making a qualitative mistake by doing
this? The elastic interactions almost certainly are the
cause of the cellular dislocation patterns commonly ob-
served in micrographs. I am fairly sure that the thermo-
dynamic theory can be used to explain those patterns,
presumably by generalizing the theory so that ρ̃ and χ̃
become spatially varying order parameters. The impor-
tant question is whether these patterns play any role in
the dynamics of hardening or failure.
A more general version of the last question is one that

I have asked in almost all of the preceding papers [1, 2, 4–
6]. In looking at the large range of phenomena that seem
to be relevant to polycrystalline plasticity, how can we
distinguish between causes and effects? How can we
determine whether an observed structural change such
as the appearance of stacking faults or dynamically re-
crystallized grains (DRX) is a cause of some qualitative
change in behavior or simply a side effect of something
else that is happening? In theoretical language, we need
to ask whether the densities of stacking faults or DRX
grains or the like are dynamically relevant state variables
that need to be included along with ρ̃ and χ̃ in the fun-
damental equations of motion.
And finally, I repeat my assertion that the thermody-

namic dislocation theory is now well enough developed
to be applied to fracture dynamics.
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