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Molecular dynamics simulations are carried out to investigate mechanical properties and porous
structure of binary glasses subjected to steady shear. The model vitreous systems were prepared via
thermal quench at constant volume to a temperature well below the glass transition. The quiescent
samples are characterized by a relatively narrow pore size distribution whose mean size is larger
at lower glass densities. We find that in the linear regime of deformation, the shear modulus is a
strong function of porosity, and the individual pores become slightly stretched while their structural
topology remains unaffected. By contrast, with further increasing strain, the shear stress saturates
to a density-dependent plateau value, which is accompanied by pore coalescence and a gradual
development of a broader pore size distribution with a discrete set of peaks at large length scales.

PACS numbers: 34.20.Cf, 68.35.Ct, 81.05.Kf, 83.10.Rs

I. INTRODUCTION

The design and synthesis of novel porous materials with advanced mechanical and thermal properties are important
for various structural, environmental and biomedical applications [1]. In particular, a detailed understanding of the
relationship between mechanical properties, including elastic and shear moduli, and porous structure of materials
remains a major challenge. In the last two decades, a number of studies have numerically reconstructed the three-
dimensional microstructure in silica and ceramic glasses [2, 3] and metallic foams [4–6]. For example, it was recently
demonstrated that during the initial stage of sintering of ceramic films, the elastic modulus increases with the neck
size of adjacent mono-size particles, while at the later stage of the coarsening process, the modulus becomes insensitive
to the details of the microstructure and only depends on porosity [3]. Moreover, the time evolution of the pore size
distribution during the foaming process based on growth of pressurized pores was simulated using the data from
two-dimensional metallographic images, and the resulting microstructure was used as an input for the finite element
analysis of the stress-strain response of porous titanium [4].

In recent years, molecular dynamics (MD) simulations were used extensively to study the structure and mechanical
properties of porous glassy materials [7–17]. In particular, it was shown that upon tensile loading, a periodic array of
pores in metallic glasses causes strain localization along planes that contain pores and thus promotes the initialization
and propagation of shear bands [11, 16]. Interestingly, under large compressive deformation, the annihilation of
adjacent pores can hinder propagation of shear bands and result in temporal hardening of porous metallic glasses [11].
Furthermore, it was found that in nanophase silica glasses, prepared by sintering at different pressures, the structure
of pores is self-similar with the fractal dimension of about 2, and the short range order is similar to bulk glasses, unlike
the intermediate range order where the first sharp diffraction peak is smaller and shifted to smaller wave vectors [9].
The analysis of the MD data indicated that the elastic moduli of nanophase silica glasses scale with the density as
∼ ρ3.5 [9], while in the other MD study, the dependence of the elastic moduli on porosity in nanoporous silica was
fitted by either exponential or power-law functions [13]. However, the exact relationship between the elastic, shear,
and bulk moduli and the pore structure and size distribution in amorphous materials has not been established.

In the previous MD studies, the microtopography of binodal glassy systems at a low temperature was meticulously
analyzed in quiescent samples of different densities [12, 15, 17]. Notably, it was found that the average pore size depends
strongly on porosity, and the pore size distributions follow a universal scaling relation at small and intermediate length
scales [17]. In addition, the multi-fractal features of the microtopography of the porous systems were identified at small
length scales by the analysis based on the generalized correlation integral method [17]. It was recently demonstrated
that, under athermal quasistatic shear deformation, the structural evolution of porous glasses involves a formation of
large voids, while the solid network fractures and becomes more compact with increasing strain until all atoms belong
to a single large cluster [14]. Nevertheless, the time evolution of the porous network in sheared glassy solids at finite
temperatures remains not fully understood.

In this paper, we study the dynamic response and evolution of three-dimensional porous structure in steadily sheared
binary glasses using molecular dynamics simulations. The quiescent samples are produced via a coarsening process
following a thermal quench across the glass transition at constant volume. It will be shown that with increasing
shear strain, the individual pores become significantly deformed and in some cases connect with each other, leading
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to formation of large pores that are comparable with the system size. The results of molecular dynamics simulations
indicate the power-law dependence of shear modulus on the average glass density.

The rest of the paper is organized as follows. The molecular dynamics simulation model, the glass preparation
procedure, and the deformation protocol are described in the next section. The analysis of atom configurations and
shear stress in quiescent and sheared porous glasses as well as the probabilities of the pore size distribution are
presented in Sec. III. A summary of the results is given in the last section.

II. MOLECULAR DYNAMICS SIMULATIONS

We study a simple glass-forming system obtained via a deep quench at constant volume from a liquid state to a low
temperature well below the glass transition [12, 15, 17]. During coarsening process following the thermal quench, the
system gradually evolves into a glassy state with porous structure, as shown in Fig. 1. In the binary (80:20) mixture
model, the pairwise interaction between nearby atoms is described by the truncated Lennard-Jones (LJ) potential:

Vαβ(r) = 4 εαβ

[(σαβ

r

)12

−

(σαβ

r

)6 ]

, (1)

with the interaction parameters εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8, σBB = 0.88, and mA = mB [18].
Throughout the study, the cutoff radius is fixed rc, αβ = 2.5 σαβ. All quantities are expressed in the LJ units where

length, mass, energy, and time are measured in σ = σAA, m = mA, ε = εAA, and τ = σ
√

m/ε, respectively.
The Newton’s equations of motion were integrated using the velocity Verlet algorithm [19, 20] with the time step
△tMD = 0.005 τ .

Initially, the atoms were placed into a cubic box and the system was equilibrated at the high temperature of 1.5 ε/kB,
where kB is the Boltzmann constant, during the time interval of 3×104 τ at constant volume. In the quiescent system,
the temperature was regulated by simple velocity rescaling. It was previously shown that the critical temperature of
the binary LJ model at ρσ3 = 1.2 is Tc ≈ 0.435 ε/kB [18]. In all our simulations, the total number of atoms of type
A is NA = 240 000 and type B is NB = 60 000. The equilibration of the liquid phase was carried out in a wide range
of densities 0.2 ≤ ρσ3 ≤ 1.0 in five independent samples for each value of the glass density. After the equilibration
procedure, the temperature was instantaneously reduced to the target temperature of 0.05 ε/kB, and then the system
was allowed to evolve at constant volume for an additional time interval of 104 τ to form a porous glass. Typical
snapshots of atom configurations are presented in Fig. 1 for different average glass densities.

Next, the system was subjected to steady shear along the xz plane at a constant volume using the Lees-Edwards
boundary conditions [21] with the strain rate of 10−4 τ−1 during the time interval of 104 τ . Thus, the maximum shear
strain for all glass densities considered in the present study is 100%. In the deformation protocol, the temperature
of 0.05 ε/kB was maintained by the Nosé-Hoover thermostat with the coupling parameter of 1.0 [19]. At the low
temperature T = 0.05 ε/kB, a typical nonequilibrium simulation during 104 τ using 24 parallel processors required
about 14 hours. During the production run, the shear stress was computed every 0.5 τ and the positions of all atoms
were saved every 500 τ and then used in the postprocessing analysis of the pore size distribution and density profiles.

III. RESULTS

The formation of disordered porous structures during spinodal decomposition of a glass-forming liquid is influenced
by a number of factors including the rate of thermal quench, target temperature, average density, and type of
thermodynamic process [10]. While the binary system becomes fully demixed at either high temperatures or during
slow quench, the separation kinetics is significantly slowed down after a fast quench to temperatures well below the
glass transition, which leads to formation of structures with complex biphasic morphologies [12, 15]. In the present
study, the binary mixture was instantaneously brought from a high-temperature molten state to a glassy solid well
below the glass transition. At a constant volume, the system slowly evolved towards the final structure with porous
morphology that depends crucially on the average density. The representative atom configurations are displayed in
Fig. 1 for the selected values of the average glass density ρσ3 = 0.2, 0.4, 0.6 and 0.8 at the temperature T = 0.05 ε/kB.
It can be clearly seen that with decreasing glass density, the pores become larger and more interconnected. It was
previously shown that the probability distribution of pore sizes in quiescent samples is well described by a Gaussian
function at high densities, while as the average glass density decreases, the shape of distributions becomes asymmetrical
and skewed toward larger length scales [17].

The dependence of shear stress as a function of strain in one sample is presented in Fig. 2 for different densities.
As is evident, in all cases, the stress increases monotonically up to a few percent strain until it gradually reaches a
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FIG. 1: (Color online) Instantaneous atom configurations of the porous binary glass at the temperature T = 0.05 ε/kB for the
indicated average densities (a) ρσ3 = 0.2, (b) ρσ3 = 0.4, (c) ρσ3 = 0.6, and (d) ρσ3 = 0.8. Atoms of types A and B are denoted
by blue and red circles respectively. Note the different scales in all panels.

quasi-plateau and then decreases slightly at large strain. Note that the yield peak is absent in stress-strain curves
even at higher densities, which is consistent with the results for sheared homogeneous glasses that were prepared by
fast thermal quenching [22]. It can be observed from Fig. 2 that both the initial slope and the average value of the
stress plateau become larger at higher glass densities. Notice, however, the presence of a significant deviation in shear
stress from its average value at large strain γ & 0.5 for the case ρσ3 = 0.8, which is indicative of large shear-induced
structural changes (discussed below). We further comment that results from test runs for very large shear strain
deformation (γ . 5) showed pronounced stress oscillations with a typical period of about 104 τ (i.e., γ = 1), which
implies that large solid domains can breakup and unphysically reconnect via periodic boundary conditions. Therefore,
in the present study, shear strain deformation only up to γ 6 1 was considered.

An enlarged view of stress-strain curves at small values of strain, γ . 0.01, is displayed in Fig. 3 for the same set
of densities as in Fig. 2. It is clearly seen that the shear stress increases linearly, with superimposed fluctuations, as
a function of strain and the slope of the curves is larger at higher densities. We also find that at very small values of
strain, γ . 0.001, the shear stress in some samples is slightly negative, see Fig. 3. The observed small deviation from
zero stress in the absence of externally imposed strain appears as a result of the coarsening process where internal
stresses become frozen in the porous structure [15, 23]. Furthermore, in the inset to Fig. 3, the average shear modulus,
which was computed from the linear slope of the stress-strain data at γ . 0.01, is shown as a function of the average
glass density. As expected, the shear modulus strongly depends on the average density. The best fit to the MD data
suggests the following scaling with the density G ∼ ρ2.41. We also comment that test simulations at lower (10−5 τ−1)
and higher (10−3 τ−1) strain rates have shown that, fluctuations aside, the stress-strain curves remain very similar
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FIG. 2: (Color online) The variation of shear stress σxz (in units of εσ−3) as a function of strain for the average glass densities
ρσ3 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (from bottom to top). The shear rate is γ̇ = 10−4 τ−1 and temperature is
T = 0.05 ε/kB .

to those plotted in Fig. 2 and the functional dependence of G versus the average glass density remains unchanged.
Further insight can be gained by replotting the same data for the shear modulus as a function of porosity, as illustrated
in Fig. 4.

In general, there exist two classes of models designed to describe the elastic properties of porous materials. The
models belonging to the first class derive from the pioneering work by Eshelby on single ellipsoidal heterogeneity in
an elastic medium [24]. Since the Eshelby’s work, a considerable progress has been made to describe the mechanical
response of heterogeneous systems. Several theoretical approaches, developed to date, specifically focus on the elastic
moduli dependence on the volume fraction of voids, or the material’s macro-porosity, p. The major approaches
include - but not limited to: 1) the mean-field homogenization method [25, 26], 2) the Mori-Tanaka model [27], 3) the
generalized self-consistent model [28], and 4) the differential method [29]. It is not counterintuitive to hypothesize,
however, that the above approaches (based on the Eshelby’s tensors [24]) are good candidates for the problems
dealing with ensembles of non-overlapping inclusions; that is, at relatively low porosity - well above the percolation
threshold, pc. Note that the vast majority of experimental data available to date are obtained for porous materials
with porosity below 0.5 (see, e.g., [30–33]). The highly porous systems may require a different approach. Indeed,
the general topography of highly porous solids is characterized by length scales, which can be lower than the limits
of applicability of the continuum elasticity theory. Moreover, the fractal properties of pores alone can introduce
significant corrections to any continuum elasticity-based models.

The second class of models describing the elastic moduli in porous media is based on the concept of percolation.
Correspondingly, in the frameworks of these models it is postulated that the elastic moduli dependence on porosity
can be represented by the relation E ∼ (pc−p)f , where E is the elastic modulus of the material. In three dimensions,
the prediction of the percolation theory for the Young’s modulus is: f = 2.1 [34]. In the present study, we used both
classes of models to fit our data - that is, we separated the regions of small porosity (ensemble of isolated inclusions
in the elastic continuum; p < 0.5) and near-percolation-threshold network (p > 0.5). In the latter case, we used the
following functional form for the shear modulus: G = G0 (pc − p)f . This approach leads to the following numerical
values of the exponent and percolation threshold: f = 2.1 and pc = 0.87 [ see the inset (a) in Fig. 4 ]. In the former
case, the dependence G(p) at small values of porosity is best reproduced by the relation G ∼ (p− 1)/(p+1), as shown
in the inset (b) to Fig. 4. It should be emphasized, that the finite-size of the systems under consideration can introduce
some corrections to the aforedescribed behavior. However, we do not expect these corrections to be significant. As
was shown in the past, the behavior follows ∼ L1/0.9 relation [34], which is a minor effect for the system sizes we
consider. One additional remark can be in order. As experimental studies have shown, the exponent for the elastic
moduli can differ substantially from the theoretical predictions. For example, in Ref. [35], the reported value of the
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FIG. 3: (Color online) The shear stress-strain curves at small strain γ . 0.01 and densities ρσ3 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0 (from bottom to top). The same data and colorcode as in Fig. 2. The inset shows the shear modulus G (in
units of εσ−3) as a function of average glass density ρσ−3. The data were averaged over five independent samples. The red
dashed line indicates the slope of 2.41.

power-law exponent for aluminum foam is f = 1.65. Thus, further studies are of the essence.

The representative snapshots of atom configurations during steady shear deformation are shown in Figs. 5, 6 and 7
for the average glass densities ρσ3 = 0.3, 0.5, and 0.8. To avoid highly skewed simulation box, the configurations of
atoms in the case γ = 0.95 are plotted within a tilted box with the strain γ = −0.05. From the consecutive snapshots,
it can be observed that pores become significantly deformed and, with increasing shear strain, they tend to coalesce
into larger voids. The deformation process of individual pores during strain can be more clearly visualized by plotting
atom positions in a thin slice of 10 σ along the plane of shear, as shown in Figs. 8, 9 and 10. Generally, the formation
of extended solid or void structures in a deformed glass is reflected in a large deviation of shear stress from its averaged
value. For example, notice the appearance of a large pore in the center of the sample in Fig. 7 (d) and Fig. 10 (d) that
correlates well with the reduced value of shear stress for γ & 0.5 and ρσ3 = 0.8 in Fig. 2.

The position-dependent density profiles along the ẑ direction are presented in Figs. 11, 12 and 13 for the average
glass densities ρσ3 = 0.3, 0.5 and 0.8, respectively. In each case, the data were averaged in one sample at different
strain values in thin slices parallel to the xy plane. It can be clearly observed that the local density in quiescent
samples might be very different from the average bulk density. By definition, the local minima in density profiles
correspond to one or more pores that are not necessarily connected with each other. Interestingly, it can also be
noticed that with increasing shear strain, one of the local minima is further reduced. For example, the following
regions become less dense: 25 σ . z . 45 σ in Fig. 8, 5 σ . z . 20 σ in Fig. 9, and 20 σ . z . 45 σ in Fig. 10. Thus,
the shear-induced local expulsion of the solid phase suggests the formation of larger pores and flow localization in
narrow regions. This behavior is consistent with the formation of shear bands running across the system in strained
homogeneous amorphous materials [22, 36–38].

In this study, the pore size distribution (PSD) functions were computed using the Zeo++ software tool [39, 40].
Correspondingly, the analysis of pore-size distributions, employed herein, is fully based on the algorithms and com-
putational methods, described in Refs. [39, 40]. In brief, the analysis is based on decomposition of each simulation
system volume into Voronoi cells, associated with each individual atom in the atomic system under consideration.
Thereby, a periodic Voronoi network is obtained for each system (note that periodic boundary conditions are applied
in each case). The networks contain information on the nodes and edges of the Voronoi cells. The code tests whether
the total volume of the systems is equal to the sum of the volumes of the computed Voronoi cells. Each node and edge
is labeled with its distance to the corresponding set of nearest atoms. Thus, the obtained Voronoi network represents
the void space in a porous material. By defining the probe radius, one can identify the probe-accessible regions of
the Voronoi network. The implementation of the method, used to identify probe-accessible domains, is based on a
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FIG. 4: (Color online) The variation of shear modulus G (in units of εσ−3) as a function of porosity p. The inset (a) shows
the same data plotted as G0.48 vs. p. The red dashed line is the best fit to the data for p & 0.4. The inset (b) shows the
dependence of G as a function of the variable (1− p)/(1 + p). The blue dashed line is a guide for the eye.

variation of the Dijkstra’s shortest-path algorithm [41]. The PSDs are computed using probe radius of 1.2 σ.

The pore size distribution functions for sheared samples with densities ρσ3 = 0.3, 0.5 and 0.8 are presented in
Figs. 14, 15 and 16, respectively. In agreement with the previous MD study [17], the distribution of pore sizes in
quiescent samples is narrow at high glass densities and it becomes broader as the average glass density decreases.
Under small shear deformation, γ = 0.05, the shape of PSD curves remains largely unaffected, indicating that pores
are only slightly deformed under shear but do not coalesce. With further increasing strain, the distribution functions
are progressively skewed toward large values of dp, and a number of discrete peaks are developed at large length scales.
Note that the pronounced peaks in PSDs at large length scales, for example, at dp ≈ 43.4 σ for γ = 0.90 in Fig. 14,
signify the appearance of elongated (‘ellipsoid-like’) porous structures with the typical smallest size of about dp. In
turn, the height of peaks reflects the number of attempts that were used to identify numerically the probe-accessible
regions of the Voronoi network associated with large pores. We further comment that the largest length scale of
elongated pores or the pore connectivity can not be deduced from the PSD curves presented in Figs. 14, 15 and 16.
Altogether, it can be concluded that shear deformation is accompanied with a structural transition from a number of
compact pores to a configuration with one or two dominant pores. This interpretation is consistent with the visual
inspection of deformed samples presented in Figs. 5, 6 and 7 where the formation of large pores is evident at large
strain.

IV. CONCLUSIONS

In summary, molecular dynamics simulations were performed to examine mechanical properties and structural
morphology of porous glasses under steady shear. We considered the three-dimensional binary mixture that was
quenched at constant volume from a high-temperature liquid phase to a temperature well below glass transition. The
coarsening process involved formation of disordered structures that were characterized by a relatively narrow pore
size distribution with the largest length scale that depends on the average glass density. It was found that at small
shear strain, the pore network becomes linearly transformed while its connectivity remains unchanged. Moreover,
the dependence of shear modulus on porosity at low glass densities agrees well with continuum predictions based on
the percolation theory. A strikingly different behavior occurs at large strain when the pore shape becomes extremely
distorted and adjacent pores coalesce into large voids, which is reflected in the development of a skewed pore size
distribution with a superimposed discrete peaks. Thus, the size of the largest pore is greater at lower average glass
densities and higher shear strain.
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FIG. 5: (Color online) A sequence of atom positions for the average glass density ρσ3 = 0.3 and shear strain (a) γ = 0.05, (b)
γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95. The strain rate is 10−4 τ−1.
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FIG. 6: (Color online) Snapshots of atom positions for the average glass density ρσ3 = 0.5 and shear strain (a) γ = 0.05, (b)
γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95.
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FIG. 7: (Color online) Spatial configurations of atoms for the average glass density ρσ3 = 0.8 and strain (a) γ = 0.05, (b)
γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95. The same sample at zero strain is shown in Fig. 1 (d).
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FIG. 8: (Color online) A sequence of atom configurations within a slice of thickness 10σ for the average glass density ρσ3 = 0.3
and shear strain (a) γ = 0.05, (b) γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95. The same data as in Fig. 5.
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FIG. 9: (Color online) Snapshots of the sheared system within the narrow slice of 10σ for the average glass density ρσ3 = 0.5
and shear strain (a) γ = 0.05, (b) γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95. The same data as in Fig. 6.
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FIG. 10: (Color online) Spatial configurations of atoms in a thin slice of 10σ for the average glass density ρσ3 = 0.8 and strain
(a) γ = 0.05, (b) γ = 0.25, (c) γ = 0.45, and (d) γ = 0.95. The same sample at zero strain is shown in Fig. 1 (d). The same
data as in Fig. 7.
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FIG. 11: (Color online) The density profiles 〈ρ〉s (in units of σ−3) along the ẑ direction for the indicated values of strain. The
data were averaged in thin slices parallel to the xy plane. The average glass density is ρσ3 = 0.3.
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FIG. 12: (Color online) The averaged density profiles 〈ρ〉s(z) (in units of σ−3) for the selected values of shear strain. The
average glass density is ρσ3 = 0.5.
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FIG. 13: (Color online) The atomic density profiles 〈ρ〉s(z) (in units of σ−3) as a function of shear strain. The average glass
density is ρσ3 = 0.8.
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FIG. 14: (Color online) The distribution of pore sizes for the average glass density ρσ3 = 0.3 and shear strain γ = 0.0 (black
solid curve), 0.05 (blue dashed curve), 0.25 (red dash-dotted curve), 0.45 (green solid curve), 0.75 (velvet dash-dotted curve),
and 0.90 (orange solid curve).
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FIG. 15: (Color online) The pore size distribution for the density ρσ3 = 0.5 and shear strain γ = 0.0 (black solid curve), 0.05
(blue dashed curve), 0.25 (red dash-dotted curve), 0.45 (green solid curve), 0.75 (velvet dash-dotted curve), and 0.90 (orange
solid curve).
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FIG. 16: (Color online) The probability distribution of pore sizes for the average glass density ρσ3 = 0.8 and shear strain γ = 0.0
(black solid curve), 0.05 (blue dashed curve), 0.25 (red dash-dotted curve), 0.45 (green solid curve), 0.75 (velvet dash-dotted
curve), and 0.90 (orange solid curve).
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