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The mesoscale structure of aeolian sand transport determines a variety of natural phenomena
studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level,
based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is
proposed and verified by numerical simulations resolving individual grain trajectories. The predicted
height-resolved sand flux and other important characteristics of the aeolian transport layer agree
remarkably well with a comprehensive compilation of field and wind tunnel data, suggesting that
the model robustly captures the essential mesoscale physics. By comparing the predicted saturation
length with field data for the minimum sand-dune size, we elucidate the importance of intermittent
turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this
most enigmatic emergent aeolian scale.

I. INTRODUCTION

Aeolian sand transport is the process of erratic grain
hopping occasionally observed on a windy day at the
beach. It remains perplexing how the wide variety of
distinctive aeolian sand patterns, from tiny ripples to
huge dunes, emerges from such seemingly chaotic dynam-
ics. The current knowledge about the grain-scale struc-
ture of aeolian transport largely rests on laboratory and
field experiments [1]. Attempts to derive coarse-grained
mathematical models that can rationalize the observa-
tions started with Bagnold’s seminal work in the 1930s [2]
and are still the subject of ongoing research [3–11],
for good conceptual and practical reasons. With aver-
age grain trajectories exceeding the sub-millimeter grain
scale by orders of magnitude, aeolian transport is a typ-
ical mesoscale phenomenon that should be amenable to
such coarse-grained modeling. Moreover, despite growing
computational resources, faithful grain-scale simulations
remain forbiddingly expensive, so that also numerical ap-
proaches cannot avoid fairly drastic idealizations [12–16].
And even a perfect simulation of aeolian transport would
per se, without a theory, not make the emergence of the
various mesoscales and ensuing sand structures less mys-
terious.

A radically coarse-grained mean-field model [17] that
maps the whole mobilized grain population onto a sin-
gle effective grain trajectory has been successful in ex-
plaining desert dune formation [18–21]. Such mean-field
approaches roughly account for the more energetic saltat-
ing grains but fail to resolve the heterogeneity of the
transport layer, which contains a majority of grains that
only perform very small hops and do not eject other
grains from the bed [22]. Their less spectacular trans-
port mode, conventionally referred to as bedload, repta-
tion, or creep, is however thought to be largely responsi-
ble for ripple and megaripple formation [2, 23–27], which
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therefore eludes the mean-field approaches. Also ecolog-
ically important processes, such as dust emission, rock
abrasion, and vegetation invasion, are sensitive to the
detailed mesostructure of aeolian transport [4, 28]. Fi-
nally, an improved theoretical model of the aeolian trans-
port layer could help to infer more information about ex-
traterrestrial conditions from the limited data obtained
by remote-sensing [29–32].

In the following, we propose a way to transcend the
usual mean-field approximations and to account, with
good precision, not only for the mean transport charac-
teristics but also for the substantial heterogeneity and the
fluctuations within the transport layer and in the turbu-
lent wind. Similar as in earlier contributions [12, 22, 33–
35], the ballistic kinetics of an ensemble of wind-blown
grains is coupled to the local wind strength and to the
dissipative collisions with the sand bed. However, as one
crucial novel key ingredient, we utilize a recently pro-
posed analytical model for the grain–bed collisions [36]
that was extensively tested against grain-scale computer
simulations and laboratory experiments. It enables us to
develop a neat analytical description for the whole distri-
bution of grain trajectories (Sec. II), from which explicit
formulas for various height-resolved observables, like the
grain concentration and flux, readily follow (Sec. III).
In line with results from earlier numerical work [4, 37],
the wind strength is found to affect the transport-layer
physics only weakly, as corroborated by various wind-
tunnel studies [1, 38–41]. It enters primarily via “global”,
height-integrated quantities and the total height of the
transport layer, which are amenable to conventional
mean-field transport models [17, 42–46]. To validate key
ingredients of the analytical modeling, we put forward
dedicated coarse-grained computer simulations that ex-
plicitly resolve the broad distribution of grain trajecto-
ries. The latter turns out to be crucial for a proper anal-
ysis of a large amount of field and laboratory data, as
shown in Sec. IV, where the model predictions are thor-
oughly tested against literature data. The field and wind-
tunnel data confirm that the mesoscale structure of the
aeolian transport layer is well captured by the analytical
model. On this basis, we can make a strong case for a pro-
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portionality of the minimum sand-dune size reported in
field measurements to the so-called saturation length for
flux transients in heterogeneous wind. As we show, the
relation is somewhat masked by the renormalizing effect
of intermittent turbulent wind-strength fluctuations that
therefore must explicitly be included in the data analy-
sis. Throughout the main text, we emphasize conceptual
aspects and defer technical details to six appendices.

II. ANALYTICAL MODEL

The crux of our approach is to condense the height-
resolved “mesoscale” information about the hetero-
geneities in the stationary aeolian transport layer into
a simple analytical form of the hop-height distribution:

PH(h) ∝ T (h)h−νe−h/H . (1)

Here, T (h) denotes the hop time for the trajectory of
height h, H is the (wind-dependent) characteristic height
of the transport layer, and the power-law exponent ν
quantifies the energy distribution of ejected bed grains.
The combination h−νe−h/H refers to the probability to
find a trajectory of height h, weighting it with the flight
time T (h) then yields the probability that a randomly
selected grain in the transport layer follows such a tra-
jectory. Approximating

T (h) ≈ 2
√

2h/g , (2)

by the free flight time (neglecting vertical drag), with g
being the gravitational acceleration, yields

PH(h) = [HΓ(3/2− ν)]−1(h/H)1/2−νe−h/H . (3)

The Euler gamma function Γ arises upon normalization.
We now provide physical arguments for the proposed

form of PH(h). Near the bed, the transport statis-
tics is dominated by the large number of ejected grains,
whose energies are log-normally distributed and very
small compared to the energy of the saltating grain eject-
ing them [36, 47]. Their hop-height distribution is there-
fore well captured by the asymptotic power-law relation
PH(h� H) ∝ h−ν with

ν = 1− 2/ log(4)2 + 1/ log(2) ≈ 1.4 , (4)

as shown in App. E. In contrast, large hop heights
(h > H) are only reached by the few particles that sur-
vive many bed collisions, and are therefore expected to
die out exponentially. More precisely, the identity of
the particles needs not to be conserved in the sequence
of jumps, which may comprise Newton-cradle-type col-
lisions. What matters is that the grain’s energy and
momentum are not dispersed to many grains and thus
increase with the number of bed collisions. We may
then characterize the hop sequence by the fixed rebound
probability Preb ≈ Prep(h � a) ≈ 0.86 (for trajectories
much higher than the grain diameter a—typically a few
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FIG. 1. (a) Coarse-grained numerical simulations (symbols)
of the hop-height distribution PH(h) compared to the analyti-
cal model, Eq. (3) (solid lines), for various wind shear stresses
τ (102τ/(%gga) = 1, 1.5, 2, 2.5 form bottom to top). The sim-
ulation computes the statistics of the ejected bed grains from
the analytical model of Ref. [36], which yields a power-law
distribution for low hop heights with exponent ν = 1.4. The
left inset is a log-log representation of the same data, with
logarithmic binning widths (data shifted vertically for better
readability). (b) Trajectories reaching beyond the character-
istic height H of the transport layer die out exponentially.
While H was, for each data point, used as a free fit parameter
to match the simulation data, its τ -dependence is well repro-
duced by the more refined calculation in Sec. III C (dashed
line).

100 µm) and the mean ejection height hej ≈ 11a, both
computed from our splash model [36] in App. E, yielding
PH(h� hej) ∝ T (h)e−h/H with

H ≈ −hej/ lnPreb ≈ 72a . (5)

We also note that an alternative explanation for the ex-
ponential tail of PH(h) in Eq. (1) invokes an analogy
with the barometer formula for the concentration of a
thermalized gas [48].

To further back up Eq. (3), we performed coarse-
grained computer simulations, as described in App. C.
The comparison between analytical theory and simula-
tions in Fig. 1 shows excellent agreement if the trans-
port layer height H is employed as a free fit parameter
that slightly increases with increasing wind shear stress
τ . Figure 1 b compares the extracted H(τ) with the func-
tional form computed in Sec. III C. But even a simpler
version of the model, which disregards this weak wind-
dependence and fixes H to its characteristic value accord-
ing to Eq. (5), will suffice for many practical purposes.

The model proposed in Eq. (3) has manifold conse-
quences and applications. First, note that the hop-height
distribution PH(h) together with the purely ballistic con-
ditional probability P (z|h) for grains on a trajectory of
height h to be found at height z make up the joint proba-
bility PH(z, h) = P (z|h)PH(h) for grains to be at height
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z on a trajectory of height h. Using Eq. (2) for the free
flight time and writing Θ for the Heaviside step function,
P (z|h)dz = [2/T (h)]dt yields

2hP (z|h) = Θ(h− z)/
√

1− z/h . (6)
The ensuing joint probability PH(z, h) then provides us
with the height-dependent profiles

%H(z) = ρH

∫
dhPH(z, h) , (7a)

jH(z) = ρH

∫
dhPH(z, h)vx(z, h) , (7b)

φH(z, `) = ρH
2

∫

l(h)>`

dhPH(z, h)|vz(z, h)| , (7c)

τg,H(z) = ρH

∫ ∞

z

dz̃
∫

dhPH(z̃, h)fx(z̃, h) , (7d)

of the mass concentration, the horizontal and vertical
fluxes, and the stress contribution of the sand grains,
respectively. Taken together, these functions allow for
a comprehensive characterization of the height-resolved
mesoscale structure of the transport layer, so that the un-
derlying model assumptions can be tested with unprece-
dented scrutiny. For brevity, we have introduced some
additional notation in Eqs. (7), namely the horizontal
and vertical components vx(z, h), vz(z, h) of the mean ve-
locity, and the horizontal component fx(z, h) of the force
(per grain mass) contributed by a trajectory of height h
to the grain-borne shear stress [22]. The common overall
scale factor ρH =

∫
dz%H(z) is the height-integrated mass

concentration in the saltation layer (units mass/area).
The factor 1/2 in Eq. (7c) arises because each trajectory
contributes twice to the grain density PH(z, h), namely
during ascent and descent, whereas it contributes only
once to the local vertical flux φH(z, `), either when as-
cending or descending. Also note that we restricted the
ensemble of trajectories in Eq. (7c) to those with total
length l(h) > `, in order to make contact with experi-
ments that use horizontal sand traps to measure the ver-
tical flux φH(z = 0, `) through the sand bed at a down-
wind distance ` from the end of the bed [1, 41, 49].

The general form
∫

dhK(z, h)PH(z, h) =
∫ ∞

z

dhK(z, h)h
−1/2−νe−h/H

2
√

1− z/h
(8)

of the integrals in Eqs. (7) already allows some general
conclusions to be drawn as to how much the distribution
and shape of the grain trajectories matter for a given
mesoscale observable. Namely, the singularity of the de-
nominator for h→ z gives large weight to the correspond-
ing value of the rest of the integrand. The latter can then
be taken out of the integral, and only the characteris-
tic height H of the transport layer matters, unless one
is specifically interested in the conditions very near the
ground (z/H � 1). The argument breaks down if the sin-
gularity is accidentally canceled by K(z, h), which actu-
ally happens in Eqs. (7c), (7d); the vertical flux φH(z, `)

and the grain-borne stress τg,H(z) are thus sensitive to
the precise h-dependent shape of the short trajectories
with h � H, while mass concentration and horizontal
flux are not.

To explicitly evaluate the expressions in Eqs. (7), it
is useful to make a few relatively uncritical simplifica-
tions concerning the shape and kinematics of the grain
trajectories. First, as in Eq. (2), we again neglect the
vertical drag for the individual trajectory, using the free-
flight estimate for the vertical velocity for ascent and
descent. The mean horizontal velocity then follows if the
trajectories are approximated as parabolas of aspect ratio
ε(h) = h/l(h):

v2
z(z, h) ≈ 2g(h− z) (9a)

vx(z, h) ≈ vx(h) ≈ l(h)/T (h) ≈
√

2gh/[4ε(h)] (9b)

Marked deviations only occur for the few very long tra-
jectories with h � H. These “flyers” are exposed to
the unscreened wind speed that increases approximately
logarithmically with h. They therefore acquire excep-
tionally high forward speeds vx(z, h) and strongly asym-
metric trajectories, but have little effect on typical ob-
servables, due to their rare occurrence.

Disregarding them for now, each hopping grain can be
said to be accelerated by the wind drag during most of
its flight time. Since it passes each height z twice, its
mean horizontal velocity vx(z, h) should thus, to a fair
approximation, be z-independent, as indeed confirmed by
numerically solving the equations of motion of a repre-
sentative hopping grain (see, e.g., Ref. [7]). The forward
speed during descent and ascent can then be written as
vx(h)±∆vx(z, h)/2, with the net wind-induced speed-up
(to first order in z) given by

∆vx(z, h) ≈ αvx(h)(1− z/h) . (10)

Here, the momentum loss incurred upon rebound is rep-
resented by a constant (h-independent) effective restitu-
tion coefficient α = ∆vx(z = 0, h)/vx(h). The velocity
increment ∆vx(z, h) directly determines the force

fx(z, h) = −dvx(z, h)
dt = −|vz(z, h)|∂∆vx(z, h)

2∂z (11)

entering the grain-borne shear stress via Eq. (7d). With
Eqs. (9b), (10), the outer integral in Eq. (7d) thus reads
∫ ∞

z

dz̃P (z̃, h)fx(z̃, h) = P (0, h)vz(0, h)∆vx(z, h)/2 . (12)

In the above expressions for the forward velocity and
derived quantities, the aspect ratio ε(h) = h/l(h) of the
trajectories remains to be specified. In cases where only
the shape of the typical trajectory matters, it suffices
to approximate ε(h) ≈ ε(H). Neglecting its weak wind-
speed dependence, we consider conditions near the trans-
port threshold, where few particles are mobilized and the
bare logarithmic wind-speed profile prevails. Combining
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it with the prediction of our splash model for the typical
rebound geometry of the hopping grains, we then find

ε(H) ≈ 0.1 , (13)

in App. E. While this estimate suffices for many practical
purposes, the aspect ratios of the shortest and longest
trajectories, corresponding to so-called reptating parti-
cles and flyers, respectively, deviate from ε(H) according
to

ε(h)
ε(H) ≈





(h/H)−1/2 (h� H)
1 (h ' H)
0 (h� H)

(14)

The three regimes, which are clearly discernible in the
simulations (see Fig. 9 of App. C), can be interpreted in
terms of three asymptotically dominant transport modes,
namely almost vertically splashed grains near the ground,
saltating grains that attain a limiting speed near the top
of the transport layer, and a few flyers above it. The
power-law stretching for the shortest trajectories follows
from the typical hop length of wind-blown ejected bed
grains, as detailed in App. E. With increasing height,
the flight time T (h) approaches the typical response time
(“drag time”) for relaxation to the stationary velocity, so
that one might expect the aspect ratio to evolve roughly
as h/[T (H)u(h)] ∝

√
h/ ln(h/z0), using the logarithmic

law of the wall for the wind speed u(h) at height h with
surface roughness scale z0. However, such an argument
neglects the vertical drag that becomes increasingly im-
portant as h increases. It limits the vertical velocity (es-
sentially to the terminal velocity) and thus effectively
caps the hop height of the fastest ejecta. The highest
trajectories, beyond an intermittent regime of approxi-
mately shape-invariant trajectories for h ' H, will there-
fore ultimately become increasingly stretched.

An exception is provided by the rare Newton-cradle-
type collisions already mentioned below Eq. (4), in which
a bed grain can gain exceptionally high vertical momen-
tum from a fast impactor. According to Eq. (3), all these
highly energetic trajectories are so rare that they are
buried in the far exponential tail of the hop-height dis-
tribution. They therefore have so little impact on typical
mesoscale observables that the first two regimes in Eq. (1)
suffice to derive a wealth of accurate analytical predic-
tions. Nevertheless, an improved scheme that relaxes the
shape invariance of the grain trajectories to also estimate
the height dependence of flyer-sensitive observables for
h > H, is proposed below, in Secs. III B and III C. With
all the ingredients in place, we can finally estimate the av-
erage value of the characteristic transport layer H from a
flux-balance argument. Under stationary transport con-
ditions, the vertical grain flux φH(z = 0, ` = 0) into the
bed must compensate for the outgoing (rebounding and
ejected) grains, yielding zero net erosion [37, 50]. With
the above notation, this criterion reads
∫ ∞

a

dh [1− Preb(h)−N(h)] |vz(0, h)|PH(0, h) = 0 , (15)

where the grain size a is used as minimum hop height to
regularize the otherwise unbounded integral. Precise re-
lations for the rebound probability Preb and the number
N of ejected grains per impact can be taken from our
splash model [36]. It provides them as functions of the
impact energy, approximately mgh[1+1/(4ε)2], which in
turn depends on the tangent of the impact angle, here
rephrased as 4ε, according to Eq. (9). Together with
ε = 0.1 from Eq. (13), the implicit equation (15) for the
average transport layer height is readily solved and yields
H ≈ 70a. The quantitative agreement of this result with
Eq. (5), which only relies on the rebound characteris-
tics of the splash model [36], is no surprise, since it is
dominated by the high-hopping and therefore frequently
rebounding grains (rather than by the ejecta). If de-
sired, the neglected weak wind-strength dependence of
H through N and ε can be included in the analysis using
again the extended approach of Sec. III C.

At this point, we would like to emphasize that all sys-
tem parameters introduced above were computed from
our splash model, which was independently calibrated in
Ref. [36] by comparison with collision experiments using
plastic beads. However, to compare the various predic-
tions derived in the following section with laboratory and
field data in Sec. IV, below, the characteristic height H
is better used as a free fit parameter, to compensate for
the differences between the actual sand grains and said
plastic beads, as well as for some poorly controlled envi-
ronmental conditions such as humidity and temperature.
Our comparison with field data also reveals that the value
of the power-law exponent ν characterizing the splash ef-
ficiency should be adapted to the actual experimental
setup, whereas no adjustment is required for the values
of both the aspect ratio ε(H) ≈ 0.1 of the typical tra-
jectories and the effective restitution coefficient α ≈ 0.6,
computed in App. E.

III. RESULTS

A. Height-resolved transport characteristics

We now come back to the height-resolved observables
introduced in Eqs. (7). Explicit analytical expressions
for the height-resolved grain concentration and flux are
given in App. A. They take the asymptotic forms

%H(z)
ρH/H

∝

{
(z/H)1/2−ν (z � H)
(z/H)−νe−z/H (z � H)

(16)

and

jH(z)
qH/H

∝

{
(z/H)1−ν (z � H)
(z/H)1/2−νe−z/H (z � H) ,

(17)

with the height-integrated flux qH ∝ ρHvx(H). Here
and for the plots in Fig. 2, we inserted Eq. (9b) for
vx(h, z) and assumed shape-invariant trajectories with
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FIG. 2. Simulation data (symbols) and analytical predic-
tions obtained from Eqs. (3)–(10) (lines) for the (a,b) height-
resolved mass concentration %H(z), (c,d) flux jH(z), and (e,f)
grain-borne shear stress τg,H(z). Normalizing the data by
the height-integrated concentration ρH and flux qH , the grain
stress at the ground τg,H(0), and the characteristic transport-
layer height H, a good collapse is achieved for various wind
shear stresses τ (legend), as theoretically predicted. The
solid lines correspond to the model approximation of shape-
invariant trajectories with ε(h) = ε(H) independent of h; the
dashed lines represent Eq. (18), which invokes ε(h) ∝ h−1/2,
as appropriate for the majority of (low) trajectories, which
collectively carry most of the momentum and therefore dom-
inate the stress (see the inset of Fig. 9).

ε(h) = ε(H). The very good agreement, for all z, be-
tween model and numerical data in the upper and middle
panels of Fig. 2 supports our simplifying assumptions.

Similarly, the height-resolved grain-borne shear stress
τg,H(z) is estimated by inserting Eqs. (9)–(10) into
Eq. (7d). As anticipated above, one here needs to ac-
count for the shape of the short trajectories ε(h� H) ∝
(h/H)1/2, corresponding to the first regime of Eq. (14),

τg,H(z)
τg,H(0) ≈

Γ(2− ν, z/H)− (z/H)Γ(1− ν, z/H)
Γ(2− ν) , (18)

where τg,H(0) = αgρH/[8ε(H)]. Although this result
rests on the assumption h� H, it provides a very good
estimate for arbitrary values of z, because the exponen-
tial decay of the gamma functions for z � H dominates
over any polynomial h-dependence originating from ε(h).
Physically speaking, the condition h� H comprises the
majority of the grain trajectories, which account for al-
most the whole grain-borne shear stress. The quality of
this prediction is illustrated in the lower two panels of
Fig. 2.
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FIG. 3. Simulation data (symbols) and analytical predictions
obtained from Eqs. (3)–(10) (lines) for the height-resolved
grain velocity VH(z) for various wind shear stresses τ (leg-
end). Solid lines represent Eq. (21), which corresponds to
the model approximation of shape-invariant trajectories with
ε(h) = ε(H) independent of h. Dashed lines show the long-
trajectory estimate in Eq. (30) predicted form the wind-speed
profile given in Eq. (26).

Given any general relation h(l) between trajectory
height and length, the vertical grain flux at arbitrary
height z reads

φH(z, `)
qH/L

= Γ (1− ν,max[{z/H, h(`)/H}])
Γ(3/2− ν) , (19)

with L = H/ε(H) being the length of trajectories
of height H. For h � H, the incomplete gamma
function decays exponentially, so that φH(z, `) ∝
[h(`)/H]−νe−`(h)/H (tacitly assuming z < h). Taking
the derivative of Eq. (19) with respect to ` at z = 0
yields the hop-length distribution

− ∂

∂`

φH(0, `)
φH(0, 0) ∝

1
H

dh(`)
d` [h(`)/H]−νe−h(`)/H . (20)

It is usually measured in experiments with sand traps [1,
41] or in simulations by counting every trajectory once,
independent of its length and hop time. It can also
be directly inferred from the hop-height distribution in
Eq. (1), after dropping the hop time T (h). Inserting the
asymptotic scaling ε(h� H) ∝ (h/H)−1/2 from Eq. (14)
into Eq. (20), we find h(`)/H ≈ (`/L)2/3. From this, the
power-law exponent of the hop-length distribution fol-
lows as 1/3+2ν/3 ≈ 1.27. A slightly smaller exponent 1.2
was indeed observed by Durán et al. [27] in full-fledged
grain-scale computer simulations of the saltation process.

The model predictions in Eqs. (16)–(20) can now be
used to derive explicit expressions for further height-
dependent transport properties. Combining Eqs. (16)
and (17), for instance, immediately yields the height de-
pendence of the mean grain velocity

VH(z) = jH(z)/%H(z) ∝ vx(H)
√
z/H . (21)
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Note however, that the division makes the result sensi-
tive to the precise functional form of the singular growth
and the small tails of jH(z) and ρH(z) for very small and
large z, respectively. Therefore, it can only be trusted
for intermediate heights z, as suggested by its square-
root growth consistent with the regime of approximately
shape-invariant saltation trajectories (see Fig. 3; the next
section shows how this limitation can be overcome). In
this regime, our model moreover provides an explicit pre-
diction for the full height-resolved velocity distribution

PH(vx|z) = PH [z, h(z, vx)]|∂vx
h(z, vx)|ρH/%H(z) , (22)

which follows from the variable transformation h =
h(z, vx) together with the general relation PH(z, vx) =
PH(vx|z)%H(z)/ρH between joint and conditional distri-
bution. Exploiting the shape invariance of the trajecto-
ries that dominate the statistics at intermediate z, we
have vx(h)2 = (h/H)vx(H)2 and thus

PH(vx|z) = ρH [vx/vx(H)]−2νe−v2
x/vx(H)2

Γ(3/2− ν)H%H(z)
√
v2
x − vx(H)2z/H

.

(23)
A similar calculation yields the distribution of the verti-
cal grain velocity

PH(vz|z) = ρH [z/H + v2
z/(2gH)]−νez/H+v2

z/(2gH)

Γ(3/2− ν)H%H(z)vz(0, H) .

(24)
Our model also allows for a reliable analytical estimate

of the wind-speed profile uH(z) within and above the
transport layer, by considering the feedback of the grain-
borne momentum on the logarithmic law of the wall [42].
Inserting Eq. (18) into the modified Prandtl turbulence
closure τ − τg,H(z) = %aκ

2z2[duH(z)/dz]2, where %a is
the air density and κ ≈ 0.4 the von Kármán constant,
and approximating [45]
√

1− τg,H(z)/τ ≈ 1−
[
1−

√
1− τg,H(0)/τ

]
τg,H(z)
τg,H(0)

(25)
we obtain the height-dependent wind velocity

uH(z) = u∗
κ

ln(z/z0)− u∗ − u∗t
κ

ω(z0/H, z/H)

∼





u∗t
κ

ln(z/z0) (z � H)
u∗t
κ

ln(zf/z0) + u∗
κ

ln(z/zf) (z � H)

(26)

with ω(ζ0, ζ1) ≡
∫ ζ1
ζ0

dζ τg,H(ζH)/[ζτg,H(0)], the rough-
ness height z0 ≈ a/10 of the (quiescent) sand bed, and
the shear velocity u∗ ≡

√
τ/%a. Following Ref. [42], we

here approximated the air shear stress at the ground as
a wind-strength independent constant τ −τg,H(0) ≈ τt ≡
%au

2
∗t, which is justified near the transport threshold. As

illustrated in Fig. 4, this (“zeroth-order”) approximation
is already in good qualitative agreement with the nu-
merical simulations, while they can be perfectly matched
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FIG. 4. (a) Height-resolved wind speed for various wind
shear stresses τ (102τ/(%gga) = 1, 1.5, 2, 2.5 form bottom to
top) from numerical simulations (symbols) and our model,
Eq. (26), with (dashed lines) and without (solid lines, with
first-order corrections shown in b) invoking the simplifying
Owen hypothesis that the air-borne shear stress at the bed is
screened precisely to the threshold value τt for grain entrain-
ment [42].

when small first-order corrections in
√
τ/τt − 1 [4, 51]

are taken into account.
The asymptotic relations in Eq. (26) follow from

τg,H(z � H) ≈ τg,H(0) and τg,H(z � H) ≈ 0, ac-
cording to Eq. (18). They correspond to the two lim-
its of the screened logarithmic wind-speed profile near
the ground [45] and the “shifted” logarithmic profile
above the transport layer, which can also be rewritten as
uH(z) ∼ (u∗/κ) ln(z/zeff

0 ) with the wind-strength depen-
dent effective roughness length zeff

0 = z0(zf/z0)1−u∗t/u∗ .
The crossover height

zf ≡ z0eω(z0/H,∞) ≈ HeΓ′(2−ν)/Γ(2−ν)−1 ≈ 0.1H (27)

between the two is comparable to the average hop height
∫

dhhPH(h) = (3/2− ν)H ≈ 0.1H (28)

of a randomly chosen grain in a transport layer of height
H, and also to the median height zm ≈ 0.2H of its flux
profile, indirectly defined through qH/2 =

∫ zm
0 dz jH(z)

(App. B). Recalling that H depends only weakly on the
wind strength (Fig. 1), we may interpret zf ≈ 0.1H as
the so-called “focus height” [2, 50, 51].

Altogether, our results corroborate theoretically that
the mesoscale structure of aeolian transport is charac-
terized by a very dense layer of hopping particles at
the ground, which is only a few grain diameters high
(≈ 0.1H ≈ 7a). The layer is predominantly populated
by so-called reptating grains, which have hardly gained
momentum from the wind, but collectively absorbed its
excess power beyond the threshold shear stress τt. This is
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a direct consequence of the power-law decay of the hop-
height distribution in Eq. (3), which in turn is strictly
tied to the splash statistics of the bed collisions [36].
In contrast, the grains on typical saltation trajectories
are accelerated by the wind, giving them an essentially
length-independent shape. This symmetry is only bro-
ken by the longest trajectories of rare flyers that reach
heights h� H far beyond the characteristic height H of
the transport layer. It is this drastic change between the
transport modes of the hopping particles as a function of
their jump height and their unequal role in the momen-
tum balance with the wind, which limits most severely
the application of mean-field models based on a single
effective trajectory and has motivated the development
of two-species approaches [45, 50].

B. Broken shape invariance: height-dependent
grain velocity

In the previous section, we noted that the power-law
increase of the average grain velocity Vx(z) with height
z, as obtained in Eq. (21), is restricted to intermedi-
ate z, where the shape-invariant trajectories contribute
most. As we show now, this limitation can be over-
come by an alternative approach that relates Vx(z) to
the height-dependent wind speed uH(z) from Eq. (26).
We first note that the height-dependent average grain
speed VH(z) = jH(z)/%H(z) is well approximated by
the velocity vx(z, h = z) ≡ vx(z) at the apex of a rep-
resentative trajectory of overall height z. Technically,
this is seen by applying Laplace’s method to the inte-
grals for jH(z) and %H(z) (see App. A). The actual form
of vx(h) can then be estimated from the velocity gain
∆vx(z = 0, h) =

∫ T (h)
0 dt v̇x(t) of a grain during one hop

of height h:

∆vx(0, h) =
√

2gh
v2
∞

∫
dz̃ PH(z̃|h)[uH(z̃)−vx(z̃, h)]2 (29)

Here, the conditional probability PH(z̃|h) ∝ 1/vz(z̃, h)
results from the transformation dz̃ = vzdt of the in-
tegration variable, as in Eq. (6), and we used a single
integral as a shorthand representation of both the as-
cending and descending part of the trajectory. The re-
maining terms on the right-hand side represent the drag
force on the grain—see Eq. (C1) of App. C. We exploited
the stretched shape of high trajectories, which implies
vz � vx, u, to drop the vertical velocity components, and
expressed the drag coefficient in terms of the turbulent
settling velocity v∞. For typical dune sand with an av-
erage grain diameter a ≈ 200 µm, v∞ ≈ 27√ga [52]. The
integral in Eq. (29) can roughly be approximated using
the fact that PH(z̃|h) diverges for z̃ → h; again, only
the value vx(h, h) of the grain speed at the apex (z = h)
matters, while the shape of the whole trajectory is found
to be irrelevant (and can thus not be determined within
this approach). Inserting PH(z̃|h) ≈ 2δ(z̃ − h)Θ(h − z̃)

in Eq. (29) and making contact with Eqs. (10) and (9b),
which yield ∆vx(0, h) ∝

√
h, we eventually obtain

VH(z) ≈ uH(z)−
√
α/[4ε(z)]v∞ (z � H) . (30)

This is of the same form as the force-balance estimate ob-
tained by Sauermann et al. [17] for a representative grain
that is exposed to turbulent drag and an additional (con-
stant) bed friction. With the typical values for α ≈ 0.6
and ε(z ≈ H) ≈ 0.1 derived in App. E, the ensuing pre-
diction for the height-dependent grain velocity, Eq. (30),
is found to be in very good agreement with our simula-
tions for the whole range z > zf, above the focus height
(see Fig. 3).

C. Wind-dependent transport layer height

In Eq. (5) of Sec. II, we combined the splash-model
predictions for the rebound probability and the average
ejection height to estimate the overall value of the char-
acteristic height H ≈ 72a of the transport layer. This
estimate was supported by our simulations, shown in
Fig. 1 b, which, however, also revealed that H increases
weakly the wind strength. And, based on the accurate
prediction for the grain velocity Vx(z) in Eq. (30), we
indeed expect such a wind-strength dependence of H.
To calculate it quantitatively, it seems tempting to fol-
low the relation between h and vx given in Eq. (9b),
namely H ≈ 8[ε(H0)VH0(H0)]2/g, with H0 = 72a and
ε(H0) ≈ 0.1 being the wind-independent predictions of
Eqs. (5) and (13), respectively. Our simulations show
that the wind dependence of ε(H) partly compensates for
the one of VH(H), such that their product ε(H)VH(H)
increases relatively weakly with the wind strength, but
we could not obtain a good analytical estimate for the
combined effect. Instead, a similar approach for the char-
acteristic trajectory length,

L ≈ T̃ (H0)VH0(H0) and H ≈ ε(H0)L , (31)

turned out to work well if one allows for a slight phe-
nomenological adjustment T̃ (H0) = 0.7T (H0) of the hop
time compared to Eq. (2), in order to match the theory
quantitatively to our simulation data. Note that Eq. (31)
leaves the characteristic aspect ratio H/L = ε(H0) inde-
pendent of the wind strength, but the individual trajec-
tories’ shape invariance is broken, as expressed by the
(yet unknown) dependence ε(h).

Alternatively, the wind-strength dependence of H may
be taken from one of the mean-field transport models
mentioned in Sec. I. In App. B, this is illustrated for the
two-species model of Ref. [45], where the median height≈
0.2H of the transport layer—calculated after Eq. (28)—is
used to feed its prediction into our present discussion.
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D. Flux transients

Finally, we want to address what is probably the most
enigmatic and most debated mesoscale property of aeo-
lian sand transport, the so-called saturation length `sat.
This central notion was originally introduced by Sauer-
mann et al. [17] to quantify how the aeolian sand trans-
port adapts to changes in the wind over uneven topogra-
phies. Flux transients on the upwind slope of a sand dune
and in the downwind wake region were discussed as two
pertinent instances giving rise to quite diverse numerical
values and parameter dependencies for `sat. Later work
has further elaborated on this point [5, 16, 50, 53, 54].
As an emergent mesoscale concept, `sat is thus intrinsi-
cally context-dependent, and attempts to promote nar-
rower definitions of the saturation length (such as the
distance needed for a hopping grain to be accelerated to
the fluid velocity [53] or the distance over which the sand
flux saturates at the entrance of a sand bed [54]) seem
counterproductive.

Arguably the most interesting saturation transients are
those near the crest of a small dune, due to moderate
local changes in the wind speed (rather than sand cover-
age). They are responsible for the emergence of the rel-
evant mesoscale `sat with respect to which aeolian dunes
may be considered large or small, and which gives rise to
a minimum dune length Lmin [18–20, 55–57]. In Ref. [17],
this particular length was predicted to decay with in-
creasing wind strength τ , whereas later studies argued
that it might either be independent of τ [54, 58] or even
grow monotonically in τ [5, 16]. To resolve the apparent
conflict between these diverse proposals, we identify the
saturation length in our simulations with the response
length to a small wind-strength increment (to mimic the
effect of the speed-up along the back of a dune within
our stationary transport model).

Due to the scale separation between the minimum
dune size Lmin ≈ 105a (see Fig. 8) and the character-
istic hop length L = H/ε(H) ≈ 7.2 · 102a, as predicted
by Eqs. (5), (13), the resulting flux gradients should not
be sensitive to the heterogeneities inside the transport
layer. As a consequence, `sat can only depend on the
overall transport characteristics and is thus expected to
scale linearly in L. Indeed, our numerical data in Fig. 5
are consistent with

`sat/L ∝ 1 + τta − τ
τ − τt

Θ(τta − τ) , (32)

and conforms with the expectation `sat ' L above the
direct aerodynamic entrainment threshold (for τ > τta).
Physically, mobile grains are then abundant and their ac-
celeration to the stationary speed limits the adaptation to
an increase in wind strength. Notice that L itself slightly
increases with the wind speed, according to Eq. (31)—see
also Figs. 1 and 7. If the wind speed falls below the direct
entrainment threshold τta and approaches the transport
threshold τt, grains not only need to be accelerated, but
an increasing amount of energy and momentum has to

be supplied to lift grains from the ground against gravity.
The adaptation of the flux to an increase in wind speed is
then limited by the number of grains gradually mobilized
in successive bed collisions [17]. The lift force exerted by
the wind on the bed still facilitates the splash by effec-
tively reducing the heavy mass of the grains, which can
be understood as a precursor of direct aerodynamic en-
trainment [59], as argued in Eq. (D5) of App. D. Accord-
ingly, the net erosion rate scales with the excess shear
stress τ − τt, which vanishes at the transport threshold
τt, causing a singular slowing-down of the adaptation of
the flux to wind heterogeneities. This manifests itself in
the divergence of the saturation length `sat(τ) at τt [17].
A similar decomposition of the physics behind the satura-
tion length according to two rate-limiting processes was
previously proposed by Andreotti et al. [54] to interpret
wind-tunnel measurements.

It is important to realize that a direct application of
Eq. (32) to field data, is problematic, though. Field data
that do not conform with the intuitively expected scaling
Lmin ∝ `sat for the minimum dune length Lmin do not
necessarily indicate a failure of the theory. The reason
is that the sharp peak of `sat at τ = τt, with relative
width (τta− τt)/τt ≈ 0.27, is not resolved by typical field
measurements, which inevitably average over some inter-
mittent wind fluctuations. The importance of a given
wind strength for the observed structure formation is de-
termined by the erosion or deposition caused, which are
proportional to the flux. We therefore propose that struc-
tural field data should be interpreted as flux-weighted av-
erages of the corresponding “bare” theoretical predictions
calculated for a fixed wind strength. In particular, the
minimum dune length observed in the field should not
scale in the bare saturation length but in its “dressed”
version, according to

Lmin ∝ 〈φ`sat〉〈τ〉/〈φ〉〈τ〉 . (33)

The averages 〈. . .〉〈τ〉 is understood to extend over a range
of wind-strength fluctuations around the measured aver-
age shear stress 〈τ〉. The bare vertical flux

φ ≡ φH(0, 0) ∝ qH/L ∝ (τ − τt)Θ(τ − τt)/L (34)

vanishes at τ < τt, thereby effectively truncating the
wind-strength distribution. The consequences of this are
illustrated by the dashed line in Fig. 5 assuming a real-
istic Weibull distribution of variance 0.05〈u〉2 (u ∝ u∗ ∝√
τ) for the wind-speed fluctuations [60]. For τ � τt, the

weakly wind-strength dependent bare saturation length
`sat is hardly affected at all by the averaging: bare and
dressed saturation length are indistinguishable in the
plot. In contrast, close to the transport threshold τt,
the saturation length gets strongly renormalized by fluc-
tuations. The flux-averaged or dressed saturation length
as a function of the average shear stress 〈τ〉—the right-
hand side of Eq. (33)—has a strongly smeared-out shape
compared to the bare prediction.

We incidentally find the dressed wind-strength de-
pendence to be closely reminiscent of the form `sat ∝
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FIG. 5. “Bare” and “dressed” wind-strength dependent sat-
uration lengths (linear and logarithmic axes scaling). Sim-
ulation data for the bare saturation length `sat (symbols)
were obtained by fitting a linear relaxation process with decay
length `sat to the response of the height-integrated flux q(x)
along the wind direction to a small step increase of the shear
stress τ(x) at x = 0 (notice the improving agreement with the
theoretical expectation upon approaching the ideal limit of an
infinitesimal step height, given in the legend). Its power-law
decay in τ (b) close to the transport threshold τt = 0.01%gga
gives way to a weak growth at larger τ , in good accord with
Eqs. (31), (32), with a numerical factor `sat/L = 2 (solid
lines). Under realistic field conditions, the sharp singularity at
τ = τt is smeared out by intermittent wind-speed fluctuations,
giving rise to the apparent “dressed” saturation length given
by the right-hand side of Eq. (33), with a Weibull-distributed
wind speed of variance 0.1〈u〉2 [60] and the aerodynamic–
impact threshold ratios τta/τt = 1.27 (obtained from our sim-
ulations, dashed line in panel a) and τta/τt = 10 (expected
for wind-blown sand transport on Mars [53, 62], dotted line).

L/(τ/τt−1) originally proposed by Sauermann et al. [17].
This observation supports the interpretation of the mea-
sured (dressed) saturation length as an emergent hydro-
dynamic length scale and vindicates the use of Sauer-
mann’s formula in past analytical and numerical studies
that are at the core of our current understanding of the
physics of sand dunes [61]. Similar but potentially more
drastic renormalizations may be expected in applications
to extraterrestrial dunes, in which the gap between the
threshold shear stresses τt and τta can be much larger
than on Earth [53, 62] (see Fig. 5).

IV. COMPARISON WITH LITERATURE DATA

After having established the accuracy of our analyti-
cal model by comparison with our simulation results, we
now want to test it against a compilation of literature
data. Experimental data for the height-resolved horizon-
tal flux jH(z) is usually approximated, with fair accuracy,
by an exponential profile with a mean height on the or-
der of a few centimeters that is almost independent of the
wind strength [1]. This resonates well with our Eq. (17).

However, there is apparently no clear consensus about
possible deviations from the exponential form due to a
possible deficit [39, 63] or excess [1, 49, 64–67] of grains
near the ground; probably because of difficulties in de-
termining the exact number of mobile grains in the dense
lower transport region. In particular, the particle track-
ing and laser scattering methods used in Refs. [39, 63]
seem prone to missing some of the mobile grains close to
the bed (the ejected “reptating” grains), so that the flux
in this region is most likely underestimated. In contrast,
sand trap measurements in Refs. [49, 64, 66] reflect the
pronounced near-bed excess contribution to jH(z) that
we expect from our model as a direct consequence of the
splash statistics. They are indeed in remarkable agree-
ment with the prediction of Eqs. (3)–(9a) if ν and H are
treated as free fit parameters, as illustrated in Fig. 6.
The relatively small value deduced for the best-fitting
power-law exponent ν ≈ 0.94 could partly be a conse-
quence of the above mentioned unavoidable systematic
uncertainties in current flux measurements near the bed.
More interestingly, it could also indicate that the splash
for wind-blown sand grains is less efficient than for the
plastic beads injected onto a quiescent bed in labora-
tory collision experiments [36, 68], from which one in-
fers ν ≈ 1.4. The transport layer heights H obtained
from the wind-tunnel data are in very good agreement
with the obtained average value and the weak wind-
dependence found in both our simulations and the an-
alytical approach in Eq. (31) (Fig. 6 b). The field data,
in contrast, yield an almost three times higher transport
layer, which might be traced back to the non-equilibrium
under-saturated transport conditions due to wind varia-
tions and/or due to moisture-induced stickiness of the
used beach sand. This is also supported by the over-
all transport rates reported in Ref. [49] that are much
smaller than those reported for wind-tunnel experiments.

Similar conclusions can be drawn from the comparison
between literature data and the model prediction for the
vertical flux φ(z = 0, `), in Fig. 7. Again good agreement
is obtained for ν = 0.94 and using the characteristic hop
length L as a free fit parameter. The wind-tunnel data
again agree well with the theoretical expectation L =
H/ε(H) ≈ 10H based on Eq. (31), whereas field data
suggest higher values.

Besides such height-resolved characteristics for the sta-
tionary transport, our approach also gives access to its
transient behavior, as shown in Sec. III D. There, we ar-
gued that the minimum dune size measured in the field
should be correlated with a “dressed” saturation length,
averaged over some intermittent wind fluctuations. This
hypothesis is tested against field data for the minimum
dune length Lmin [54] in Fig. 8. The authors quantify the
wind strength by the average 〈(τ/τ eff

t − 1)Θ(τ − τ eff
t )〉.

Here τ eff
t is an effective transport threshold that is mea-

sured in the field under fluctuating wind conditions. In-
triguingly, this procedure yields a relatively small value
τ eff
t compared to theoretical expectations and laboratory

values for τt [53, 69, 70], in line with our finding of



10

0 1 2 3 4 5 6

10−3

10−2

10−1

100

101

z/H

j H
(z

)H
/
q H

(a)

10−1 100 101

10−1

101

0 2 4 6 8 10
0

100
200
300

102 τ/(%gga)

H
/
a

(b)

FIG. 6. (a) Theory and literature data for the height-resolved
horizontal grain flux jH(z) (linear/logarithmic height axis;
data extracted from independent sources vertically shifted,
for better visibility). The simple analytical model with
shape-invariant grain trajectories, Eqs. (3)–(9a) (solid lines),
is fitted to wind-tunnel measurements by Rasmussen and
Mikkelsen [64] (dots), Rasmussen and Sørensen [66] (squares),
and field data by Namikas [49] (triangles) for various wind
strengths τ , using ν and H as free global fit parameters. This
yields ν = 0.94 and the data for H shown in the inset (b) with
the improved model prediction from Eq. (31) (dashed line).
While laboratory data and theory agree well, field measure-
ments (triangles) consistently find higher trajectories.
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height axis; data extracted from independent sources ver-
tically shifted, for better visibility). The simple analytical
model with shape-invariant grain trajectories, Eq. (19), is fit-
ted to wind tunnel measurements by Ho et al. [41] (dots)
and Rasmussen et al. [1] (squares), and to field data by
Namikas [49] (triangles) for various wind strengths τ , using
the value ν = 0.94 obtained from Fig. 6. (b) The trajectory
length L (the only free fit parameter) compared to the theo-
retical expectation H/ε(H) ≈ 10H [45] (dashed line). Again,
laboratory data and theory agree well, while field measure-
ments consistently find longer (and higher) trajectories.
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FIG. 8. Field data for the minimum dune length Lmin re-
ported by Andreotti et al. [54] (symbols) compared to the
dressed saturation length 〈φ`sat〉/〈φ〉 from Eqs. (32), (31)
(line). The expected linear relation is recovered for Weibull-
distributed intermittent wind-speed fluctuations of variance
0.05〈u〉2 [60] and an effective threshold shear stress τ eff

t =
0.12τt, suggesting a factor of proportionality of about 35
in Eq. (33), reasonably close to previous theoretical esti-
mates [55, 56].

a substantially renormalized threshold in Fig. 5. Fig-
ure 8 moreover demonstrates good agreement of the field
data with Eq. (33) for Weibull-distributed wind speeds
u with variance 0.1〈u〉2 [60], τ eff

t ≈ 0.12τt. Even the
ratio Lmin〈φ〉/〈φ`sat〉 ≈ 35 between the minimum dune
size and the dressed saturation length, which we used
as a free fit parameter in the comparison, turns out to
be reasonably close to (about 1.5 times larger than) the
value predicted by numerical solutions of two- and three-
dimensional versions of the minimal model for aeolian
sand dunes [55, 56]. This further supports our inter-
pretation and underscores the importance of the distinc-
tion between bare and dressed mesoscale quantities in the
analysis of field data.

For computational details and further theoretical and
experimental support for an essentially constant value of
Lmin/`sat (rather than a constant `sat [54]), we refer the
reader to App. F.

V. SUMMARY AND CONCLUSIONS

We have developed an analytically tractable model for
aeolian sand transport that resolves the whole distribu-
tion of grain trajectories. Our analytical approach was
heavily based on a recently proposed model for grain
hopping on a granular bed that admits an analytical
parametrization of the splash [36], and guided and vali-
dated by coarse-grained computer simulations. The core
element of our model is the physically well grounded
expression for the hop-height distribution in Eq. (3),
which is complemented by the ballistic approximations
in Eqs. (2)–(7a) for the grain trajectories. This com-



11

bination allowed us to derive analytical predictions for
various non-trivial mesoscale characteristics of the aeo-
lian transport layer, among them the vertical and hori-
zontal grain flux distributions and the saturation length,
which we found to be in excellent agreement with an
extensive compilation of independently generated field
and wind-tunnel data using a consistent set of model pa-
rameters for the grain-scale physics. The comparison re-
vealed that it is necessary to distinguish so-called “bare”
mesoscale relations (corresponding to precisely controlled
ambient conditions) from their “dressed” counterparts
that involve an average over fluctuations. Altogether, we
have thus provided solid evidence that our approach cor-
rectly captures the splash and transport statistics and
provides a canonical theoretical formalism for various
height-resolved mesoscale properties. It can be employed
as a default in calculations when the actual profiles are
not known, or as an alternative fit function (in place of
the usual exponential) to extract parameters, such as the
mean hop height, from experimental data. And it sug-
gests itself as a sound and versatile starting point for a
precise and highly efficient modeling of a wealth of appli-
cations, from aeolian structure formation over dust emis-
sion to desertification.
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Appendix A: %H(z) and jH(z) for shape-invariant
trajectories

For shape-invariant trajectories, i.e., ε(h) = ε(H) in-
dependent of the hop height h, Eqs. (3)–(9a) yield

%H(z)
ρH/H

= Γ(1/2− ν)
2Γ(3/2− ν)M(1/2, 1/2 + ν,−z/H)

+
√
πΓ(ν − 1/2)

2Γ(3/2− ν)Γ(ν) (z/H)1/2−ν

·M(1− ν, 3/2− ν,−z/H)

(A1)

and
jH(z)
qH/H

= Γ(1− ν)
2Γ(2− ν)M(1/2, ν,−z/H)

+
√
πΓ(ν − 1)

2Γ(2− ν)Γ(ν − 1/2)(z/H)1−ν

·M(3/2− ν, 2− ν,−z/H)

(A2)

for the grain mass concentration and flux, respectively.
Here,

M(a, b, z) = Γ(b)
Γ(a)Γ(b− a)

∫ 1

0
ds ezssa−1(1− s)b−a−1

(A3)
denotes Kummer’s confluent hypergeometric function
and qH = Γ(2 − ν)Γ(3/2 − ν)−1ρHvx(H) is the height-
integrated grain flux. The asymptotic forms in Eqs. (16)
and (17) can be directly inferred from Eqs. (A1) and
(A2), respectively. For z � H, we may estimate the
dependence of jH(z) ∝ [ε(H)/ε(z)](z/H)1/2−νe−z/H on
ε(z) using Laplace’s method to approximate the integral
of the form

∫ ∞

z

dh f(h) e−h/H√
h− z

∼
√
πH f(z)e−z/H (A4)

after substituting h = z cosh2 θ, expanding the exponent
(h/H) cosh2 θ around θ = 0, and integrating over all θ >
0.

Appendix B: Median transport height and
two-species prediction for H

The median height zm of the transport layer is implic-
itly defined through

1/2 =
∫ zm

0
dz jH(z)/qH

= 1/2−M(−1/2, ν − 1,−zm/H)/2

+
√
πΓ(ν − 1)

4Γ(ν − 1/2)Γ(3− ν) (zm/H)2−ν

·M(3/2− ν, 3− ν,−zm/H) ,

(B1)

where we inserted Eq. (A2) to evaluate the integral in
the second line. For ν = 1.4, as predicted from the splash
model [36] underlying Eq. (3), this relation can be solved
numerically, which yields H ≈ 5.8zm, i.e., zm ≈ 0.17H.
The smaller value ν = 0.94 that we used to fit the lab-
oratory and field data in Figs. 6 and 7 corresponds to a
larger median height of value zm ≈ 0.43H.

This relation can be used to make contact with the
two-species model for aeolian sand transport proposed
in Ref. [45]. We therefor obtain the two-species pre-
diction for zm assuming that it lies above the reptation
layer, where the (saltation) grain flux decays exponen-
tially. This yields

H ≈ 0.76 ln
[
2/
(
1 + qrep/qsal)] (vsal)2 /(2g) , (B2)
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were qrep and qsal are the reptation and saltation contri-
butions to the height-integrated grain flux, respectively.
The numerical prefactor that relates the saltation veloc-
ity vsal (computed in Ref. [45]) to the vertical component
vsal
z (z = 0) of the rebound velocity of a saltating grain

(required here) is determined by fitting this relation to
our simulation data for H, shown in Fig. 1 b. The so
obtained value vsal

z (z = 0)/vsal ≈ 0.13 of this effective
restitution coefficient is in accord with what we expect
from the splash model of Ref. [36].

Appendix C: Computer simulations

In our computer simulations, the trajectory of each
grain is obtained by solving the equations of motion

v̇ = 3CD

4σa |u− v|(u− v) + g . (C1)

Here, v ≡ v(t) = ṙ(t) is the velocity of the grain at time
t, r(t) its position, u ≡ u[r(t), t] the wind velocity field,
g ≡ −gez the gravitational acceleration, σ ≡ %g/%a the
grain–air mass-density ratio, and a the grain diameter.
For the particle drag coefficient, we use the accurate ex-
pression [52]

CD = 1
3

[
A+

√
A2 + 16Bνair/(a|u− v|)

]2
(C2)

(A ≈ 0.95 and B ≈ 5.12 for natural sand), where the
viscous contributions to the drag are quantified by the
Reynolds number a|u−v|/νair, with the kinematic viscos-
ity νair ≈ 1.5 ·10−5m2s−1 for air. To compute the grain
trajectories with sufficient accuracy to resolves the short
hops of the low-energy ejecta, the equations of motion are
solved using a standard Euler-forward integration scheme
with a discretization time of 0.1

√
a/g (corresponding to

about 0.45 ms for a grain diameter of 200 µm).
Assuming a horizontally uniform stationary air flow in

x-direction, the only non-vanishing component of the air
velocity u is given by the height-dependent wind speed
u(z) ≡ u · ex. For constant pressure, the Reynolds-
averaged Navier-Stokes equations reduce to the relation

∂zτa(z) = Fx(z) (C3)

between the xz component τa of the Reynolds stress ten-
sor for the air and the body force Fx(z) exerted by the
grains on the air [22]. Without particles, Fx(z) = 0, this
means that τa = τ is independent of z and given by the
overall shear stress τ . That this holds above the trans-
port layer for z → ∞ provides us with the boundary
condition for integrating Eq. (C3) for Fx(z) 6= 0,

τ − τa(z) =
∫ ∞

z

dz̃ Fx(z̃) ≡ τg,H(z) , (C4)

which defines the grain-borne shear stress τg,H [42]. In
the simulations, the contribution of each grain to Fx is
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FIG. 9. Trajectory aspect ratio ε ≡ h/l for various wind
strengths, as obtained from our simulations. For most
mesoscale measures, its dependence on the hop height h is
negligible (a), as is the weak dependence on the wind shear
stress τ , as illustrated for the aspect ratio ε(H) of the char-
acteristic trajectory (b). However, the height-resolved grain
stress, Eq. (18), crucially depends on the power-law decay for
h � H, which is better resolved on the logarithmic scale in
the left inset (same data logarithmically binned), solid and
dashed lines representing Eq. (E7) (scaled by an empirical
prefactor 0.65) and the power-law ε ∝ h−1/2, respectively.

obtained as the negative x-component of the right-hand
side of Eq. (C1) times the grain mass (π/6)%ga

3. The
grain stress τg,H is pre-averaged over a short time inter-
val

√
a/g (ten time steps), in order to obtain smooth

profiles. With Eq. (C4), the Prandtl turbulence closure
κ2%az

2[u′(z)]2 = τa(z) yields the height-dependent wind
speed

u(z) = 1
κ
√
%a

∫ z

z0

dζ
√
τ − τg,H(ζ)

ζ
. (C5)

The roughness height z0, where the wind speed nominally
vanishes, is set to a/10 by convention.

Equations (C1)–(C5) have to be complemented by a
set of boundary conditions describing the sand bed col-
lisions. They are taken from an extended version of the
coarse-grained splash model proposed in Ref. [36] that
accounts for wind-induced lift forces acting on the bed
grains, as briefly outlined in App. D. To keep the com-
putation simple, we neglect midair collisions. They are
most frequent in the dense reptation layer close to the
bed [27, 71] and therefore probably well captured by ap-
propriate effective bed parameters, except under extreme
wind conditions [15].

Appendix D: Splash model

For convenience, we now outline the key properties of
the splash model of Ref. [36] used to quantify the sand
bed collisions in the numerical simulations (App. C) and
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in our analytical derivation of Eq. (3) for the hop-height
distribution. Its original version was developed assuming
vacuum conditions. For our present purpose, we extend it
to effectively account for the drag and lift forces exerted
on the bed grains by the wind.

The rebound of a hopping grain from a rough immobile
bed is quantified in terms of the mean total restitution
coefficient e and rebound angle θ′ for a given impact angle
θ. Averaging over all possible collision geometries gives

e ≡ |v′|/|v| = βs − (1− α2
s/β

2
s )βsθ/2 , (D1)

where αs ≈ 0.20 and βs ≈ 0.63 were calibrated [36] with
collision experiments by Beladjine et al. [68]. The re-
bound angle θ′ is randomly drawn from the distribution

P (θ′|θ) = (2/γs)(1 + θ′/θ) ln
[
γsθ/(θ + θ′)2] (D2)

defined in the interval 0 < θ′ + θ <
√
γsθ and set to zero

outside. We multiplied the parameter γs = (9/2)(1 +
αs/βs)2 by an order-unity factor 3

√
3/4 ≈ 1.3 for harmo-

nization with the approach underlying Eq. (D1). Note
that Eq. (D2) can yield negative rebound angles, cor-
responding to a grain that gets trapped in the bed.
Rebounding grains with |v′| sin θ′ ≥

√
2 fail to leap

over the downwind bed neighbor grain and are thus
not propagated further. To avoid discretization arti-
facts at the ground, which become apparent in height-
resolved quantities like the grain concentration or the
grain shear stress, we distribute the initial height of a
grain ricocheted off the bed uniformly between z = 0
and z = δt|v′| sin θ′, where δt is the duration of one time
step in the simulations.

To mimic the statistics of the ejecta close to the
ground, we set the ejection angle to 90◦ and draw the
kinetic energy of the ejected grains form the log-normal
distribution [47]

P (E′ej|E) = 1√
2πσE′ej

exp
[
−

(lnE′ej − µ)2

2σ2

]
(D3)

with the energy E = mv2/2 of the impacting grain of
mass m = (π/6)%gga

3 and σ =
√
λ ln 2, µ = ln[(1 −

e2)E] − λ ln 2, λ = 2 ln
[(

1− e2)E/Ea
]
, and Ea = mga.

The number

N ′2 = 0.06[(1− e2)E/Ea]κ
∫ ∞

Eeff

dE′2 P (E′2|E) (D4)

of ejected bed grains again follows from the same energy
balance approach underlying Eq. (D3), with the value
κ = (2− ln 2) ln 2 ≈ 0.9 of the exponent close to one.

In Eq. (D4), we extended the original splash model
of Ref. [36] to account for drag and lift forces exerted
on the bed grains. We therefor introduced an effective
minimum energy Eeff < Ea required for a bed grain to
be mobilized during the collision. Rewriting it in terms
of an effective mass meff ≡ Eeff/(ga) of a bed grain ex-
posed to the turbulent shear flow, we estimate its value

following Bagnold’s classic prediction of the shear stress
value at the threshold of grain movement [2]. Balanc-
ing the net torque due to the horizontal drag force FD
and vertical gravitational force mg acting on a bed grain
of mass m with the purely gravity-induced torque of a
grain of same size but different mass meff, one obtains
sin(βs)FD − cos(βs)m = − cos(βs)meff, for an angle βs
between the horizontal and the axis crossing the point
of support and the center of the lifted bed grain. This
yields

Eeff/Ea = meff/m = 1− τa(z = 0)/τta . (D5)

Here, we expressed the drag force FD ∝ π(a/2)2τa(z = 0)
in terms of the air shear stress at the ground and iden-
tified its threshold value τta ∝ (2/3)b/[tan(βs)], above
which bed grains are mobilized by the flowing air (corre-
sponding to a vanishing effective weight, meff = 0). We
set τat = 1.2 · 10−2%gga, yielding a minimum shear stress
τt ≈ 0.9 · 10−2%gga required to maintain transport (once
initialized), which is in agreement with typical values for
the ratio τat/τt ≈ 0.8 observed in wind tunnel experi-
ments [2, 72].

Appendix E: Splash predictions for ν, H, ε, α

The quantitative description of the bed collisions out-
lined in App. D allows us to estimate typical values for
the power-law exponent ν, the trajectory aspect ratio
ε(H), and the effective restitution coefficient α intro-
duced in Sec. II as model parameters.

Relating the ejection energy E′ej = mgh to the hop
height, Eq. (D3) provides us with the hop-height distribu-
tion per impacting grain of energy E. As E � mga, i.e.,
µ � ln(mga), it is expanded to ∝ h−ν , with ν given in
Eq. (4). Multiplying it with the hop time T (h), Eq. (2), it
yields the hop-height distribution PH(h � H) ∝ h1/2−ν

per time step.
Next, we estimate the characteristic height H of the

transport layer at low-wind conditions close to the trans-
port threshold employing the splash-model prediction for
collisions between saltating grains and the bed grains.
We start with the relation

H = −Eej(E)/(mg logPreb) (E1)

between H and the rebound probability Preb derived in
the text below Eq. (3). Here, we expressed the mean
ejection height hej(E) = Eej(E)/(mg) for a given impact
energy E in terms of the mean ejection energy Eej(E).
The latter is obtained from the distribution in Eq. (D3)
as

Eej(E) =
∫

dE′ejP (E′ej|E)Θ(E′ej − Ea)E′ej∫
dE′ejP (E′ej|E)Θ(E′ej − Ea) ,

= erfc[(lnEa − µ− σ2)/(
√

2σ)]
erfc[(lnEa − µ)/(

√
2σ)]

eµ+σ2/2 ,

(E2)
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where the integrals extend over all energies E′ej > Ea
above the minimum ejection energy Ea = mga. As the
impact energy E is determined by the difference u(H)−
v∞ between the wind speed at heightH and the turbulent
settling velocity v∞ ≈ 27√ga, we may approximate it as

E ≈ (m/2)[u(H)− v∞]2 . (E3)

Making use of the low-transport conditions assumed here,
the wind-speed profile in Eq. (26) simplifies to u(z) =
(u∗t/κ) ln(z/z0), with u2

∗t/(ga) ≈ 0.01σ ≈ 20, κ = 0.4
and z0 ≈ a/10. We can now insert this relation, to-
gether with Eqs. (E2), (E3) and the rebound probability
Preb ≈ Preb(h � a) =

∫∞
0 dθ′P (θ′|θ) as predicted by

Eq. (D2), into Eq. (E1), which yields H(θ) as a mono-
tonically decreasing function of the impact angle θ. For
reasonable values θ = 5◦ . . . 20◦, it varies within the range
H/a ≈ 190 . . . 54. To determine its actual value, we use
the relation ε(H) ≈ tan(θ)/4 between trajectory aspect
ratio and impact angle, as inferred from Eq. (9b), and
combine it with

ε(H) = H/L ≈ H/{T (H)[u(H)− v∞]} , (E4)

where we approximated the hop length with the flight
time T (H), given in Eq. (2), times the typical grain
speed. Putting all together, we obtain a transcendental
equation for the impact angle θ:

cot(θ)4H(θ)/T [H(θ)] ≈ u[H(θ)]− v∞ . (E5)

With the parameters listed above, it is solved by θ ≈
14.5◦, for which Eqs. (5) and (13) yield H = H(θ) ≈ 72a
and ε(H) ≈ 0.1, respectively.

While trajectories of height on the order of H are cru-
cially influenced by the impactor–bed rebound, the shape
of small trajectories of height h � H is mainly dictated
by the characteristics of the ejecta created during these
bed collisions. To estimate the height dependence ε(h)
of their aspect ratio, we simplify the equations of mo-
tion, Eq. (C1), as follows. Since vz � u, vertical and
horizontal motion decouple, and thus

v̇x ≈ L−1
D [u(h)− vx]2 , (E6)

with the constant drag length LD = 4σa/(3C∞D ), where
C∞D ≈ 1.2 is the strong-turbulence limit of the drag coef-
ficient computed from Eq. (C2) for vanishing air viscosity
νair = 0, i.e., Reg →∞. We further replaced the height-
dependent wind speed u(z) in the drag relation by the
constant value u(h) taken at the height of the trajec-
tory. It is computed using the above relation for thresh-
old conditions (which also holds for τ > τt, as u(z < H)
exhibits the universal τ -independent shape obtained in
Eq. (26)). For the initial condition vx(t = 0) = 0 and the
total flight time T (h), the time integral of the solution
vx(t) = u(h)2t/[LD +u(h)t] of Eq. (E6) readily yields the
hop length

h/ε(h) ≈ T (h)u(h)− LD ln[1 + T (h)u(h)/LD] (E7)

for h� H. While the overall value of ε(h) obtained from
this estimate is found to be a bit too large (by a factor
of 1/0.65 ≈ 1.5), its qualitative form is indeed in very
good agreement with our simulations (even for interme-
diate heights h ' H), as illustrated in Fig. 9. Insert-
ing Eq. (2) for T (h) together with the scaling relations
u(h) ∼ √σga ln(h/z0) and LD ∼ σa, and expanding the
right hand side of Eq. (E7) for h � σa (equivalent to
T (h)u(h) � LD), it becomes ε(h) ∝ ln(h/z0)−2. For
h � z0, the h-dependence is (locally) very close to a
power law with an exponent of value −2/ ln(h/z0) that
varies only weakly as h gets larger. Substituting the typ-
ical ejection height 〈h〉H ≈ 7a obtained in Eq. (28) (or
hejH ≈ 10a from (E2)) for h, this exponent takes the
value 0.47 ≈ 1/2, which gives rise to the first line of
Eq. (14). The applicability of this power-law approxima-
tion for h� H is supported by the comparison with our
simulations in Fig. 9.

We eventually derive a splash-model prediction for the
effective restitution coefficient α, introduced in Eq. (10).
Identifying vx(h) with the average of the horizontal im-
pact and rebound velocities, it is related to the total resti-
tution e and the impact and rebound angle θ, θ′ via

α = 2(cos θ − e cos θ′)/(cos θ + e cos θ′) . (E8)

With Eqs. (D1), (D2), α takes values between 0.45 (for
θ = 0) and 0.64 (at θ ≈ 28◦). For the typical impact
angle θ ≈ 13◦ obtained from Eq. (E5), we get α ≈ 0.6.

Appendix F: Minimum dune size

We provide a theoretical estimate for the minimum
dune length Lmin, for which literature field-data are
shown in Fig. 5. To this end, we employ a slightly im-
proved version of the linear stability analysis proposed in
Refs. [20, 57]. It identifies Lmin with the wavelength of
the (initially) fastest growing mode of a weakly perturbed
flat sand bed. The starting point is the out-of-phase re-
sponse of shear stress and sand transport to weak pertur-
bations of a flat bed [18, 19]. In Ref. [57], Andreotti and
coworkers used the generic formula qsat ∝ τχ(τ − τt) for
the saturated flux, which is indirectly slope-dependent via
the variation of the local shear stress τ and the threshold
value τt. However, they neglected the direct slope depen-
dence, which obtains even for fixed wind parameters, and
should be accounted for, to first order in h′, according to

qsat ∝ τχ(τ − τt)(1− h′ cot θf) , (F1)

where θf is the friction angle. This direct slope depen-
dence of qsat was first predicted by Bagnold and later
validated by Iversen and Rasmussen [73], who obtained
θf ≈ 40◦ for typical dune sand (with grain diameter
d ≥ 170 µm). Equation (F1) can also be derived from
the continuum saltation model by Sauermann et al. [17]
if we extend its kinematics to sloped beds. Accounting
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for the gravitational force −gh′ in the momentum bal-
ance, Eq. (33) in Ref. [17], we obtain

qsat ∝ (v0/g)(τ − τt)(1− h′αv∞/v0) . (F2)

Here, the turbulent settling velocity v∞ accounts for the
bed friction and is equal to the difference between the
wind speed and the steady-state transport velocity v0
over the unperturbed bed. For moderate wind strengths,
i.e., τ ≈ τt, v0 is independent of τ , corresponding to
χ = 0, and the coefficient αv∞/v0 takes values on the
order of 0.5 for typical dune sand, which corresponds to
θf ≈ 60◦ in Eq. (F1), in reasonable agreement with the
phenomenological law.

For the stability analysis, we follow Fourriére et al. [57]
and expand the perturbation δqsat = qsat − qsat0 of the
saturated flux from its flat bed value qsat0 to first order
in the perturbation δh of the bed profile. From Eq. (F1),
we obtain its Fourier transform δq̂sat =

∫
dx δqsat e−ikx ∝

τ1+χ
0 (Aq + iBq)k δĥ with

Aq = Aτ + χAτ (1− τt0/τ0) and
Bq = Bτ + χBτ (1− τt0/τ0)− cot θf ,

(F3)

where we used the shear stress perturbation δτ̂ = τ0(Aτ+
iBτ )kδĥ (for k ≥ 0) and the slope-dependent threshold
δτ̂t = ikδĥ cot θf. Following the convention, we denote
the unperturbed shear stress over a flat ground far away
from the obstacle by τ0 (the subscript was suppressed in
the main text). Only the τ0-independent term cot θf in
the expression for b differs from the result (τt/τ0) cot θf
by Fourriére et al., who neglected the direct slope depen-
dence of qsat. While this may seem to be a minor change
of the original argument, it yields a qualitatively different
result. Combining the linearized differential equation for
the flux evolution with mass conservation ∂th ∝ −∂xq
for the sand bed profile h, the ratio Lmin/`sat of the
wavelength of the fastest growing mode to the satura-
tion length follows as a function of the ratio Aq/Bq. For
Lmin/`sat � 1, it scales as

Lmin/`sat ∼ 3πAq/Bq . (F4)

Substituting Aq and Bq from Eq. (F3), we see that
Lmin/`sat decreases with increasing τ0 as long as χ > 0.
This is qualitatively similar to what was obtained by
Fourriére et al. neglecting the experimentally well es-
tablished and theoretically derived rightmost factor in
Eq. (F1). However, for the theoretically expected and
generally accepted value χ = 0, the ratio Aq/Bq =
Aτ/(Bτ − cot θf) becomes independent of τ0, and so does
Lmin/`sat. Evidently, the direct slope dependence of the
flux, represented by the friction angle θf, can be under-
stood as an effective renormalization of the symmetry-
breaking part of the driving wind field perturbation,
quantified by Bτ . This correction crucially affects the ab-
solute value of Aq/Bq, which diverges at Bτ → cot θf ≈
1.2. The numerical values of the coefficients Aτ and Bτ
can be estimated as functions of the dimensionless hy-
drodynamic bed roughness η0. Using for simplicity the
analytical dependencies Aτ (η0) and Bτ (η0) calculated by
Hunt and coworkers [74] (see Fig. 2 of Ref. [19]), the di-
vergence of Aq/Bq is expected near η0 ≈ 1.7× 10−5. We
can match the fit result Lmin/`sat ≈ 35 obtained from
Fig. 5 for η0 ≈ 4.0 · 10−3, which lies in the estimated
range 10−4 to 10−2 [57] for η0 for typical sand dunes
(corresponding to Lmin/`sat ≈ 30 . . . 140).

In summary, we showed that an improved version of
the linear stability analysis proposed by Fourriére et al.
yields a τ0-independent ratio Lmin/`sat if the experimen-
tally and theoretically well established form of the wind-
strength dependent sand flux given by Eq. (F1) with
χ = 0 is employed. Together with the experimentally ob-
served wind dependence of the minimum dune size Lmin
(see Fig. 5), this implicates that the saturation length
`sat ∝ Lmin must strongly decrease with increasing wind
strength. It is argued in the main text that this can
be rationalized by a strong renormalization of the effec-
tive saturation length by intermittent turbulent wind-
strength fluctuations near the threshold rather than by
a rapid decay of Lmin/`sat with increasing τ0 and a con-
stant saturation length, as previously proposed [54, 57].
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