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We present the experimental and numerical studies of a 2D sheared amorphous material consti-
tuted of bidisperse photo-elastic disks. We analyze the statistics of avalanches during shear including
the local and global fluctuations in energy and changes in particle positions and orientations. We
find scale free distributions for these global and local avalanches denoted by power-laws whose cut-
offs vary with inter-particle friction and packing fraction. Different exponents are found for these
power-laws depending on the quantity from which variations are extracted. An asymmetry in time
of the avalanche shapes is evidenced along with the fact that avalanches are mainly triggered from
the shear bands. A simple relation independent from the intensity, is found between the number
of local avalanches and the global avalanches they form. We also compare these experimental and
numerical results for both local and global fluctuations to predictions from meanfield and depinning

theories.

PACS numbers: 81.05.Rm 45.70.Ht 91.30.Px 45.70.-n

I. INTRODUCTION

Yield-stress granular media flow if a sufficient shear
stress is applied to them. Under certain conditions this
flow can be spatially heterogeneous and intermittent in
time. Although such behavior is widely observed in na-
ture during avalanches, landslides and earthquakes, there
are few quantitative experimental measurements of these
intermittent dynamics at the local scale in frictional sys-
tems [1-4]. Because of this, there is currently little under-
standing of the coupling between the evolution of meso-
scale force chain networks and the macroscale mechani-
cal response. This article aims to provide a first step in
achieving this goal.

Many experiments [1, 4, 7, 8, 12-16], numerical simu-
lations [17-21] and models [22, 23] involving systems that
are subject to slow continuous loading, exhibit global in-
termittent dynamics characterized by a slow build-up and
more rapid release of stress in the system. These systems
include disordered molecular solids, metallic glasses, and

* jb@jonathan-bares.eu; Current address: LMGC, UMR 5508
CNRS-University Montpellier, 34095 Montpellier, France

ud

e SJ

shear stress, 7

¢ fixed

?s|F
packing fraction, ¢

shear strain, ~

FIG. 1. (color online) A: Schematic view of the evolution of
the shear stress 7 in a sheared granular system at constant
volume, for slowly loaded stiff grains (z-axis increases to the
left). After a transient regime where the stress grows elasti-
cally, the shear stress fluctuates about the yield stress 7., as
observed in several experiments and simulations [2, 5-8] B:
Shear jamming phase diagram (adapted from [9]) including
jammed (J) [10], unjammed (uJ), fragile (F) [11] and shear-
jammed (SJ) regimes. A frictional granular system slowly
sheared at constant packing fraction ¢ follows the vertical
line with arrows until reaching the yield stress 7., where it
will fluctuate between jammed and unjammed states below
and above 7. The fluctuations above 7.(¢) give rise to inter-
mittent dynamics (see A).

granular materials, among others. A fundamental fea-



ture of dynamics in these systems is that the system re-
mains near the yield stress curve, alternating between
jammed and unjammed states [24, 25]. The yield surface
of granular materials is sensitive to the presence of inter-
grain friction [9], and for a substantial range of the fric-
tion coefficient, v, the yield stress curve forms the upper
boundary of the shear jamming phase diagram sketched
in fig.1. When a frictional granular system at low pres-
sure and shear stress, 7, is sheared at constant volume,
its global pressure, the Reynolds pressure [26] increases.
If the initial state was stress free, force chains appear and
grow in the system [27] during this process; as shown in
fig.1-B, as the shear stress increases, the system transi-
tions from stress-free to fragile (F) and then from frag-
ile to shear-jammed (SJ). When 7, the shear stress in
the system increases above the yield stress, 7.(¢) on the
yield stress curve, the system unjams and 7 falls to a
jammed state with lower shear stress, 7 < 7.. In general,
the shear stress at failure, and the shear stress to which
the system returns following a failure are stochastic vari-
ables. These values of 7 before and after the avalanche
are both random variables, whose means determine the
average yield stress. The yield stress curve, 7.(¢), rep-
resents an appropriate mean representation of the shear
stress at failure for a given ¢. The rapid system evolu-
tion immediately following failure is an ‘avalanche’, and a
macroscopic measure of its strength can be the associated
energy drop. However, the triggering of an avalanche oc-
curs at a micro/mesoscopic scale. For systems that are
close to force balance, due to the divergence of the length
scale in the stress response of a jammed medium when
approaching jamming from above [28], a local failure can
lead to a relatively long-ranged response in the force net-
work, but relatively local changes in grain positions and
orientations.

In frictional granular materials, forces propagate
nonuniformly along filamentary structures called force
chains [29]. The stability of the force chains, hence the
stability of jammed frictional granular materials, can be
understood in terms of the number of contacts per par-
ticle, Z. In the vicinity of the jamming transition, it can
be shown from generalized isostaticity [30] that the num-
ber of contacts per force-bearing particle is 3 (Z ~ 3) in
two dimensions for systems composed of highly frictional
disks. Force chains are not typically straight; instead
there is weak coupling between grains in a given force
chains and neighboring chains. When a segment of force
chain fails, i.e. when contacts between the grains con-
stituting the segment fail, other neighboring force chains
crossing the failed segment, or supported by the segment
can fail as well. Thus, there exists an additional cou-
pling between neighboring regions of the system. In the
case of stress controlled dynamics, a failure in one part of
the system will cause the force exerted by the boundaries
elsewhere to increase, which leads to an additional cou-
pling on a larger scale. As the present experiments and
simulations are strain controlled, this additional bound-
ary related coupling does not occur. However, the strong

coupling of forces along chains, the weak coupling be-
tween chains, and the accompanying anisotropy in the
stress and fabric tensors are key features of granular pack-
ings.

Recently, Regev et al. proposed a mean field model
to capture key features of the avalanche process [5] for a
range of systems exhibiting avalanches. In addition, stud-
ies of sheared amorphous materials commonly use molec-
ular dynamic simulations and mean field theory; results
of these numerical simulations in terms of avalanches of
rearrangements have been contrasted to depinning mod-
els [31-33]. In more conventional amorphous solids, the
microscopic plastic deformation, is thought to come from
local rearrangements of particles involving Shear Trans-
formation Zones (STZ) [34-38]. For these systems, de-
scribed by linear isotropic elasticity, the result of a local
failure is an Eshelby-like elastic field [6, 39]. This mech-
anism, which describes the jamming-unjamming process
as a kind of dynamic attractor, was suggested some time
ago by [11] in the conclusion of their paper invoking Self-
Organized Criticality (SOC) [24, 25, 40]. In these mod-
els, the processes occur around a critical point [41], and
some observables undergo significant fluctuations, lead-
ing to the violence of the avalanche phenomenon and to
power-law statistics.

We emphasize that the physical picture described in
fig.1 is specific to sheared, frictional granular systems. At
the global scale, the material needs to be close to failure,
and only shear provides such a state [11] in the steady
state regime. In the case of frictional granular materials,
‘failure’ can occur either because the system is fragile or
because it is driven across the yield stress surface. These
are fundamentally different processes. Note that here,
‘fragile’ refers to an instability under shear strain rever-
sal and occurs in the region marked ‘F’ in fig.1B. In this
regime, if the direction of the shear strain is reversed
at constant volume fraction ¢ from a direction that has
established a weak network of force chains, all stresses,
including the shear stress, drop substantially, possibly to
zero, before a new network is established, and the stresses
once again increase. This type of failure corresponds to
a switch from a largest principal stress, o1, in one direc-
tion to a major principal stress oy, in a direction that
is (nominally) orthogonal to the first. By contrast, fail-
ure at the yield surface occurs via a reduction in stresses
that does not reverse the major principal stress direc-
tion. In both of these cases, the density/packing fraction
typically remains fixed. By contrast, in the compression
case, ¢ increases; 7 is not controlled, but compression
tends to make the material more isotropic, and it is pos-
sible that 7 = 01 — 02 may decrease, fig.1-B. The loading
rate, which is constant and slow enough to be in the qua-
sistatic regime for the present studies, is an important
physical parameter; however, the effect of finite loading
rate is outside the scope of the present study and will be
the object of future studies.

Since our grains are frictional, the jamming diagram
(fig.1-B) presents a region of volume fraction below the



isotropic jamming packing fraction for frictionless parti-
cles (volume fraction ¢ < ¢;), in which states ranging
from stress-free to fragile, robustly shear jammed and
flowing co-exist at the same time. The statistical behav-
ior of the system differs depending on the driving along
the shear stress direction in this phase diagram. Indeed,
in stress-controlled protocols, the system can be loaded
at constant stress above the yield stress (i) or with con-
tinuously increasing stress (i7); the system will not dis-
play a continuous avalanching regime in either of these
cases. In case (i), the system becomes stuck after a tran-
sient regime (7 < 7.) or never stops (7. < 7) and flows
indefinitely. In case (i), the system moves outside the
jammed regime after a transient regime, and flows in-
definitely. In strain-controlled experiments (7i7), the sta-
tistical behaviour of the system reaches steady-state be-
havior after a transient regime; during this steady-state,
the system oscillates around the yield stress curve. Al-
though the dynamics of both regimes (i) and (i¢) involve
strong fluctuations, their statistics differ from those in-
duced by (ii%) where for (iii), the fluctuation dynamics
remain unchanged as long as the strain is increased.

To understand, predict and potentially control the oc-
currence of avalanches, it is important to detect and track
the physical mechanisms from the smallest scale, a parti-
cle size, where localized triggering occurs, to the system
scale, where the effect of the avalanche is often detected.
Hence, in this article we present experiments and numer-
ical simulations where the full range of scales are studied.
In both cases, we consider 2D granular materials consist-
ing of bidisperse disks that are quasistatically sheared at
constant volume fraction ¢. In particular, we track the
energy and pressure stored in the system, as well as the
particle-scale properties, including particle positions and
rotations. We also present novel methods to measure the
intensity and position of local and global avalanches. We
then use these methods to determine statistical measures
of avalanches and the inter-dependency of global and lo-
cal events.

II. METHODS
A. Experimental setup

A typical experiment involves cyclically shearing a set
of bidisperse 2D circular particles in a pure shear ap-
paratus. Particles are photoelastic disks of thickness
6.35 mm and diameters 12.7 and 15.9 mm (diameter ra-
tio d &~ 1.25) made of Vishay PSM-4, as shown in fig.3.
We use a bidisperse mixture to avoid crystallization, and
the ratio between the number of small to large particles
is kept constant at 3.3 : 1 for all experiments. One set
of particles is wrapped with Teflon® tape to reduce the
friction coefficient between particles (see fig.3-D). The
static friction coefficient is ¥ = 0.7 and 0.2 for unwrapped
(bare) and wrapped particles, respectively. In order to
track rotations, each particle is marked along its diameter

with UV ink.

These particles rest on a transparent Plexiglas® plate
slightly covered with talc to reduce the basal friction.
The experiment is illuminated from below by a circularly
polarized uniform white light and from above by a less
intense UV light source. An 18 megapixel SLR camera
is placed 2 m above the particles and can record pictures
with and without the circular polarizer (see fig.2-B). Af-
ter each pure shear step, the system is imaged without
the top polarizer (fig.3-A), with crossed polarizers (fig.3-
B) and with the white light off and UV light on (fig.3-C).
Experiments have been carried out for different packing
fractions, for different shear amplitudes and for particles
with different static friction coefficients as summarized
in Table I.

Pure shear strain (see geometry in fig.2-A) is applied
to the particle systems in small quasi-static steps, using
the biaxial device shown in fig.2-B. As showed in fig.2-A,
the boundaries of the cell compress the system in one di-
rection and expand it in the other, keeping the area con-
stant. Before each experiment, we prepare a stress-free
packing of a given density by gently rearranging the par-
ticles. The initial boundary configuration is a 44 x40 cm?
initial rectangle. During each experiment, this boundary
spacing is shrunk by 1 mm (0.25% strain) steps in the y-
direction and expended in the z-direction to a 55x32 cm?
rectangle to reach a 20% shear amplitude (less for some
high density experiments), while keeping the overall area
constant. The directions of compression and dilation are
then reversed back to the initial boundary configuration.
For each experiment, such a back and forth cycle is re-
peated 50 times. During each step, (i) the boundary walls
move for 2s, (ii) the system is allowed to relax and (iii)
the imaging process is carried out which last for ~ 10s
in total. The loading is slow enough to be considered as
quasistatic.

experiment| [ 11 | III | 1V \%
particles | bare | bare | bare | bare |wrapped
packing
fraction [0.785|0.790 {0.799(0.805| 0.808
¢
shear 1 o004 [17.5% | 10% |7.5% | 20%
amplitude

TABLE I. Input parameters of the experiments. Particles can
be bare or wrapped with Teflon® tape to change their static
friction coefficient. The total number of particles is changed
to vary the system density but the number ratio between small
and large particles stays the same. The maximum shear am-
plitude is chosen so that the pressure inside the system is low
enough for it not to buckle.

B. Image post-processing

As shown in fig.3-A, without the top crossed polarizer,
the color of the particles differs from the background (yel-
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FIG. 2. (color online) A: From the top to bottom, evolution
of the dimension of the pure shear cell during one cycle. An
initial 44 x 40 cm? rectangle is progressively shrunk in one di-
rection and expanded in the other one to form a 55 x 32 cm?
rectangle (green/dark rectangles) and the motion is then re-
versed (red/clear rectangles) to achieving a 20% shear am-
plitude. B: 3D schematic of the biaxial experimental cell.
Moving walls shear, step by step, a set of bidisperse photo-
elastic particles with a UV-ink bar on them. At each step the
system is imaged with white light, between crossed polarizers
and with UV light.

lowish). Using this property, the unpolarized pictures
are converted to a binary representation (black for the
particles and white for the background) with an adap-
tive threshold algorithm and convolved with a disk of
the size of the particles for both particle diameters. The
maximum of the convolutions for each diameter gives the
particle position. From the cross-polarized pictures, we
measure the pressure of each particle, using an empirical
approach introduced in [1]. If a quasi-2D photo-elastic
object is observed between crossed polarizers, then for a
given wavelength, the fraction of the light going through
a portion of the material subjected to a local shear stress
T = 01 — 02 has intensity:

I~ﬁ§(W§T@1—0g), (1)

where o1 and o9 are principal stresses, C' is the material
stress optic coefficient, T is the object thickness (here
6.35mm) and \ is the wavelength of the light (~ 510nm
for the green filter we use). To obtain information on
grain pressure, we use the fact that the contact forces
acting on a grain create stresses inside the grain, which
changes the phase variable, 7CT (01 — 02)/], inside the
sine function of eq.-1. Where the phase variable is an
integer multiple of 7, the corresponding transmitted im-
age region is dark, and where the phase is an odd mul-
tiple of 7/2 it is bright. In a photo-elastic image of
a grain, increasing applied contact forces increases the
stresses (both pressure and shear stress) within the grain,
and leads to an increasing density of light and dark
fringes. Since the pressure is a reflection of the mean
normal forces on a particle, hence the internal stress, it
is straight forward to calibrate a measure of the fringe

4

density against the pressure, P [1, 15, 27, 42]. To quan-
tify the fringe density we measure the squared gradient
of the photoelastic image intensity, G2, integrated over a
particle. This quantity provides an empirical connection
to the local pressure acting on the grain. Since the ma-
terial is purely elastic, the energy e stored in the particle
is proportional to P? or G*.

|

FIG. 3. (color online) Top view of the granular system in
transmitted white light (A), between crossed polarisers (B)
and in UV light (C). D: From left to right small and large
Teflon® wrapped particles and small and large bare particles.

The orientation of each particle is also measured us-
ing UV light imaging (fig.3-C) after each strain step. A
Hough transform is performed locally on the binarized
UV image of each grain to detect the fluorescent bar. An
angle 6 between 0 and 7 is then attributed to each grain
for each step and a variation is deduced:

Ab; = 0i(7) — 6i(y + A7) (2)

C. Numerical simulations

We also carry out corresponding Discrete Element
Modeling (DEM) simulations. We employ a contact force
model first developed by Cundal and Strack to describe
the mechanical behavior of disks [43], and more recently
revised by Silbert et al. [44]. Here, we perform these
numerical simulations using the DEM code LIGGGHTS
initially developed by [45]. In the Hertz-Mindlin contact
model, the grain-grain and grain-wall interactions are
modeled using a spring-dashpot description. The contact
forces, both normal and tangential, are represented by
a purely repulsive Hertzian spring model with velocity-
dependent damping. To maintain close contact with the
experiments, we use a bidisperse mixture of disks with di-
ameter 13 and 16 mm (diameter ratio d = 1.23). We vary
the packing fraction by adjusting the number of disks in
the simulation cell, and the particles are loaded in the
same geometry as the one described in fig.2. Normal and
tangential forces acting on a given particle i from a par-
ticle j are given by:



Fi: = k,ong — y vy (3)
FZ— = ktdtij — ’}/tVIfj (4)

where k, and k; are the stiffnesses for the normal and
tangential springs, v,, and ; are the viscoelastic damping
constants for normal and tangential contacts, dn;; and
0t;; are the normal and tangential displacement vectors
between particles ¢ and j, and v, and v!. are the relative
normal and tangential velocities between particles ¢ and
4. To mimic the basal friction present in the experiments,
the particles are also subjected to viscous fluid damping
in the plane of motion.

The grain properties are set to closely match the exper-
imental values. We use a Young’s modulus £ = 4 MPa, a
Poisson’s ratio u = 0.49, a density p = 2500kg.nf3 and a
coeflicient of restitution ¢, = 0.3, close to the experimen-
tal material. We vary the friction coefficient common
to grain-grain and grain-wall contact interactions v, as
well as the packing fraction ¢ by changing the number
of particles for a given load cell geometry. All of these
conditions are summarized in Table II. In order to imple-
ment Coulomb static friction, we truncate the tangential
displacement to fulfill the Coulomb sliding condition at
each contact:

Appendix A details the relationship between materials
properties and the elastic and viscoelastic damping con-
stants used in the simulations.

We obtain stress-free initial configurations at each vol-
ume fraction by isotropically growing particles randomly
seeded in the load cell at very low density. After each
growth step, we minimize the total potential energy us-
ing molecular dynamics with viscous damping. We then
load the cell at a constant shear rate 4 = 10~° which is
in the quasistatic limit.

ITT. AVALANCHE DETECTION
A. Measurement of global avalanches

From the sum of the particle energies e;, we compute
the evolution of the global energy E = > e; stored in the

J

granular system (see fig.4-A). As expected from fig.1-A,
we observe fluctuations of the signal due to two different
features: very large fluctuations following reversal of the
shear direction, but also large spontaneous fluctuations
(i.e. avalanches) due to rearrangement of the grains in-
side the system.

We detect avalanches, measure their size and loca-
tion, and analyze their energy drops using conventional
pinning-depinning model approaches [46]. As shown in
fig.4-A, we compute the negative derivative of the energy

. . static friction coefficient | packing fraction
simulation L P
1 0.7 0.780
2 0.7 0.784
3 0.7 0.788
4 0.7 0.792
5 0.7 0.796
6 0.7 0.800
7 0.7 0.805
8 0 0.788
9 0.1 0.788
10 0.2 0.788
11 0.3 0.788
12 0.4 0.788
13 0.5 0.788
14 0.6 0.788
15 0.8 0.788
16 0.9 0.788
17 1 0.788

TABLE II. Input parameters of the numerical simulations.
The static friction coefficient between particles is varied from
perfectly slippery (v = 0) to highly frictional (v = 1). For
each static friction coefficient that was near an experimental
values, the total number of particles was changed to vary the
system density but the ratio between small and large particles
stayed the same.
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FIG. 4. (color online) A: The plain blue/dark line is the
global energy &£ stored in the granular media measured exper-
imentally as the sum of G* over the particles. The red/clear
dashed line is the power P dissipated in the system computed
as minus the negative part of the derivative of the energy
with respect to strain. Both quantities are plotted as a func-
tion of the shear step. Each gray shaded box marks shearing
in one direction (shearing is reversed periodically). B: Car-
toon of the threshold power (energy released per strain unit)
‘P signal to extract global avalanches. For each i avalanche
we measure the beginning strain (Sp,;), ending strain (S,),
duration (D;) and accumulated dissipated energy (E;).

with respect to strain (P = —d€/dy), and consider only
the positive part — corresponding to the released energy.
Then, as in fig.4-B, we choose a threshold P, and con-
sider all peaks above this threshold as avalanches. For
each peak ¢, the strain S, when the signal crosses the
threshold going up is considered as the beginning of the
avalanche, while the end corresponds to the signal cross-
ing the threshold going down, S.,. The strain difference
between those two events is the ‘duration’ D; = Se, — S,
(in units of strain rather than time). The ‘size’ (in en-
ergy) of the avalanche or energy drop E; is given by the



area under the peak and above the threshold value as
presented in fig.4-B. We do not consider events that are
caused by the periodic reversal of the shear direction,
since these are not spontaneous events. We note that
avalanches are detected using the power (energy released
by strain unit) instead of the pressure derivative. Char-
acterizing avalanches in terms of an extensive quantity
(energy, area...) is better than measuring it in terms an
intensive one (pressure, force...) because the former does
not intrinsically depend on any other quantity in the sys-
tem such as area of contact, material, stiffness...

B. Measurement of the local avalanches

Avalanches at the global scale are created by rear-
rangements of the grains and the granular force network
triggered by structural evolution at the local scale. Here,
we define and detect those rearrangements which we call
‘local avalanches’. As in fig.5-A,B and fig.6-B, when the
global energy varies strongly, particles in localized clus-
ters undergo strong rotations, displacements and/or en-
ergy/pressure variations respectively. These dynamical
heterogeneities are reminiscent of the ones already ob-
served in [47] and [17] respectively. Here, we isolate these
sharp variations both in space and strain, and quantify
their ‘size’ and ‘duration’.

A
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FIG. 5. (color online) A: Absolute value of the particle rota-
tion A6 measured from step jo to jo+ 1 in experiment I. The
clusters of large rotation corresponds to local grain rearrange-
ments. B: Non-affine displacement of grains between step jo
and jo+1 (motion due to the boundary is removed). Particles
positions after removing the affine displacements, interpolated
from the boundary motion. The direction of non-affine mo-
tion is indicted by arrows and the magnitude of non-affine
motion is indicated by the color scale.

Local avalanches can be extracted from the pres-
sure/energy fields (fig.6-A and B), the rotation field
(fig.5-A) and the displacement field (fig.5-B). In this last
case, we only consider the non-affine displacement, which
is measured as the displacement corrected by the affine
displacement imposed by the pure shear motion of the
boundaries. For each of those quantities, at each shear
step, we consider the particles with a value (energy drop
for instance) higher than a certain threshold. In the

schematic of fig.6-C for example, 6 particles are involved
in a local avalanche at step j, whereas no particles are
involved in an avalanche at step j — 2 (no significant re-
arrangement). Then, for each step we identify these par-
ticles as part of a single cluster if they are all in mutual
contact. In fig.6-C at step j, we identify 2 clusters. One
is formed by the red (disk), pink (triangle), blue (pen-
tagon), black (bar), and grey (square) particles and the
other includes only the cyan (cross) particle. Finally, for
the previous and successive steps, j —1 and j+ 1, we look
for clusters such that at least one particle belongs to a
cluster detected at step j. If we identify one, we connect
these clusters in time to form an avalanche with duration
D; as in fig.6-D at step jo for the energy drop. In fig.6-C,
an avalanche formed from the red (disk), pink (triangle),
blue (pentagon), black (bar), grey (square) and brown
(star) particles is created at step j — 1 and ends at step
j+1

oS

energy variation, Ae

local avalanches O

j+1 g+2

J=2 j-1 3

FIG. 6. (color online) A: Energy (G*, arbitrary units) stored
in each particle before (step jo) and after (step jo + 1) an
avalanche for experiment I. Step jo corresponds with fig.5.
We notice that some force chains break. B: Variation of the
energy from step jo+1 to jo. Blue/dark particles are unloaded
(lose energy) whereas red/clear are loaded (gain energy). C:
Schematic of the evolution of particle undergoing a strong
energy drop after a shear step. Colors/signs stand for the
same particles from step to step. D: Grains involved in an
avalanche at shear strain step jo. Same colors stand for same
avalanches. We see that local avalanches detected with energy
follow the force chain structure. (see text for details)

As for global avalanches, for each local avalanche i de-
tected with this method, we define:

e The strain at the beginning S5,: the step where the
first particle involved in the avalanche crosses the
threshold.

e The strain at the end Se,: for the next step af-
ter that, the last particle involved in the avalanche
crosses the threshold for the last time.



e The ‘duration’ D;: the difference between the end-
ing and beginning strain (D; = S, — Sp,)

e The position (X;,Y;): the center of mass of all the
particles involved in the avalanche, weighted by the
number of times they are above the threshold.

e The intensity: the number of particles involved in
the avalanche N; (6 in the example of fig.6-C) or
as the total energy/pressure drop/change, rotation
or displacement FE;, summed over all the steps and
all the particles of the avalanche.

As explained for global avalanches, the best way to de-
fine an avalanche is to use the energy drop, rotation or
displacement because they are extensive quantities so the
measurement does not depend on any other quantity in
the system. In the rest of this paper, we will mainly use
the energy drop as the fluctuating quantity that defines
the avalanche.

IV. RESULTS
A. Global avalanches

The probability density function (PDF) of the
avalanche size is a standard tool used for analysing the
dynamics of a system displaying crackling behaviour. For
a typical experiment and simulation, we plot in fig.7-A
the energy, F, extracted from the global power signal, P,
for both experiment I (see Table I) and numerical simu-
lation 2 (see Table II). We note that in the rest of this
paper, we will use Arabic numbering for simulations and
Roman numbering for experiments. We find that these
PDFs follow a power-law with exponent f:

P(E) ~ EP (6)

The value of the exponent measured in the experimen-
tal case is f = —1.24 + 0.11 while the simulations yield
B = —1.43 £ 0.14. We note that in the rest of this pa-
per, quantities with a bar are from simulations and ones
without a bar are from experiments. Although these ex-
ponents are somewhat different, they agree within the
95% error bars. In the experimental case, we also ex-
plored the effect of the avalanche detection threshold Py,
on the statistics; no effect on the exponent or the upper
cut-off of the PDF was observed. This threshold only af-
fects the lower cut-off because small avalanches are below
the threshold and are not detected for high Py, values.
Hence, to compare the statistical behavior of different
systems, it is important to keep this parameter constant
and low enough to avoid missing small events.

When an avalanche is triggered, not only the energy
FE released by the system is relevant to characterize the
avalanche behavior, but also £4¢p, the total energy stored
in the system. Fig.7-B shows the PDF of £4¢;, for experi-
ment [ at strain S, when an avalanche is triggered. This

energy is sometimes called the depinning energy, and in
the framework of the pinning-depinning theory, several
models predict Gaussian statistics [48-51]. In our case,
unlike these models, we observe a power-law distribu-
tion, and the measured experimental exponent is close
to 1: v = —1.08 £0.1. As the detection threshold, P;,
increases at fixed upper cut-off, the distribution tends
to a Gaussian distribution. This suggests that only large
avalanches statistics can be described within the pinning-
depinning framework. Moreover, the fact that only the
lower cut-off is changed by the threshold value means
that unlike other different crackling systems [52], by in-
creasing Py, large avalanches do not break up into smaller
ones and just more small avalanches will be excluded.
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FIG. 7. (color online) A: Probability density function of the
energy of global avalanches P(FE) for different threshold val-
ues Pty (color from blue to brown) for experiment I and with
a low threshold value (P, = 10) for simulation 2 (black).
For experimental data, the statistics follow a power-law over
3 decades with exponent § = —1.24 4+ 0.11. For simula-
tions, a power-law is also observed over 2.5 decades with
B = —1.43 £ 0.14. B: Probability density function of the
energy stored in the system (£) when an avalanche is trig-
gered (Egep, depinning energy) for different threshold values
for experiment 1.

We also determine the average temporal avalanche
shape for experiments I of Table I. The avalanche
shape provides a wuseful characterization of the
avalanche/crackling dynamics and has been measured
in a variety of systems [52-57]. We adopt the stan-
dard procedure. First, we identify all avalanches i of
a given duration D;; and second, we average the shape
P(S €[Sy, Se,])/ max(P(S € [S;,Se;])) vs. S/D; over
all avalanches, 7. Fig.8-A shows the resulting shape and
its dependence on duration D. For short avalanches



(small D), the average shape is symmetric, but for longer
avalanches (large D), it evolves toward a maximum en-
ergy loss near the beginning of the avalanche, followed
by a slower rate of energy loss.

Fig.8-B shows the energy E released during one
avalanche vs. the average coordination number Z at the
beginning of this avalanche. The correlation between
both quantities is 41% so, no correlation can be drawn be-
tween F and Z which means avalanches happen equally
in the fragile (Z < 3) and jammed regime (Z > 3). Nev-
ertheless, we observe an asymmetry between high energy-
low coordination and low energy-high coordination:

Z > 0.18 - logyo(E) + 1.9 (7)

This relation implies that smaller avalanches occur at
lower Z, corresponding to the fragile regime or the begin-
ning of the jammed regime. Larger avalanches, including
ones that are nearly system spanning, occur at or above
the jammed region. This means that the coordination
number has a particularly strong effect on the upper cut-
off of the avalanche energy PDF, and a weaker effect on
the lower cut-off.
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FIG. 8. (color online) A: Average ‘shape’ of the global

avalanches measured for different avalanche duration. Al-
though avalanches are symmetric for short duration, they be-
come progressively clearly asymmetric: a strong ‘acceleration’
at the beginning and then a slow ‘deceleration’. B: Average
coordination number Z when an avalanche begins as a func-
tion of the energy E of the avalanche. Avalanches happen
equally in the shear and fragile regime, at both low and high
coordination numbers. Both figures are plotted with data
from experiment 1.

In the results below, we probe packing fractions span-
ning 0.785 < ¢ < 0.808, where throughout all experi-
ments and simulations we keep the ratio of small to large
particles constant. These packing fractions are below the
frictionless isotropic jamming point ¢ < ¢, but necessar-
ily larger than the lower limit of shear jamming, ¢ > ¢s.
We present P(FE) for each density in fig.9-A. We note
that in the experiment, the maximum shear amplitude
is adjusted to avoid out-of-plane buckling of the particle
layer. We do not see any significant effect of ¢ on P(E),
which means that if the maximum total stored energy
Emaz 18 higher for higher ¢, it does not change the value

of the largest avalanches. As presented in fig.9-B, we ar-
rive at the same conclusion for the simulations, where we
consider ¢’s spanning 0.780 < ¢ < 0.805; the packing
fraction does not change the avalanche energy distribu-
tion.

We next consider the effect of varying the particle fric-
tion coefficient. We carried out two sets of experiments,
one with friction coefficient ¥ = 0.7 and the other with
v = 0.2. As presented in fig.9-A, there is no noticeable
difference in P(FE) for the different v’s. In the numeri-
cal simulations, we varied v over a broader range: from
v = 0 (no friction) to v = 1. The overall scale of the
PDFs, as measured by P(E) vary with the friction coef-
ficient v, while the overall shape and power-law exponent
are insensitive to changes in v. In fig.9-B, we show that
the upper cut-off of the energy distribution power-law
increases with v for the simulations. This is explained
by the fact that the Reynolds pressure increases more
slowly with shear strain for low friction than for high
friction, since grain scale particle rearrangements occur
more easily for lower v. To quantify this effect, P(E)
in fig.9-C is rescaled using the method presented in [58].
For simulations with different friction coefficients, energy
PDFs collapse on a single power-law with an exponent
B = —1.43 and an upper cut-off of a given shape. Ac-

cording to [58], the cut-off E scales with <E>1/(ﬂ72). As

presented in the inset of fig.9-C, this quantity exhibits a
sharp increase with increasing v, and the functional form
is neither an exponential function nor a power-law.

B. Local avalanches

For a typical experiment, we investigate the effect of
the different measures for avalanches at the local scale on
the statistical behavior of the system. For each loading
step, a grain is considered to be involved in an avalanche
if one of the following criteria is satisfied:

e Rotation from one step to another is larger than
8°;

e Non-affine displacement from one step to another
is larger than 1.2 mm ;

e Energy drop or rise is larger than 60 (G*);
e Pressure drop or rise is larger than 3 (G?).

These thresholds have the same effect on the statistics of
the local avalanches as the energy threshold has on the
statistics of the global avalanches, namely, it shifts the
lower cutoff. Hence, we have chosen these threshold val-
ues so that the power-laws display the maximum number
of decades. We then determined avalanche sizes in terms
of N, the number of grains involved in the avalanches de-
termined by the different physical quantities (i.e. angle,
displacement, energy and pressure). The PDFs P(N),
presented in fig.10-A, display power-laws over two to
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FIG. 9. (color online) A,B: Probability density function of the
energy of global avalanches P(E) measured in experiments
and numerical simulations respectively. The particle packing
fraction ¢ and the static friction coefficient between particles v
is varied over the different experiments and simulations. P(F)
follows a power-law with a constant exponent § = —1.2440.11
for experimental data and § = —1.4340.14 for the numerical
simulations. ¢ has no effect on the statistics while the upper
cut-offs of the power-laws decrease with the friction coefficient
v. In order to characterize the effect of the friction, P(E) is
rescaled using the method described in [58] (C) to collapse
curves for different friction and upper cut-off. C-inset: Scaling
of the upper cut-off plotted as a function of v.

three decades, with exponents that depend on the physi-
cal quantity used to define the avalanche. Measurements
of particle rotation or pressure rise lead to similar PDFs
with exponents —3.2440.16 and —3.2940.15 respectively.
PDFs based on pressure and energy drops are also power-
laws, but with exponents —2.30 +0.13 and —2.26 +0.10
respectively. For avalanches based on energy increases,
we find a power-law with exponent —2.70 + 0.11, which
differs from all other exponents measured. Finally, the
exponent based on the displacement (—1.89+0.12) is the
same, within error bars, of the exponent based on energy
drops (8; = —2.05 £ 0.09).

We also measured similar distributions in the simula-
tions, but focused on avalanches defined by energy drops
(threshold 4 - 10~° P?), rotation (threshold 8°) and dis-
placement (threshold 0.5mm). Fig.10-B shows that as
in the experimental study, the power-law exponents de-
pend on the quantities that are used to define them.
Avalanches for displacements and rotations of particles
display a power-law with exponents 1.82£0.10 and 2.32+
0.17 respectively. For displacements, the simulations and
experiments yield similar exponents. For avalanches de-
termined from energy drops, the exponent is —2.704+0.13
if the avalanche size is given in terms of number of par-
ticles, while the exponent is Bl = —2.08 £ 0.1, similar

to the value obtained in experiments. For the remainder
of this paper, we will consider avalanches based on en-
ergy drops. In Table III we summarize all the exponents
measure from local avalanches.
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FIG. 10. (color online) A: Probability density functions P(N)
of the avalanche sizes measured at the local scale in terms of
number of particles involved in each avalanche for experiment
I. Avalanches are detected using a threshold on rotation,
displacement and pressure/energy drop/increase. Power-laws
are found with exponents varying from —2 to —3 (see text
for details). B: Probability density functions P(N) of the
avalanche sizes measured in terms of number of particles in-
volved in each avalanche for simulation 2. Avalanches are
detected using a threshold on rotation, displacement and en-
ergy drop. Power-laws are found with exponents varying from
—1.8 to —2.5. In all cases the probability density function of
the avalanche energies P(FE) detected from the energy drop
is also plotted for comparison. A power-law spanned over al-
most 3 decades is observed with exponent 5; = —2.05 + 0.09
for experiment and El = —2.08+0.1 for numerical simulation.

As shown in fig.5 and 6, avalanches based on local
particle rotation, local displacement, or local pressure
drop tend to be clustered in space and time. Thus,
avalanches in local particle rotation, displacement, and
pressure drop represent similar types of rearrangements.
However, this tends not to be the case for small rear-
rangements where few particles move or rotate. Fig.11
shows data for all avalanches based on particle rotation
involving a given number of grains. For these avalanches,
we determine the ratio of avalanches that are also asso-
ciated with an avalanche based on the displacement or
energy drop. ‘Associated’ means that among the grains
involved in the rotation avalanche, there is at least one



10

TABLE III. Exponents of the probability density functions of
avalanche sizes measured at the local scale in terms of number
of particles involved in avalanche and total variation of the
field considered to detect the avalanche, for experiment I and
numerical simulations 2.
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ratio of triggered avalanches (%)

FIG. 11. (color online) For experiment I, we plot the ratio of
the number of avalanches based on the rotation to the num-
ber of avalanches based on the displacement (or energy drop)
provided the avalanches have an overlap in space and time.
(more details in the text).

which is also involved in a simultaneously occurring dis-
placement or energy drop avalanche. Fig.11 shows that
most of the small avalanches in rotation are indepen-
dent of any other kind of rearrangement. However, the
biggest avalanches involve rearrangement in rotation, dis-
placement and stored energy for the particles involved.
Avalanches involving more than 20 grains are always de-
tected based on both rotation and displacement, but not
necessarily on the variation of the energy. This is mostly
due to the fact that rearrangements of particles involving
translation and rotation need not involve strong contacts
with other grains.

As for global avalanches, we now investigate the ef-
fects of the packing fraction, ¢, and of the inter-particle
friction coefficient, v, on local avalanche energy PDFs.
Fig.12-A shows experimental results for different ¢ and
for particles that were/were-not wrapped with Teflon®
tape. As for global avalanches, the PDF's follow power-
laws and the exponents are unaffected by the variations
in the packing fraction and friction coefficient. Only the
upper cut-offs change with ¢ or v. Simulations, shown
in fig.12-B, have similar power-law exponents as the ex-
periments, but the upper cut-off £y depends on ¢ and
v. Fig.12-C and D shows the upper cut-off determined
using the scaling explained in [59]. This upper cut-off
increases with both v and ¢ and obeys an exponential

Exponents experiments simulations form:
measured measured by measured measured by measured :
" field intensity | by number | field intensity | by number
from field: C . L X
variation of particles variation of particles
displacement | —1.80 £0.05 |—1.80 £0.12| —1.63E£1.2 |—1.82 £0.10 <E2>
rotation —2.214+0.11 |-3.24+£0.16] —1.62+0.09 |—2.32+0.17 Jo o o(8.34£1.2)-0+(232.1£17) ¢ (8)
energy drop | —2.05+£0.09 |—2.26 +0.10| —2.08 £0.1 |—2.70+0.13 0 — 9 E €
energy rise —2.354+0.14 |—2.70 £ 0.11 < >
pressure drop| —2.22 +0.15 [—2.30 £ 0.13
pressure rise | —2.15 £0.17 [—3.29 £ 0.15
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FIG. 12. (color online): Probability density function of the
avalanche energy P(FE) detected from the energy drop for dif-
ferent packing fractions ¢ and particle friction coefficients v in
experiments (A) and simulations (B). Within the error bars,
power-laws with similar exponents are observed. In C and D,
we show the variation of the power-law upper cutoff Ey as a
function of the inter-particle friction v at ¢ = 0.788 and as a
function of the packing fraction ¢ at v = 0.7.

We now consider local avalanche statistics as a func-
tion of Z. For each avalanche of size F;, a coordination
value Z; is attributed by measuring the average contact
number per grain for the whole packing at the beginning
strain Sy, of the avalanche: Z; = Z(S;,). Fig 13-A, which
gives energy PDFs for different Z shows that the range
of Z has no effect on the power-law exponent for the dis-
tribution of energy drops. Nevertheless, it clearly has an
effect on the upper cut-off Ey, which increases with the
coordination number, as shown in the inset of Fig.13-A.
Higher particle coordination corresponds to higher pres-
sure and larger variations in energy and other quantities.
We also note that higher Ey corresponds to values of Z
such that Z > d + 1 with d = 2 the system dimension.
This means that when the system is jammed, the upper
energy cut-off is distinctly larger.

To quantify the link between local and global
avalanches, and to understand how local avalanches in-
duce global ones, we show in fig.13-B the PDF of the
number of local avalanches included in a global avalanche.
For each global avalanche of experiment I whose en-
ergy E is in a given range, we count the number of
local avalanches between the beginning and end of the
global avalanche. The PDF of this number of local
avalanches contained in a global avalanche is shown in
Fig.13-B over a range of avalanche energies. The aver-
age value of local avalanches per global avalanche, ~ 15,



is surprisingly independent of the energy range of the
global avalanche. Hence, whatever the size of a global
avalanche, on average, it is composed of the same num-
ber of local avalanches.
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FIG. 13. (color online) A: For experiment I, probability den-
sity function of the avalanche energy, P(FE), detected from the
energy drop for different coordination numbers Z. A-inset:
Evolution of the energy upper cut-off Ey as a function of the
coordination number Z. A sharp increase of Ey is observed
near Z = 3, which is the minimal number of contacts for
large-scale mechanical stability. B: For experiment I, proba-
bility density function of the number of local avalanches de-
tected during a global avalanche for different ranges of global
avalanche energy, E.

Finally, we consider the location and shape of the local
avalanches. To determine whether avalanches occur ho-
mogeneously throughout the whole system, we compute
their non-affine position, defined as their actual position
from which is substracted the associated affine displace-
ment, and determine the number of avalanches per unit
area per shear cycle. The map of this quantity is shown
in fig.14-A and B for experiment I and simulation 2 re-
spectively. For better accuracy of the avalanche position,
we consider only avalanches detected by thresholding the
local displacement. In both experiments and simulations,
the highest density occurs along diagonals which corre-
spond to shear bands. This means that avalanches are
mainly triggered in this area which corresponds to highly
turbulent granular flow. Also, in the experimental case,
we observe an abundance of avalanches triggered near
the edges of the experimental cell. We believe this is
due to the small loading imperfections caused by the gap
between boundary walls and basal plates and between
crossing boundary walls.

Fig.14-C and D shows the average 3D shape of the
avalanches computed for avalanches detected by en-
ergy drop in experiment I and simulation 2. For each
avalanche involving 8 to 10 grains which corresponds to
the average avalanche size), the shape of the avalanche
matches the local density variations of the grains. This
is obtained by considering only particles involved in a
given avalanche, choosing an origin at the barycentre of
the avalanches (z-y directions are kept the same as the
ones given in fig.II-B) and by computing the local density
field. This field, which we refer to as ‘shape’, is then av-
eraged over several avalanches, where the origin for each
shape is its center of mass. Fig.14-C and D show the

number of local avalanches per global B
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result in both experiments and simulations. The average
shape is not isotropic, and avalanches are preferentially
aligned along the instantaneous compressive shear direc-
tion, which in turn corresponds to the strong force chain
direction.

avalanche per cm
g 1 gy 0.4
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avalanche shape

FIG. 14. (color online) A, B: Number of local avalanches
detected with particle displacement per unit area per cycle
for experiment I and simulation 2 respectively. C, D: Average
local avalanche shape, for avalanches detected with the energy
drop with size N between 8 and 10 particles for experiment
I and simulation 2 respectively. See text for more details.

V. DISCUSSION AND CONCLUSIONS

We have observed scale free distributions for global
avalanches based on the power dissipated in both experi-
ments and related simulations. The power-law exponents
from these two different approaches agree within statis-
tical errors. We find an exponent associated with energy
release per avalanche of 5 = —1.2440.11 for experiments
and 8 = —1.43+0.14 for simulations. These are in agree-
ment with the 1.36/1.34 theoretical results reported by
[23, 60] and the 1.25 numerical results reported by [61] for
sheared soft particles. It is also very close to the 1.25 ex-
ponent reported for [46, 62]. However they are somewhat
smaller than the 1.5 exponent computed for [22]’s discrete
model or the ~ 1.5 exponent measured experimentally by
[2] for sheared foam and by [63] for 2D granular material.
We note that the simulations of [22] carried out with an
elasto-plastic cellular automaton model including an Es-
helby stress redistribution kernel, do not include some of
the distinguishing physical processes present in our ex-
periment. Perhaps most importantly, static friction and
force chains are not part of this model but are key fea-
tures of our system. The studies in [2] consider highly
deformable particles with a very low friction coefficient,
which may be a key difference from our system. Finally,
the exponent reported in [63] has a rather large errorbar,



and it may be consistent with our results, even if the
loading mechanism is different. In contrast to [22], the
discrete dislocation model of [64] predicts an exponent
of 1. However, this model also does not include effects
associated with friction or force chains, and the system
is stress controlled.

We find a power-law distribution for the depinning
energy that differs from what is observed in pinning-
depinning models. A possible cause for this difference
may lie in the fact that in the granular case, the quenched
disorder in the system changes after each avalanche.
Other possible causes may be the inherent anisotropy
and qualitatively different elastic response preceding an
avalanche. Hence, the granular case may differ at a
very basic level from the ingredients of models that have
been constructed for other types of amorphous materials
[5, 22, 23, 65, 66]. As a consequence, the plasticity for
dense granular systems appear to differ qualitatively and
quantitatively from the behavior of pinning-depinning
model [64].

We find that the temporal avalanche shape can dif-
fer significantly from numerical models [18, 22] and re-
cent experimental report [16], with a clear asymmetry of
the shape for long lasting avalanches. We believe this is
mainly due to the fact that, in our system, the basal static
friction — between the particles and the supporting glass —
induces a large viscosity in the particle displacement and
reduces the intensity of their displacement at long terms.
Nevertheless, this does not completely explain why the
effect would be different for weak and strong avalanches
and remains a hypothesis. Another hypothesis is can also
explain asymmetry for large avalanches. In large events,
the system unloads from a state of high over-compression
to one of low compression. In small events, the amount
of unloading may be smaller. For small unloading, the
system is locally harmonic, and the slip event will be
symmetric. However, for large events, the system is ini-
tially very stiff, and then softens as unloading occurs.
We would expect that this would lead to rapid dynam-
ics initially i.e. the effective elastic coefficient is large,
hence the early peak in the response. As the system con-
tinues to unload, The system softens and the time scale
for relaxation grows towards the end of the avalanche.
This would lead to a weak extended feature at the end
of the avalanche. From this perspective, the asymme-
try for large events arises in the nonlinear elasticity of
the system. A last possible origin of the avalanche shape
anisotropy is the strong correlation between avalanche
dynamics and force networks.

We find that the statistical behavior of the local and
global avalanches is independent of the jamming regime
as long as force chains are present. Only non-universal
parameters, such as power-law cut-offs, depend on the
granular regime (e.g. coordination number and pack-
ing fraction). The upper cut-off changes strongly and
nonlinearly when the jamming transition is crossed; i.e.
avalanches are larger when the system is jammed. Simi-
larly, the packing fraction and the inter-particle friction
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coeflicient have no effect on the power-law exponents of
the avalanche PDF's but do have an effect on their upper
cut-off. For local avalanches, the upper cut-off increases
exponentially with the friction coefficient and the pack-
ing fraction, while at the global scale it increases only
with v but not with ¢ contrary to what is predicted by
the class of models considered by Dahmen et al. [22]. We
also find a difference between numerical and experimen-
tal data on this point: the upper cut-off changes when
friction and packing fraction change in numerical simula-
tion but not in experiments for both the local and global
scales. Since the main difference between the numerical
model and the experimental set-up is the basal friction
which is mimicked numerically by adding a strong viscous
damping, we believe the upper cut-off is dominated in the
experimental case by the basal friction phenomenon that
is why it does not vary.

We introduce a novel approach for avalanche data
analysis by extracting avalanches from the local scale
of several different observables: displacement, rotation,
pressure and energy fields. We find different statistical
behavior, i.e. power-law exponents, for avalanches de-
tected using these different physical quantities. Specifi-
cally, distributions for displacement and rotation are not
the same, and distributions for pressure/energy differ for
loading and unloading. Results from our experiments
and simulations differ from a number of models [5, 6] and
from results obtained by shearing a soft slippery granu-
lar medium [2], where stress is redistributed according
to a symmetric Eshelby kernel, and displacements fol-
low a T1-type rearrangement dynamics. We believe that
the key difference between these models and the present
granular experiments, and presumably other dry gran-
ular systems, is that the granular systems form strong
anisotropic force networks in response to shear. These
structures are key features of granular systems, and they
are not part of typical models. To our knowledge, they
do not occur for soft slippery materials. The fact that
the spatial structure of granular avalanches tends to be
elongated along the compression direction is one obvious
indicator of how force chain structures impact granular
dynamics, and consequently, the avalanche statistics.

Finally, we find that on average, the number of local
per global avalanches is constant whatever the energy of
the global avalanche. This result suggests that the local
structure of a global avalanche is statistically indepen-
dent of the global avalanche intensity. Also, as pointed
out by [2] we find that the triggering of avalanches is
strongly coupled to the non-affine displacement of the
particles in the shear band. Although the event may be
triggered in the relatively weak shear band region, the
fact that the system is everywhere close to force balance
leading up to an avalanche means that the resulting stress
drop can span the whole system.
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Appendix A: Definition of the elastic and
viscoelastic coefficients of the contact force model

In this section, we detail the relation between the elas-
tic and viscoelastic constants involved in the model for
the normal and tangential contact forces (kn, ki, Vn, Vt)
and the grains material properties for particle i (Young’s
modulus F;, Poisson’s ratio u;, and coefficient of restitu-
tion ¢,) used in the simulations. We consider a pair of
interacting particles (¢,j) with normal displacement vec-
tor én;;. The elastic (ky, k) and viscoelastic (v, V¢)
coefficients from this pair of interacting particles are cal-
culated as follows from the material properties:

ko = gY*\/R*zSn (A1)

Y = —2\/?6 S,m* (A2)

ke = 8G*\/R*0, (A3)
5

Yt = —2\/;5\/ Stm* (A4)
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where we denote:

571, = |5n7j| (A5)

S, = 2Y*\/R*3, (A6)

S, = 8G*\/R*6,, (A7)
Inc,

B= (A8)

VinZe, + 72

and where we have defined the mean Young’s modulus
Y*, shear modulus G*, radius R* and mass m™* of the
interacting pair by:

11— 1
V- v by (A9)
L 2@ ) (= p) | 22+ )1 — )

o= N + 7 (A10)

1 1 1
= — 4+ — All
R R (A11)

1 1 1
=—+— (A12)

m* m; m;
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