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Dynamics of a magnetic active Brownian particle under a uniform magnetic field
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The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian
motion, both translation and rotation, under the influence of a uniform magnetic field is investigated.
The particle self-propels at a constant speed along its magnetic dipole moment that reorients due
to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α.
In this work, the time-dependent active diffusivity and the crossover time (τ cross)—from ballistic to
diffusive regimes—are calculated through the time-dependent correlation function of the fluctuations
of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a
directional (or ballistic) propulsive motion at very short times (t ≪ τ cross). In this regime the
correlation function decreases linearly with time and the active diffusivity increases with it. It the
opposite time limit (t ≫ τ cross), the particle moves in a purely diffusive regime with a correlation
function that decays asymptotically to zero and an active diffusivity that reaches a constant value
equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic
field (α = 0), the crossover time is equal to the characteristic timescale for rotational diffusion,
τrot. In the presence of a magnetic field (α > 0), the correlation function, the active diffusivity,
and the crossover time decrease with increasing α. The magnetic field regulates the regimes of
propulsion of the particle. Here, the field reduces the period of time at which the active particle
undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime
at τ cross ≪ τrot. In the limit of weak fields (α ≪ 1), the crossover time decreases quadratically with
α, while in the limit of strong fields (α ≫ 1) it decays asymptotically as α−1. The results are in
excellent agreement with those obtained by Brownian dynamics simulations.

I. INTRODUCTION

Active colloids that move autonomously in environ-
ments dominated by viscous forces [1] and thermal fluc-
tuations [2] are currently a subject of great interest. The
intrinsic ability of these particles to transform the sur-
rounding free energy into directed motion under non-
equilibrium conditions makes them suitable for many
practical applications (e.g. environmental remediation
[3, 4], lab-on-a-chip [5], drug-delivery [6]). Examples of
such colloidal particles are the widely investigated artifi-
cial catalytic motors driven autonomously through differ-
ent mechanisms, such as diffusiophoresis, electrophoresis,
surface-tension gradients, and bubble generation [7–9]. A
large number of works have studied the propulsion mech-
anisms of these active systems. However, few studies
have focused on their time-dependent dynamics behavior
in the presence of an external field. In the present work
we aim to shed some light in this area.
Regardless of the intricate propulsion mechanism, ac-

tive colloids can be modeled as active Brownian particles
(ABPs), a term which refers to colloidal particles moving
at a constant speed, Uact, along a propulsion direction,
p, with reorientation time τrot = D−1

rot . In ABPs, the re-
orientation time is dictated by its rotational diffusivity,
Drot = kT/ζrot, where kT is the thermal energy and ζrot
is the rotational hydrodynamic resistance. However, in
other self-propelled colloids (e.g. bacteria) the reorienta-
tion time could be a consequence of sudden complete ran-
domization. A constant propulsion speed presumes that
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self-generated gradients (e.g. concentration, thermal) are
established much faster than τrot. Another prominent be-
havior that characterizes the dynamics of ABPs is their
transition from a ballistic (or directional) to a diffusive
regime over τrot [10–12]. At short times (t ≪ τrot),
the particle experiences an additional contribution to the
mean squared displacement (MSD) that scales with time
as ∼ U2

actt
2. At longer times (t ≫ τrot) the propulsion

direction, p, is completely randomized by rotational dif-
fusion, and the particle undergoes a persistent random
walk with MSD ∼ Dactt, resulting in an active contribu-
tion to the diffusivity, Dact ∼ U2

actτrot, hereafter called
the active diffusivity. In a two-dimensional (2D) space,
Dact = U2

actτrot/2, and in 3D,Dact = U2
actτrot/6 [13]. The

sum of this active diffusivity and the Stokes-Einstein rela-
tion, D = kT/ζ with ζ denoting the translational hydro-
dynamic resistance, results in an effective translational
diffusivity, Deff.

The loss of directionality that ABPs exhibit at long
times (t ≫ τrot) represents a serious problem in appli-
cations where precise motion control is required. For-
tunately, recent experimental studies have shown differ-
ent steering control strategies for artificial self-propelled
motors [14]. The most commonly used strategy to con-
trol the orientation of self-propulsion is through external
magnetic fields [15, 16]. In this case, the self-propelled
particle is modified by incorporating a magnetic dipole,
such that the particle is able to be remotely controlled
[17, 18]. Due to the interaction of a magnetic field with
the magnetic dipole of a particle, a torque is induced
on the particle that competes against the randomization
of its orientation due to rotational diffusion. Thus, for
a strong magnetic field, the thermal fluctuations on the
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orientational motion of the particle are completely sup-
pressed, and the magnetic dipole is fully aligned along the
field direction. Consequently, a precise magnetic control
(guidance and steering) of the propulsion of the particle
is achieved by dynamically changing the direction of the
applied field. (See [16] and references therein for more
details on magnetic manipulation of active particles.)

Most of the experimental studies dealing with mag-
netic control of ABPs have been focused on monitor-
ing (via particle tracking) their spatial trajectory in the
presence of an externally applied magnetic field [19–26].
Even when these studies provide very useful informa-
tion related to their movement (e.g. swimming paths,
propulsion velocity, directionality) they are not sufficient
to obtain a full understanding of the effect of a mag-
netic field on the dynamics of ABPs. There are only a
few theoretical studies that, in one way or another, have
made some important progress. For example, these stud-
ies have shown that at long times (t ≫ τrot), the mean
velocity of the particle parallel, ‖, to the field direction
increases with the field strength via the analytical for-
mula 〈U〉‖ = UactL(α), where L(α) = cothα−α−1 is the
Langevin function, and α is the Langevin parameter that
measures the relative importance between an applied ex-
ternal torque and fluctuations resulting from Brownian
torques on the particle [27, 28]. Furthermore, the ac-
tive diffusivity parallel ‖ and perpendicular ⊥ to the field
in the limit of weak fields (α ≪ 1) decreases quadrati-
cally with the field strength via the asymptotic expression
Dact

‖,⊥ = U2
actτrot[1/6−λ‖,⊥α

2+O(α4)], where λ‖ = 7/135

and λ⊥ = 1/40, respectively; while under strong fields
(α ≫ 1), Dact

‖ ∼ U2
actτrot/α

3 and Dact
⊥ ∼ U2

actτrot/α
2,

respectively, which asymptotically tends to zero as α is
increased [27–29].

The analytical predictions, both mean velocity and ac-
tive diffusivity, presented above describe the dynamics of
ABP motion only in the long-time limit (t ≫ τrot). How-
ever, it is important to extend the analysis beyond this
time limit in order to evaluate motion control mecha-
nisms of particles moving in a system far from equilib-
rium or where transient effects are important. For in-
stance, it is of interest to know how much time it takes
for the active particle to change its direction in a mag-
netic field. Or asked differently, how does an external
magnetic field affect the crossover behavior from a bal-
listic to a diffusive regime?

On this basis, a time-dependent theoretical framework
that models a magnetic ABP sensitive to a uniform mag-
netic field is proposed. The particle self-propels at con-
stant speed along a direction that coincides with the mag-
netic dipole orientation that undergoes three-dimensional
(3D) rotational Brownian motion. Thus, the dynam-
ics of the particle can be completely described by mea-
suring the interplay between these fluctuations and the
field strength. The present work investigates, for dif-
ferent field strength values (or Langevin parameter α),
the correlation function of the fluctuations in the propul-
sion direction, p, the time-dependent active diffusivity,

and the crossover time from the ballistic (or directional)
to the diffusive region. Finally, in the long-time limit
(t → ∞), closed-form analytic expressions for the active
diffusivity and time correlations (or relaxation time) of
the fluctuations in the propulsion direction with respect
to the direction of the magnetic field are derived. It is
important to point out that throughout the relaxation
time the crossover time of the particle responding to the
magnetic field is calculated.

The paper is organized as follows: In § II, the problem
of interest is formulated, including a physical description
of the model as well as the required theoretical frame-
work to derive the analytical expressions for the time-
dependent correlation function, the time-dependent ac-
tive diffusivity, and the crossover time. The results are
presented and discussed in § III. Finally, general conclu-
sions of this work are presented in § IV.

II. PROBLEM FORMULATION

A. Model

Consider a single self-propelled colloidal spherical par-
ticle of radius a moving in a quiescent fluid. The particle
translates autonomously with an instantaneous propul-
sion velocity Uact(t) = Uactp(t), where the constant
speed Uact is applied along an instantaneous unit vec-
tor p(t) that dictates the propulsion direction of the
particle at time t (see Fig. 1). In this model, it is as-
sumed that the constant speed results from a driving
force F act = ζUactp whose origin is left unspecified for
the sake of generality. On account of its colloidal size,
the particle is subjected to thermal fluctuations that af-
fect its translational and rotational motion. As a result,
the active particle undergoes Brownian motion (rotation
and translation), here considered to take place in a 3D
space. The particle is also assumed to be magnetically
responsive via a permanent magnetic dipole, m = mu, of
magnitude m, fixed (or embedded rigidly) at the geomet-
ric center of the sphere, and directed along a unit vector
u. This model consists of a large magnetic active colloid,
where the reorientation of its magnetic dipole due to ther-
mal agitation (or Néel relaxation) is neglected. Instead,
the magnetic dipole undergoes rigid rotations (with the
whole particle) only due to the rotational Brownian mo-
tion. In addition, a uniform magnetic field, H = H ẑ,
of strength H is applied parallel to the z-axis of a space-
fixed coordinate system (x, y, z), as illustrated in Fig. 1.
On the other hand, it is assumed that the propulsion di-
rection is parallel to the magnetic dipole orientation of
the particle. Other orientation configurations between
the propulsion direction and the magnetic dipole escape
to the scope of the present work. Since the magnetic
dipole is steered according to the magnetic field direc-
tion, u is regarded to be the “director” of the particle
from this point onward.
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FIG. 1. The magnetic active Brownian particle model: a
self-propelled colloidal particle of radius a that bears a mag-
netic dipole m oriented parallel to the self-propelled velocity
Uact undergoing 3D Brownian motion, both translation and
rotation, under a uniform magnetic field H applied along the
z-axis.

B. Theory

The objective of this section is to present the deriva-
tion of the general expression of the time-dependent ac-
tive diffusivity of a magnetic ABP in terms of the time-
dependent correlation function of the fluctuations of the
propulsion direction. The starting point here is the
Langevin equation for the translational motion of a mag-
netic ABP moving in an incompressible Newtonian fluid
of density ρ and dynamic viscosity η. This equation in a
coordinate system (x, y, z) fixed in space reads

0 = F hyd(t) + F act(t) + FB(t), (1)

where F hyd(t) = ζU(t) is the hydrodynamic Stokes force,
and FB is the Brownian force due to thermal fluctu-
ations in the fluid, which is characterized by a zero-
mean force, 〈FB(t)〉 = 0, and a variance that is modeled
via the fluctuation-dissipation theorem 〈FB(0)FB(t)〉 =
2kT ζI δ(t). The angular brackets denote a statistical en-
semble average, δ(t) is the Dirac delta function, and I is
the identity tensor.
The left-hand side of (1) is zero because the influence of

inertia on the motion of a particle suspended in a viscous
fluid is negligible in the colloidal regime. As a result, the
particle moves at an instantaneous linear velocity, U(t),

given by:

U = ζ−1
(

F act + FB
)

. (2)

The ABP position and orientation are tracked over
time to measure the diffusion properties in response to
a magnetic field. For example, the long-time effective
diffusivity tensor, Deff, that also accounts for the effect
of self-propulsion can be directly determined from the
Green-Kubo relation [30, 31]

Deff =
1

3
lim
t→∞

∫ t

0

[

〈U(0)U(t)〉 − 〈U(0)〉〈U(0)〉
]

dt, (3)

where 〈· · · 〉 stands for the average over an equilibrium
distribution function for the particle orientation

W0(u) = Z−1
0 exp [−V (u)/kT ] , (4a)

with Z0 =

∮

du exp [−V (u)/kT ] , (4b)

which is proportional to the Boltzmann exponential of
the magnetic potential, V (u) = −µ0m · H , resulting
from the interaction of the dipole with the magnetic field.
Since the average velocity, 〈U〉, of an ABP moving under
an external field is different to zero [28], this contribution
on the effective diffusivity has been included in (3) via
the velocity autocorrelation function, which arises from
the correlation of U(t)− 〈U(0)〉 at time 0 and at time t.
Substituting the instantaneous linear velocity given in

(2) at times 0 and t, as well as the average velocity
〈U(0)〉 = Uact〈p(0)〉 into the relation (3), the effective
diffusivity reads as

Deff =
1

3

{

D + U2
actτrot lim

t→∞

∫ t

0

[

〈p(0)p(t)〉 −

〈p(0)〉〈p(0)〉
]

dt
}

, (5)

where D = DI is the Stokes-Einstein diffusivity tensor,
and time has been nondimensionalized by τrot.
For a single spherical particle moving in a Newtonian

fluid the off-diagonal elements of the long-time effective
diffusivity tensor are zero, while the diagonal elements
can be expressed in the form

Deff = Deff
‖ ẑẑ +Deff

⊥ (I − ẑẑ) , (6)

where Deff
‖ = Deff

zz and Deff
⊥ = (Deff

xx + Deff
yy)/2 are the

long-time effective diffusivities of the ABP in the direc-
tion parallel ‖ and perpendicular ⊥ to the magnetic field,
respectively. Further, Deff

⊥ = Deff
xx = Deff

yy due to the
spherical symmetry about the z-axis.
The parallel and perpendicular long-time effective dif-

fusivities can be calculated by substituting p(t) = p‖(t)+
p⊥(t) into (5) and by comparing the result with (6), thus

Deff
‖ = D + U2

actτrot lim
t→∞

∫ t

0

f‖(t)dt, (7a)

Deff
⊥ = D + U2

actτrot lim
t→∞

∫ t

0

f⊥(t)dt, (7b)
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where f‖(t) and f⊥(t) are the correlation functions of the
components of p(t) in the direction parallel and perpen-
dicular to the magnetic field. They are defined as

f‖(t) = 〈p‖(0)p‖(t)〉 − 〈p‖(0)〉〈p‖(0)〉, (8a)

f⊥(t) = 〈p⊥(0)p⊥(t)〉, (8b)

where 〈p⊥(0)p⊥(t)〉 = 〈px(0)px(t)〉 = 〈py(0)py(t)〉 due to
the symmetry about the z-axis.
The effective diffusivity, either the parallel (7a) or

perpendicular (7b) components, can be physically inter-
preted as the sum of two diffusivities. The first term on
the right-hand side of (7a) and (7b) is the Stokes-Eintein
diffusion coefficient, D = kT/ζ, which arises from the
translational Brownian motion of the particle. Note that
this “passive” diffusivity is the same in any direction due
to its isotropic nature. On the other hand, the second
term on the right-hand side of (7a) and (7b) can be de-
fined as an active contribution to the diffusivity of the
particle. In the absence of a magnetic field, this active
diffusivity measures the level of randomization to the di-
rection of self-propulsion by the rotary Brownian motion
of the particle. When a magnetic field is applied, the
direction of self-propulsion is aligned with the field and
changes to the active diffusivity are expected. Because
the applied magnetic field in this model is unidirectional,
the response to the diffusivity is anisotropic, resulting in
different values based on the relative motion of the par-
ticle parallel and perpendicular to the field.
The expressions (7a) and (7b) can then be rewritten

in the following form

Dact
∞,‖ = U2

actτrot lim
t→∞

∫ t

0

f‖(t)dt, (9a)

Dact
∞,⊥ = U2

actτrot lim
t→∞

∫ t

0

f⊥(t)dt, (9b)

where Dact
∞,‖ = Deff

‖ −D and Dact
∞,⊥ = Deff

⊥ −D are the ac-

tive diffusivities along and perpendicular to the magnetic
field at long times.
The fluctuation of any stochastic property is defined

as the deviation of that property from its mean value.
This definition can then be applied to the parallel and
perpendicular components of the propulsion direction.
Thus, δp‖(t) = p‖(t) − 〈p‖(0)〉 and δp⊥(t) = p⊥(t) −
〈p⊥(0)〉 = p⊥(t) are the fluctuations of the propul-
sion direction parallel and perpendicular to the magnetic
field. Consequently, the parallel and perpendicular cor-
relation functions in (8a) and (8b) can be rewritten as
f‖(t) = 〈δp‖(0)δp‖(t)〉 and f⊥(t) = 〈δp⊥(0)δp⊥(t)〉. Sub-
stituting these expressions into (9a) and (9b), one con-
cludes that the active diffusivity is a direct consequence
of the fluctuations taking place in the direction of propul-
sion of the particle. Note that, for ABPs, whose orien-
tation is affected by its own rotary Brownian diffusion,
these fluctuations are of the Brownian (or passive) type.
At this point, it is straightforward to define the general

expression for the time-dependent active diffusivity. The

parallel and perpendicular components read as

Dact
‖ (t) = U2

actτrot

∫ t

0

〈δp‖(0)δp‖(t)〉dt, (10a)

Dact
⊥ (t) = U2

actτrot

∫ t

0

〈δp⊥(0)δp⊥(t)〉dt. (10b)

Note that in the long-time limit, these expressions reduce
to (9a) and (9b), respectively. In the present work, the
active diffusivities, both the time-dependent and long-
time behavior, are studied first by evaluating the time-
dependent correlation function of the fluctuations of the
propulsion direction.
For a magnetic ABP whose propulsion direction coin-

cides with the magnetic dipole orientation, the orienta-
tion dynamics of the particle can be described through
the dipole orientation. Thus, the time-dependent cor-
relation functions f‖(t) and f⊥(t) can be expressed in
terms of u components. Introducing the spherical polar
coordinates fixed in the coordinate system (x, y, z), the
unit vector u can be described by the polar θ angle and
the azimuthal φ angle, as illustrated in Fig. 1, in terms
of which their Cartesian components can be expressed as
ux = sin θ cosφ, uy = sin θ sinφ and uz = cos θ. Thus,
the time-dependent correlation functions (8a, 8b) read as

f‖(t) = 〈cos θ(0) cos θ(t)〉 − 〈cos θ(0)〉〈cos θ(0)〉,
(11a)

f⊥(t) = 〈cosφ(0) sin θ(0) cosφ(t) sin θ(t)〉,
(11b)

Here, the above correlation functions are calculated
by solving numerically two hierarchies of differential-
recurrence relations for f‖(t) and f⊥(t); see (23a) and
(23b) in next section. Two systems of equivalent equa-
tions were previously derived by Coffey et al. [32, 33]
on the basis of the Langevin equation approach for the
rotational Brownian motion of polar linear molecules in
the presence of a uniform electric field. The mathemati-
cal formulation of the Langevin equation approach in the
context of a magnetic active Brownian particle under a
uniform magnetic field is addressed below.

C. The Langevin equation approach

The equation of motion that governs the three-
dimensional rotational Brownian motion of a spherical
colloidal particle in the presence of an external potential
V [u(t), t] can be described on the basis of the Euler-
Langevin equation [34] for the instantaneous angular ve-
locity written in the coordinate system (x, y, z) as

0 = T hyd(t) + T ext(t) + TB(t), (12)

where T hyd(t) = −ζrotΩ(t) is the hydrodynamic torque
exerted on the particle due to its angular velocity Ω rel-
ative to the fluid with ζrot = 8πηa3; TB is the Brownian
torque characterized by 〈TB(t)〉 = 0 and 〈TB(0)TB(t)〉 =
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2kT ζrotI δ(t); and T ext(t) is the non-hydrodynamic ex-
ternal torque (e.g., magnetic) acting on the particle.
Here, this torque can be expressed in terms of an exter-
nal potential on the particle as T ext(t) = −RV [u(t), t],
where R = u × ∂/∂u is the gradient operator in orien-
tation space.
The angular velocity resulting from this torque balance

reads

Ω(t) = ζ−1
rot

[

TB(t)− u(t)× ∂

∂u
V [u(t), t]

]

. (13)

The rotational motion of the unit vector u(t) is described
by the angular velocity. Thus, the instantaneous direc-
tion of u(t) satisfies the equation

du(t)

dt
= Ω(t)× u(t), (14)

this being a purely kinematical relation which holds for
any vector fixed in the particle, and with no particular
reference either to the Brownian motion or to the shape
of the particle.
Substituting (13) into (14), and using the properties of

the triple vector product (u× ∂V/∂u)× u, it yields the
Langevin equation for the motion of u(t)

d

dt
u(t) = −ζ−1

rot

[

∂

∂u
V [u(t), t]−

u(t)

(

u(t) ·
∂

∂u
V [u(t), t]

)]

+

ζ−1
rotT

B(t)× u(t), (15)

which is a stochastic, non-linear differential equation
with multiplicative random terms given by the compo-
nents of the vector product TB(t)× u(t). This equation
can be interpreted either as an Itô or Stratonovich equa-
tion as has been discussed by Risken [35] and Coffey et

al. [32]. Since the physical stochastic processes within
the dynamics of orientation of a colloidal particle are best
modeled within the framework of the Stratonovich def-
inition [36], this definition will be used here to average
stochastic differential equations by involving the average
of multiplicative random terms.
A stochastic differential equation for an arbitrary dif-

ferentiable function f [u(t)] may be obtained by multiply-
ing (15) by ∂f [u(t)] /∂u, respectively:

d

dt
f [u(t)] = ζ−1

rot

[

TB(t)× u(t)
]

·
∂

∂u
f [u(t)]−

ζ−1
rot

[

∂

∂u
V − u(t)

(

u(t) ·
∂

∂u
V

)]

·

∂

∂u
f [u(t)] , (16)

where the first term on the right-hand side of (16)
is a multiplicative random term. Thus, by using
Stratonovich’s rule the average of this equation over an

ensemble of colloidal particles that all start at time t with
the same dipole moment orientation becomes

D−1
rot

d

dt
f(u) =

1

2kT

[

V (u, t)R2f(u) + f(u)R2V (u, t)−

R2 (V (u, t)f(u))
]

+ R2f(u), (17)

which is an averaged stochastic differential equation valid
for any function f(u). Here, u represents the aver-
age of the orientations which all particles adopt at the
instant t. Further, this vector is a random variable
with a probability density function W (u, t) such that
W (u, t)du is the probability of finding a particle with
the dipole axis u pointing in the interval (u,u + du).
In (17), the squared rotation operator R2 is defined as
R · R = (u × ∂/∂u) · (u × ∂/∂u), in analogy with the
Laplace operator ∇2 = ∇·∇. In spherical polar coordi-
nates the R and R2 operators read

R = eφ
∂

∂θ
− eθ

1

sin θ

∂

∂φ
, (18)

R2 =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
, (19)

where eθ, eφ are the unit vectors in the θ, φ directions
respectively.
The functions more appropriate to model the orienta-

tional dynamics of a colloidal particle involving three-
dimensional rotations of a unit vector u are the nor-
malized spherical harmonics (see, for example, the ex-
plicit form (7.2.9) in [32], and Chapter 5 of [37] for more
details) denoted as Yn,m(u) or equivalently Yn,m(θ, φ),
where θ and φ are the definite values of the random vari-
ables θ(t) and φ(t) at the averaging instant t. Thus,
equation (17) written in dimensionless form is

d

dt
Yn,m =

1

2

[

VR2Yn,m + Yn,mR2V −R2 (V Yn,m)
]

+

R2Yn,m, (20)

where time t has been nondimensionalized by τrot, and
the potential V by the thermal energy kT , respectively.
Substituting the dimensionless potential V expanded

in terms of the spherical harmonics

V =

∞
∑

R=0

R
∑

S=−R

νR,SYR,S (21)

into (20), and using the known property R2Yn,m =
−n(n+1)Yn,m as well as the product of two spherical har-
monics expanded in the so-called Clebcsh-Gordan series
(see, for example, subsection (5.6.2) of [37]), the system
of equations for Yn.m can be transformed to

d

dt
Yn,m = −n(n+ 1)Yn,m +

1

4

∞
∑

R=0

R
∑

S=−R

n+R
∑

J=|n−R|

νR,S

√

(2R+ 1)(2n+ 1)

π(2J + 1)

[J(J + 1)− n(n+ 1)−R(R+ 1)]

CJ,0
n,0,R,0C

J,m+S
n,m,R,SYJ,m+S , (22)
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where νR,S is a coefficient dependent on the nature of the

external potential, and Cc,λ
a,κ,b,β are the Clebsch-Gordan

coefficients (see, for example, Chapter 8 of [37] for various
definitions).

We have thus obtained from the Langevin equation an
important and general set of moment equations (22) for
Yn,m at time t, valid for any external potential. For an
ABP subjected to an external potential of the magnetic
type, V = −µ0m · H/kT = −α cos θ = −α

√

4π/3Y1,0,
where α = µ0mH/kT is the Langevin parameter that
measures the competition between the magnetic and
thermal torque. Comparing the explicit expression for
V with (21) one can easily find that ν1,0 = −α

√

4π/3
and the all remaining terms νR 6=1,S 6=0 are equal to zero.

Substituting the proper values of νR,S into (22), a
system of equations for Yn,m(t) in terms of α is ob-
tained. This equation will be used to derive two systems
of differential-recurrence relations for the time-dependent
correlation functions (11a) and (11b), respectively. This
can be accomplished by following the same procedure as
the one employed by Coffey et al. [32] for a polar lin-
ear molecule in the presence of a uniform electric field
applied along the z-axis. The end results are

d

dt
fn(t) = −n(n+ 1)fn(t) +

αn(n+ 1)

2n+ 1

[

fn−1(t)− fn+1(t)
]

, (23a)

d

dt
gn(t) = −n(n+ 1)gn(t) +

α

2n+ 1

[

(n+ 1)2gn−1(t)− n2gn+1(t)
]

.

(23b)

These are dynamic equations governing the parallel,
fn(t), and perpendicular, gn(t), time-dependent correla-
tions functions defined as

fn(t) = 〈P1[cos θ(0)]Pn[cos θ(t)]〉 −
〈P1[cos θ(0)]〉〈Pn[cos θ(0)]〉, (24a)

gn(t) = 〈cosφ(0)P 1
1 [cos θ(0)] cosφ(t)P

1
n [cos θ(t)]〉,

(24b)

where the quantities Pn(cos θ) and Pm
n (cos θ) are the Leg-

endre polynomials of order n and the associated Legendre
functions of the first kind of order n and rank m, respec-
tively [38]. It is easy to show that for n = 1, f1(t) = f‖(t)
and g1(t) = f⊥(t), respectively.

Using the recurrence formulas of the Legendre
polynomials and the associated Legendre functions,
the relation exp(α cos θ) =

√

π/(2α)
∑∞

n=0(2n +
1)In+1/2(α)Pn(cos θ) (obtained from (10.2.36) of [38]),
and the orthogonality property of Legendre polynomials,
the initial conditions fn(0) and gn(0) may be expressed

in terms of the modified Bessel functions as

fn(0) =
n+ 1

2n+ 1

In+3/2(α)

I1/2(α)
+

n

2n+ 1

In−1/2(α)

I1/2(α)
−

I3/2(α)

I1/2(α)

In+1/2(α)

I1/2(α)
, (25a)

gn(0) =
n(n+ 1)

2α

In+1/2(α)

I1/2(α)
, (25b)

where Iν(α) is the modified Bessel function of the first
kind [38].
Thus, the initial conditions f‖(0) and f⊥(0) can then

be readily determined by setting n = 1 into (25a) and
(25b), respectively. Substituting the appropriate expres-
sions of the Bessel functions I1/2(α), I3/2(α) and I5/2(α)
(see e.g., (10.2.13) Ref. [38]) into (25a) and (25b), one
finds that

f‖(0) = 1 +
1

α2
− coth2 α, (26a)

f⊥(0) = − 1

α2
+

1

α
cothα. (26b)

In the limit of weak fields (α ≪ 1), f‖(0) and f⊥(0)
are calculated using the Taylor expansion of the modi-
fied Bessel functions (see e.g., (9.6.10) of Ref. [38]) here
rewritten as

Iν(α) =
(α

2

)ν ∞
∑

k=0

(α/2)2k

k!Γ (ν + k + 1)
, (27)

where ν = (2n − 1)/2 for n ≥ 1. Thus, the asymptotic
analytical expressions for both correlation functions yield

f‖(0) =
1

3
− α2

15
+

2

189
α4 −O(α6), (28a)

f⊥(0) =
1

3
− α2

45
+

2

945
α4 −O(α6). (28b)

Note that for α = 0, the above formulas reduce to f‖(0) =
f⊥(0) = 1/3.
In the limit of strong fields (α ≫ 1), using the asymp-

totic expansion of the modified Bessel functions (see e.g.,
(9.7.1) Ref. [38]) here rewritten as

Iν(α) ∼
eα√
2πα

[

1− µ− 1

8α
+

(µ− 1)(µ− 9)

2!(8α)2
−

(µ− 1)(µ− 9)(µ− 25)

3!(8α)3
+ · · ·

]

, (29)

where µ = 4ν2, the asymptotic expressions for the ini-
tial condition correlation functions read f‖(0) ∼ α−2 +

O(α−3) and f⊥(0) ∼ α−1 +O(α−2), respectively.

D. Solution via Brownian dynamics (BD)
simulations

The dynamics of a magnetic active particle undergo-
ing 3D Browniain motion, in translation and rotation,



7

in the presence of a uniform magnetic field can also be
examinted via BD simulations. The starting point of
this method are the equations in (1) and (12), which
are solved to find the evolution equations for transitional
(∆x) and rotational (∆θ) steps during a time step ∆t,
given by

∆x(t) =
4

3
Pe∆tp(t) +

√

8

3
∆t ξ(t), (30)

∆θ(t) = α∆t
[

u(t)× ẑ
]

+
√
2∆t ξ(t). (31)

Here x has been nondimensionalized by the active par-
ticle size a, and time by the time scale for rotational
diffusion τrot.
The second terms on the right-hand sides of (30) and

(31) are the linear and angular random displacements,
respectively, due to Brownian motion, where ξ(t) is a
unit random normal deviate characterized by 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(0)〉 = δ(t)I. The contribution to the change
in position of the particle due to propulsive (or active)
forces is given by the first term on the right-hand side of
(30), where Pe = F act/(kT/a) = Uacta/D is the Péclet
number that measures the interplay between the active,
F act, and Brownian forces. The contribution of the mag-
netic field to the angular displacement is given by the
first term on the right-hand side of (31).
The change in the orientation of the particle at each

time step ∆t is calculated by using the kinematical rela-
tion, ∆u = ∆θ×u, derived from (14). Substituting (31)
into this relation, one finds that

∆u = α∆t
[

(u× ẑ)× u
]

+
√
2∆t (ξ × u) . (32)

At each time step in the simulation the ABP posi-
tion is updated with a Brownian step and an active step.
The latter step depends on the propulsion orientation,
see (30), that is obtained from (32). This is because the
propulsion direction coincides with the orientation of the
particle, i.e. p(t) = u(t). Here, at each time step the
particle orientation is updated with a Brownian step and
a magnetic step.
The time-dependent effective diffusivity of the active

particle, Deff(t), is obtained from MSD, 〈x′(t)x′(t)〉, ac-
cording to Deff(t) = d〈x′(t)x′(t)〉/(2dt), where x′(t) =
x−〈x(t)〉 and the angular brackets 〈 〉 denote an ensem-
ble average over time and over all simulations. Therefore,
the computation of the active diffusivity, Dact(t), can be
readily carried out by substracting from the effective dif-
fusivity its passive contribution. This latter diffusivity is
easily calculated from the mean-square displacement of
the particle in the absece of self-propulsion (or Pe = 0).
The time-dependent correlation functions f‖(t) and

f⊥(t) are obtained from

fλ(t) = 〈δuλ(0)δuλ(t)〉, (33)

where δuλ(t) = uλ(t)− 〈uλ〉 is the fluctuation of the ori-
entation of the particle, uλ(t) is the instantaneous par-
ticle orientation obtained from (32), and 〈uλ〉 its mean

value. Here, λ is a dummy index to represent the relative
orientation parallel ‖ or perpendicular ⊥ to the field.
The crossover time of the active particle is obtained

from (33) by dividing it by fλ(0) = 〈δu2
λ(0)〉 and inte-

grating over time to yield

τcrossλ =
2

〈δu2
λ(0)〉

∫ ∞

0

fλ(t)dt. (34)

The active diffusivity and the crossover time have been
calculated for each value of the Langevin parameter α
ranging from 0.02 to 50 and for Pe = 1. For each value of
α, 550 repetitions have been performed to achieve good
statistics. The time of simulation was 5000τrot with a
time step of ∆t = 0.001.

III. RESULTS AND DISCUSSIONS

Figures 2(a) and 2(b) show the parallel and perpen-
dicular time-dependent correlation functions f‖(t) and
f⊥(t), respectively, for different values of α. These re-
sults have been obtained by solving numerically two sys-
tems of differential-recurrence relations (23a, 23b) with
their proper initial conditions (25a, 25b). The number of
equations is increased systematically until convergence is
attained over the range of α studied. For example, in the
evaluation of (23a, 23b), for values of α ≤ 50, conver-
gence is obtained by solving a system of 50 equations.
For any α, f‖(t) and f⊥(t) follow the typical behavior

of a time-dependent correlation function of any physi-
cal quantity that is involved in a stochastic process [39].
That is, at t = 0, the parallel and perpendicular correla-
tion functions are equal to the mean squares of δp‖(0) =
p‖(0) − 〈p‖(0)〉 and δp⊥(0) = p⊥(0), respectively, i.e.

f‖(0) = 〈p2‖(0)〉 − 〈p‖(0)〉2 and f⊥(0) = 〈p2⊥(0)〉, which
represent the variances of the propulsion direction of the
particle. The behavior of f‖(0) and f⊥(0) as a function
of α is shown in Fig. 2(c). As time increases, the corre-
lation between p⊥,‖(t) and p⊥,‖(0) decreases, and there-
fore f‖(t) and f⊥(t) decrease as well. For times suffi-
ciently large compared to the characteristic time for fluc-
tuations of p⊥,‖(t), the correlations between p⊥,‖(t) and
p⊥,‖(0) vanish completely. Therefore, limt→∞ f‖(t) → 0
and limt→∞ f⊥(t) → 0, respectively.
In the absence of a magnetic field (α = 0), the cor-

relation function, in both the parallel and perpendicular
cases, follows the classical exponential decay of a Brow-
nian (passive) particle: f‖(t) = f⊥(t) = exp(−2Drott)/3
[39]. This equation in dimensionless form can be readily
obtained by setting n = 1 and α = 0 into (23a, 23b) and
solving the system analytically together with the initial
condition f‖(0) = f⊥(0) = 1/3 obtained from (28a, 28b)
for α = 0.
Interestingly, Figs. 2(a) and 2(b) suggest that this ex-

ponential behavior for f‖(t) and f⊥(t) is maintained even
for α > 0. As stated before, the orientation of the par-
ticle undergoes fluctuations of the Brownian type, which
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FIG. 2. Parallel (a) and perpendicular (b) time-dependent correlation functions as a function of the time t for different values
of α. Lines represent the numerical solutions of the systems of differential-recurrence relations (23a) and (23b) for f‖(t) and
f⊥(t), respectively. (c) Variances (‖ and ⊥) of the propulsion direction as a function of α. Solid and dashed curves represent
the exact and asymptotic analytical solutions.

clearly are induced by the rotary Brownian diffusion.
In the presence of a magnetic field, the field does not
transform this type of fluctuation into something non-
Brownian, in fact, it only reduces the intensity of these
fluctuations. As a consequence, the magnetic field affects
quantitatively the exponential decay of f‖(t) and f⊥(t)
as well as its decay rate. Thus, for example, the results
in Figs. 2(a) and 2(b) show that, for any instant of time
t, the correlation functions decrease with increasing α.
Here, the magnetic field hinders the rotational Brownian
motion of the particle, and therefore, the fluctuations in
the orientation of the particle.

Figures 2(a) and 2(b) also show that, for α > 0, the
time-dependent correlation function parallel to the field
direction decays faster than the perpendicular one. This
happens because the magnetic torque restricts the rota-
tional Brownian motion of p‖(t) around the x- and y-
axes; whereas it only restricts the Brownian rotation of
p⊥(t) around the y-axis. Note that the torque along the
field direction is zero, therefore, p⊥(t) can freely rotate
around the z-axis. This quantitative difference between
f‖(t) and f⊥(t) is more evident for moderate and high

values of α than for small values. The differences of de-
cay rate between f‖(t) and f⊥(t), for α > 0, evidences
the anisotropic effect of the magnetic field on the dynam-
ics of an ABP. Note that the magnetic field also induces
an anisotropic behavior on the variance of the particle,
as illustrated in Fig. 2(c).
Since the numerical results found for f‖(t) and f⊥(t)

show an exponential decay with time, we propose that
this decay follows the relations

f‖(t) = f‖(0) exp(−t/τmag

‖ ), (35a)

f⊥(t) = f⊥(0) exp(−t/τmag
⊥ ), (35b)

where τmag

‖ and τmag
⊥ are the parallel and perpendic-

ular correlation (or magnetic relaxation) timescales of
the propulsion direction of the particle, respectively. At
α = 0, τmag

‖,⊥ = 1/2, such that (35a) and (35b) agree

with the classical exponential formula, exp(−2Drott)/3,
for the orientational correlation function of a Brownian
particle [39].
In order to obtain the explicit expressions for (35a)

and (35b), it is necessary first to find the exact formulas
for τmag

‖ and τmag
⊥ for any value of α. The magnetic
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relaxation timescales can be defined as the area under
the curves of f‖(t) and f⊥(t), respectively, resulting in

τmag

‖ =
1

f‖(0)

∫ ∞

0

f‖(t)dt, (36a)

τmag
⊥ =

1

f⊥(0)

∫ ∞

0

f⊥(t)dt. (36b)

Even though the general formulas (36a) and (36b) al-
low one to directly calculate the magnetic relaxation
time, it is instructive to do this via the long-time ac-
tive diffusivity. Combining (36a, 36b) with (9a, 9b) one
obtains

Dact
∞,‖

U2
actτrot

= τmag

‖ f‖(0), (37a)

Dact
∞,⊥

U2
actτrot

= τmag
⊥ f⊥(0), (37b)

which shows that the long-time active diffusivity is di-
rectly related to the variance and the correlation time of
the propulsion direction of the particle. This implies that
the active diffusivity can be obtained from the magnetic
relaxation time and vice versa.
The calculation of the analytical expressions for the

long-time active diffusivity and correlation time proceeds
as follows. Equations (9a) and (9b) can be rewritten as
shown below:

Dact
∞,‖

U2
actτrot

= lim
s→0

∫ ∞

0

f1(t)e
−stdt

= lim
s→0

f̃1(s) = f̃1(0), (38a)

Dact
∞,⊥

U2
actτrot

= lim
s→0

∫ ∞

0

g1(t)e
−stdt

= lim
s→0

g̃1(s) = g̃1(0), (38b)

where f̃1(0) and g̃1(0) are the Laplace transforms of f1(t)

and g1(t), respectively, denoted by f̃1(s) and g̃1(s), in the
s = 0 limit.
Since each of the infinite hierarchies of moment equa-

tions (23a) and (23b) takes the form of a scalar three-
term differential-recurrence relation, it is possible to ob-
tain an exact solution for f̃1(s) and g̃1(s) in terms of
ordinary infinite continued fractions [32, 35]. Using the
continued fraction method (see Section 2.7.3 of [32] for
details), one obtains

f̃1(s) =
1

α

∞
∑

n=1

(−1)n+1fn(0)
2n+ 1

n(n+ 1)

n
∏

k=1

S
‖
k(s), (39a)

g̃1(s) =
1

α

∞
∑

n=1

(−1)n+1gn(0)
2n+ 1

n2(n+ 1)2

n
∏

k=1

S⊥
k (s),

(39b)

where S
‖
n(s) and S⊥

n (s) are the infinite continued frac-

tions defined by the recurrence equations

S‖
n(s) =

α/(2n+ 1)

s

n(n+ 1)
+ 1 +

αS
‖
n+1(s)

2n+ 1

, (40a)

S⊥
n (s) =

α(n+ 1)/[n(2n+ 1)]

s

n(n+ 1)
+ 1 +

n

n+ 1

αS⊥
n+1(s)

2n+ 1

. (40b)

Therefore, the closed-form expressions for the paral-
lel and perpendicular active diffusivities are easily cal-
culated from (38a) and (38b) using the closed formulas

for f̃1(0) and g̃1(0) obtained from (39a) and (39b) at
s = 0. After some algebra, the exact analytical solutions
for both diffusivities, valid for any α value, read

Dact
∞,‖

U2
actτrot

=
1

α

∞
∑

n=1

(−1)n+1
I2n+1/2(α)

nI2
1/2(α)

[

In+3/2(α)

In+1/2(α)
+

n

n+ 1

In−1/2(α)

In+1/2(α)
−

2n+ 1

n+ 1

I3/2(α)

I1/2(α)

]

, (41a)

Dact
∞,⊥

U2
actτrot

=
1

2α2

∞
∑

n=1

(−1)n+1 2n+ 1

n(n+ 1)

In+1/2(α)

I1/2(α)

n
∏

k=1

S⊥
k (0),

(41b)

where the continued fraction S⊥
n (0) is obtained from

(40b) for s = 0. Besides, using (27) and (29), one can
find from (41a) and (41b) the asymptotic analytical ex-
pressions for the parallel and perpendicular active diffu-
sivities in the limits of weak and strong magnetic fields.
Thus, for α ≪ 1,

Dact
∞,‖

U2
actτrot

=
1

6
− 7

135
α2 +

41

3780
α4 −O(α6), (42a)

Dact
∞,⊥

U2
actτrot

=
1

6
− 1

40
α2 +

299

90720
α4 −O(α6), (42b)

while in the opposite limit (α ≫ 1),

Dact
∞,‖

U2
actτrot

=
1

2α3
+O(α−4), (43a)

Dact
∞,⊥

U2
actτrot

=
1

α2
+O(α−3), (43b)

respectively, which are in full agreement with the asymp-
totic formulas derived by Takori and Brady [28] for a
dilute suspension of active colloidal particles moving in
the presence of an external torque of any type. The exact
(41a, 41b) and asymptotic (42a – 43b) expressions of the
long-time active diffusivity, both the parallel and perpen-
dicular components, are plotted against α in Fig. 3(a).
The closed-form exact expressions for the parallel and

perpendicular magnetic relaxation times are calculated
by dividing (41a) and (41b) by f‖(0) (26a) and f⊥(0)
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FIG. 3. Parallel (black) and perpendicular (blue) long-time active diffusivities (a) and magnetic relaxation times (b) as a
function of α. The exact and asymptotic solutions are shown by solid and dashed curves, which are compared with BD
simulations (symbols). Each marker open symbol is an ensemble average over 550 simulations.

(26b), respectively, as stated by the relations (37a) and
(37b). Thus, the magnetic relaxation time formulas,
valid for any α, read

τmag

‖ =
1

α(1 + α−2 − coth2 α)

∞
∑

n=1

(−1)n+1
I2n+1/2(α)

nI2
1/2(α)

[

In+3/2(α)

In+1/2(α)
+

n

n+ 1

In−1/2(α)

In+1/2(α)
−

2n+ 1

n+ 1

I3/2(α)

I1/2(α)

]

, (44a)

τmag
⊥ =

1

2α

∞
∑

n=1

(−1)n+1 2n+ 1

n(n+ 1)

In+1/2(α)

I3/2(α)

n
∏

k=1

S⊥
k (0).

(44b)

Using (27) and (29) in the above equations, it is found
that for weak magnetic fields (α ≪ 1), the magnetic re-
laxation times are

τmag

‖ =
1

2
− α2

18
+

α4

180
−O(α6), (45a)

τmag
⊥ =

1

2
− α2

24
+

17α4

4320
−O(α6), (45b)

whereas for strong magnetic fields (α ≫ 1),

τmag

‖ ∼ 1

2α
, (46a)

τmag
⊥ ∼ 1

α
. (46b)

These magnetic relaxation time formulas are mathemat-
ically equivalent to the dielectric relaxation time ex-
pressions presented in Ref. [33] for a system of non-
interacting polar molecules subjected to an external elec-
tric field.
The exact analytical (44a, 44b) and asymptotic expres-

sions for weak (45a, 45b) and strong (46a, 46b) magnetic
fields of the magnetic relaxation times (as illustrated in

Fig. 3(b)) allow one to complete from a quantitative point
of view (via the relations (35a, 35b)) the description of
the time-dependent correlation functions presented at the
beginning of this section. One can measure the effect of
a magnetic field on the correlation functions, for exam-
ple, by evaluating the exponential formulas (35a) and
(35b) in the limits of weak (α ≪ 1) and strong (α ≫ 1)
magnetic fields. Substituting the asymptotic analytical
expressions, for α ≪ 1 and α ≫ 1, of f‖(0), f⊥(0), τ

mag

‖ ,

and τmag
⊥ , into (35a) and (35b), one finds that for weak

magnetic fields,

f‖(t) =
(1

3
− α2

15

)

exp
( −2t

1− α2/9

)

, (47a)

f⊥(t) =
(1

3
− α2

45

)

exp
( −2t

1− α2/12

)

, (47b)

while in the opposite limit

f‖(t) =
1

α2
exp(−2αt), (48a)

f⊥(t) =
1

α
exp(−αt). (48b)

On the basis of the results obtained for the time-
dependent correlation function of the fluctuations of the
propulsion direction, the time-dependent active diffusiv-
ity is calculated following two procedures. The first con-
sists of using the numerical solutions of f‖(t) and f⊥(t),
and then calculating the diffusivity by computing numer-
ically the integrals defined in (10a) and (10b). In addi-
tion to this numerical procedure, the exact analytical ex-
pressions are found after substituting the exact formulas
(35a, 35b) into (10a, 10b), respectively, to give

Dact
‖ (t)

U2
actτrot

= τmag

‖ f‖(0)
[

1− exp(−t/τmag

‖ )
]

, (49a)

Dact
⊥ (t)

U2
actτrot

= τmag
⊥ f⊥(0) [1− exp(−t/τmag

⊥ )] . (49b)
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FIG. 4. Parallel (a) and perpendicular (b) time-dependent active diffusivities as a function of dimensionless time t for different
α values. The diagonal dashed line, in both (a) and (b), defines two well differentiated propulsion regions: one directional or
ballistic (colored in light steel blue) and another diffusive (colored in dark grey).

In the limit of t → ∞, the long-time active diffusivity re-
lations (37a, 37b) are recovered. The numerical solutions
of the time-dependent active diffusivity for different val-
ues of α are shown in Figs. 4(a) and 4(b). The numerical
results are in good agreement with the exact solutions.
In the absence of a magnetic field (α = 0), the parti-

cle self-propels with an isotropic active diffusivity that
grows exponentially with time via Dact

‖,⊥(t)/U
2
actτrot =

[1− exp(−2t)] /6. At short times (t ≪ τrot), the par-
ticle moves without undergoing changes in its propulsion
direction (or ballistically) characterized by an active dif-
fusivity Dact(t) = U2

actt/3 that increases linearly with
time. At long times (t ≫ τrot), the propulsion direc-
tion of the particle is completely randomized by its own
rotary Brownian diffusion, which leads to a plateau re-
gion where the active diffusivity of the particle reaches a
constant value, Dact

∞ = U2
actτrot/6 [13], see Fig. 4. The

crossover behavior between ballistic (directional) to diffu-
sive (random) regimes in the dynamics of ABPs has been
verified experimentally in [40], where the 2D motion of
self-propelled catalytic particles immersed in hydrogen
peroxide solutions was analyzed. For self-propelled col-
loidal particles undergoing 2D active Brownian motion,
this crossover behavior was demonstrated analytically in
[10–12] via measurement of the mean squared displace-
ment.
As α is increased, the transition from directional to

diffusive regimes occurs much faster, as illustrated in
Fig. 4. This is better understood by examining the char-
acteristic timescale that regulates the crossover behav-
ior, here denoted as τcross. When no magnetic field is
applied, the transition from one region to another occurs
at τcross(α = 0) = τrot. In general, for any value of α,
the crossover time is twice the magnetic relaxation time
of the particle:

τcross = 2τmag (50)

which are directly obtained by multiplying (44a, 46b) by

a factor of two. On the other hand, even when both
the time scales are mathematically equivalent, they do
not represent physically the same thing. However, the
correlation time helps to explain why the crossover time
decreases as the field strength increases, and as a con-
sequence to understand why the crossover region in the
active diffusivity of the particle moves to the left upon
increasing the magnetic field, as illustrated in Fig. 4.
Combining (50) with (49a, 49b) and by evaluating the

results at the short (t ≪ τcross‖,⊥ ) and long (t ≫ τcross‖,⊥ )

time limits, the active diffusion crossover behavior, both
parallel ‖ and perpendicular ⊥, for any value of field can
be described by

Dact
‖,⊥

U2
actτrot

=







f‖,⊥(0)t t ≪ τcross‖,⊥ ,

f‖,⊥(0)τ
mag

‖,⊥ t ≫ τcross‖,⊥ .
(51)

This states that for short times, the active diffusion of
the particle increases linearly with the time with a slope
that decreases as the field strength increases. As the
time increases, the particle loses its directed propulsion
until it reaches a diffusive motion in the limit of long
times with a constant active diffusion coefficient given
by Dact

∞,‖,⊥ = U2
actτrotf‖,⊥(0)τ

mag

‖,⊥ that decreases with the

field strength, as illustrated in Fig. 3(a).

IV. CONCLUDING REMARKS

The time-dependent dynamics of a magnetic active
Brownian particle (ABP) undergoing three-dimensional
Brownian motion, both translation and rotation, in the
presence of a uniform magnetic field was studied. In or-
der to achieve that goal, properties such as the time-
dependent correlation function fλ(t), time-dependent ac-
tive diffusivity Dact

λ (t), and the characteristic crossover
time τcrossλ have been examined for different values of the
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Langevin parameter α and relative to the direction of
the applied field. The results obtained from theory have
been verified with Brownian dynamics (BD) simulations,
and they are in good agreement.
The results reveal that a uniform magnetic field affects

the dynamics behavior of a magnetic active particle. It
was found that the correlation function, the active dif-
fusivity, and the crossover time decrease upon increasing
the magnetic field strength. In addition to this hindered
effect, the field also induces anisotropy in the particle
dynamics. For instance, the correlation function paral-
lel to the field decays with time much faster than the
perpendicular one. The parallel active diffusivity grows
with time much slower than the perpendicular one. For
moderate values of the field, the parallel components of
the active diffusivity and crossover time are greater than
their perpendicular ones.
This study has shown that the transition from a bal-

listic (or directional) to a diffusive regime characteristic
of the ABP dynamics is regulated by the magnetic field.
In the presence of a magnetic field, the particle under-
goes a directional propulsion during a period of time that
decreases with an increase in the field. As a result, the
particle rapidly reaches a diffusive regime characterized
by a constant value of the active diffusivity. This latter
is called the long-time active diffusivity which decreases
with α.
The characteristic time that measures the transition

(or crossover) from one region to another is the crossover
time. This work has found that at short times (t ≪
τcrossλ ), the particle performs a directional propulsion
with an active diffusivity that increases linearly with
the time via Dact

λ (t) ∼ fλ(0)t, while, at long times
(t ≫ τcrossλ ), the particle undergoes a diffusive propul-
sion with a diffusivity equal to the long-time active dif-
fusivity, i.e. Dact

λ (t → ∞) = Dact
λ,∞. Finally, it was found

that for weak fields (α ≪ 1), the crossover time decreases
quadratically with α as τcrossλ ∼ 1/2 − α2, while in the
opposite field limit (α ≫ 1), it asymptotically decays to

zero as τcross ∼ α−1.
We provide relevant theoretical predictions of the ac-

tive diffusivity of the particle in all time regimes for dif-
ferent strengths of the external magnetic field. One of
the most important results is the characteristic time for
crossover from a ballistic to a diffusive regime. This re-
sult shows how in the presence of a magnetic field this
crossover time is regulated according to the magnetic
field strength. This characteristic time could be used
by experimentalists as an estimation of the time to wait
before reaching enhanced diffusion in a colloidal system
with more degrees of freedom than our simple model.
Future work in this area should address several gen-

eralizations of the magnetic ABP model. First of all, in
the present model, the particle self-propels along a direc-
tion that coincides with the magnetic dipole orientation.
This can be generalized to arbitrary relative orientations.
In experimental studies with magnetic ABPs, two types
of alignment between the propulsion direction and the
dipole orientation have been commonly observed: one
parallel [21–23] and the other perpendicular [19]. An-
other feature is to consider the spin motion of Brown-
ian type around an axis of revolution that, for example,
lies parallel to the dipole moment. A fundamental un-
derstanding of the time-dependent dynamics of an ABP
under a magnetic field is essential to extend the study
to more complex scenarios, such as their collective dy-
namics when many of these particles are manipulated by
external fields [41, 42].
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