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Crawling cell motility is vital to many biological processes such as wound healing and the immune
response. Using a minimal model we investigate the effects of patterned substrate adhesiveness and
biophysical cell parameters on the direction of cell motion. We show that cells with low adhesion site
formation rates may move perpendicular to adhesive stripes while a those with high adhesion site
formation rates results in motility only parallel to the substrate stripes. We explore the effects of
varying the substrate pattern geometry and the strength of actin polymerization on the directionality
of the crawling cell. These results reveal that high strength of actin polymerization results in motion
perpendicular to substrate stripes only when the substrate is relatively non-adhesive; in particular
this suggests potential applications in motile cell sorting and guiding on engineered substrates.

I. INTRODUCTION

Eukaryotic cell motility is crucial to many biological
processes ranging from wound healing [1] and the immune
response [2] to cancer metastasis [3]. The underlying
biophysical mechanisms leading to persistent cell motion
are generally understood: actin treadmilling (polymer-
ization) drives protrusions at the cell front [4, 5] while
adhesion complexes transfer traction forces to the sub-
strate [6] and myosin motors produce contractions at the
cell rear [7, 8]. However the interactions of these mecha-
nisms with external stimuli, e.g., varying substrate prop-
erties, remains relatively unexplored.
Prototypical cells for experiments, and subsequently,

mathematical models, are keratocytes (e.g., harvested
from fish scales). In homogeneous environments, once
individual keratocytes initiate motion they exhibit char-
acteristic crescent profiles and maintain essentially con-
stant shape, speed, and direction [9, 10]. Moreover as
the characteristic cell length/width is two orders of mag-
nitude larger than the height while motile, keratocytes
are amenable to 2D models and thus may be considered
the simplest cells for development of mathematical mod-
els (however there are additionally recent advances in 3D
modeling techniques [11]).
For a general overview of both biological aspects of

actin driven cell motility and of several modeling ap-
proaches we recommend the survey [12]. In particular, in
recent years both free boundary and phase-field models
have been extremely successful in replicating, explaining,
and predicting experimental results (e.g., [13–19]), see
for review [20]. We highlight that recent mathematical
analyses have elucidated biological mechanisms [21–24],
and numerical simulations have described a wide range of
behaviors ranging from motility initiation via stochastic
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fluctuations [25] to capturing various modes of motility
such as stick-slip and bipedal motions [26–28].
The focus of our study is the effect of variable sub-

strate properties on the direction of the cell’s motion. In
experimental settings the substrate may be coated non-
homogeneously with fibronectins which allow for the cre-
ation of adhesion complexes, resulting in regions of vari-
able adhesiveness. In [29] microcontact printing of re-
gions enriched with (or depleted of) fibronectins resulted
in alternating substrate stripes of high and low adhesive-
ness with period smaller than the cell size. In this setting
the authors in [29] found that keratocytes exhibited di-
rected motion parallel to the adhesive stripes. Similar
results exhibiting directed motion parallel to substrate
stripes were also obtained in [30, 31] for fibroblast cells.
We briefly mention other works which study the ef-

fect of non-homogeneous substrates. If the cell’s size is
smaller than the width of the adhesive stripe then both
experiment and modeling [28, 32] observe that the cell
may be contained within adhesive regions: when the cell
encounters a region of low adhesiveness it will change its
direction in order to remain on regions of high adhesive-
ness. Moreover, it has been observed that cell morpholo-
gies can be controlled when placed on specific adhesive
geometries [33, 34] and directionality can be controlled
on substrates with varying stiffness and micropatterning
[34–37]. As such, controlling and predicting the motil-
ity of keratocytes on engineered patterned substrates has
direct applications to cell screening and sorting both in
biomimetics [38] and experimental settings.
In this work we study the directionality of a motile cell

on a patterned substrate with alternating stripes of high
and low adhesiveness; here the cell size is assumed to be
larger than the stripe width so that the cell spans sev-
eral regions of both high and low adhesion, correspond-
ing to the experimental setup of [29]. We stress that
the dynamics of adhesion site formation are, in general,
complex [39–42]. In [28] a phase-field model which in-
cluded both dynamics of the adhesion site formation as
well as substrate deformation (e.g., due to traction forces
generated by the cell) was introduced. The authors in-



2

troduced patterned adhesiveness and reproduced the ex-
perimental results observed in [29] wherein cells moved
parallel to substrate stripes. The existence and stabil-
ity of such parallel motions were explained via analysis
of a simplified system of (ordinary) differential equations
(cf. system (1)-(5)). Surprisingly, in [28] it was also ob-
tained for certain parameter regimes that the cells move
perpendicular (rather than parallel) to substrate adhe-
sion stripes. More specifically, when the attachment rate
of adhesion complexes is sufficiently high (e.g., adhesive
parts of stripes have high adhesiveness), numerical sim-
ulations reproduce experimental results. When the at-
tachment rate of adhesion complexes is low (e.g., when
adhesive parts of stripes have low adhesiveness), numer-
ical simulations show that cells move perpendicular to
substrate stripes; this striking behavior has thus far re-
mained unobserved in experiments and merits additional
numerical investigation.

Due to the complexity of the phase-field model in [28]
there is no clear, simple mechanism to explain and differ-
entiate parallel and perpendicular motions. In this work
we extend the reduced model studied in [28] to a minimal
model allowing for motion in any direction. In particu-
lar this model is capable of reproducing both parallel and
perpendicular motion to stripes, previously only observed
in the full phase-field model simulations. This minimal
model suggests, in particular, the underlying mechani-
cal processes which may give rise to perpendicular mo-
tions by elucidating the effects of biophysical (e.g., actin
polymerization strength) and substrate properties (e.g.,
stripe sizes, adhesiveness) on the resultant direction of
motion.

II. RESULTS

A. Description of the minimal model

In [28] a 2D phase-field model of cell motility was in-
troduced to describe the onset and persistence of cell
motility as well as a broad range of cell morphologies.
The model contains four coupled differential equations:
a phase-field equation describing the location of the cell
membrane, ρ, an evolving vector field representing the
actin filament network, p, a scalar equation for density of
adhesion sites, A, and a Kelvin-Voigt visco-elastic equa-
tion for the deformation of the substrate, U. A descrip-
tion of these equations can be found in the Appendix; we
omit them here for brevity.

As exploration of the full phase-field model is com-
plicated we propose the following simplified system of
differential and algebraic equations which track the loca-
tion of the center of the cell (x, y) as well as the effective
adhesion of the cell to the substrate A and effective sub-
strate deformation U (see Fig. 1 for an illustration of the
model):

d

dt
x = Vx = f(Vx, Vy, A, y), (1)

d

dt
y = Vy = g(Vx, Vy, A, y), (2)

A = A0

(

1

2
(1 + sign(sin(k0y)))

)

(3)

d

dt
A0 = ā0 − d(U)A0 + ānlA

2
0 − s̄A3

0 (4)

−η
d

dt
U = GU + µA0. (5)

System (1)-(5) is derived from the phase-field model
in [28] after several simplifying assumptions; a detailed
derivation can be found in the Appendix. Here, Vx, Vy

are the velocities of the center of mass of the cell. The
functions f and g are quite complex and represent the
average effects of both shape deformations and the actin
filaments. They are derived from the equations for the
phase-field parameter ρ and the actin filaments p; the
explicit form of f and g and their derivation can be found
in the Appendix.
Equation (3) encodes the striped substrate by creat-

ing inhomogeneity in the y-direction, where k0 is the
wavenumber of microprinted stripe pattern. The scalar
A0 represents the spatially homogenized number of ad-
hesion sites (more precisely the integrin complexes which
engage both substrate and the cytoskeleton). Briefly, the
linear formation rate of adhesion sites is proportional to
ā0; due to non-linear feedback, existing adhesion sites
have a tendency to form new adhesion sites with rate
proportional to ānlA

2. Additionally there is local satura-
tion effects represented by s̄A3 and coupling with U , the
average substrate deformation through the d(U)A term.
The function

d(U) :=
1

2
(1 + tanh[b(U2 − U2

c )])

is an effective cut-off function which destroys adhesion
sites if the substrate deformation U exceeds some critical
value Uc.
The substrate is modeled as a visco-elastic material

with dissipation (viscosity) η and substrate stiffness G.
The substrate additionally moves in response to cell trac-
tion, represented by µA0.
We note that the system (4)-(5) is decoupled from

equations (1)-(2) so that A0 = A0(t) enters (1)-(2) as
a time varying coefficient depending on physical param-
eters. Since we will focus on the effect of varying initial
conditions and physical parameters on the motion of the
cell, this decoupling results efficient numerical simula-
tion. Indeed, we can compute A0 and U independently
from equations for Vx, Vy, and thus reduce overall com-
putation time and effectively decrease the search over
initial conditions by two dimensions. See Section IV for
a detailed description of the numerical methods used.
Although this decoupling represents a vast simplifica-

tion from the original model, subsequent numerical study



3

shows that we retain sufficient structure for meaningful
results; future work will investigate the fully coupled sys-
tem by replacing (5) by the original vector equation

−η
d

dt
U = GU+V, (6)

where V = (Vx, Vy).

In this reduced model we aim to replicate both the nu-
merically observed emergence of perpendicular motion to
the stripes as well as the experimentally observed paral-
lel motions whereby we may study the robustness of both
as well as understand the biophysical mechanisms which
give rise to each.

B. Smaller driving force required for motion on
striped substrate

We first consider the effect of a striped substrate on
the minimal driving force required for persistent cell mo-
tion. As observed in [28] if we take ā0 sufficiently small,
e.g., ā0 = .0025, then the system (4)-(5) tends to a limit
cycle. On the other hand taking ā0 large, say ā0 = .9,
then (4)-(5) tends to an equilibrium, suggesting the ex-
istence of a supercritical Hopf bifurcation in the param-
eter ā0; the point of bifurcation is ā0 ≈ .8. For sim-
plicity we take ā0 = .9 so that the pair (A0, U) tends
to an equilibrium (A∞, U∞). Following [28], we define
κ := 8αβτ21A∞/(81R2

0), the normalized driving force in
the cell and ζ = τ1Vx/R0, the dimensionless velocity. In
[28] a subcritical onset of motion was observed on ho-
mogeneous substrates: for κ < κc ≈ .746 there is no
persistent motion of the cell. At κ = κc a fold bifurca-
tion appears at the velocity ζ = 1.5, so that for κ > κc

there are two finite velocities. Numerics suggest that the
upper branch (corresponding to the larger non-zero ve-
locity) is stable and the lower branch (corresponding to
the smaller non-zero velocity) is unstable.

Upon inclusion of substrate stripes (with wavenumber
k0 = 2.5), the minimal driving force required for the
onset of persistent motion decreases to κc ≈ .395. As
expected, this motion is parallel to the substrate stripes.
A fold bifurcation appears at κ = κc at velocity ζ ≈ 1.6.
These numerical results are summarized in Figure 2

This predicts that microcontact printing may allow for
directed cell motion even for cells which cannot sustain
persistent motion on homogeneous substrates. These re-
sults are analogous to observations that the distance trav-
eled by a motile cell is larger when restrictions to the
cell geometry are imposed (e.g., diameter of the back-
ground matrix is made smaller than the cell diameter)
[43]. Moreover experimental results show that micro-
contact printing may dominate chemical cues for con-
traction driven motile cells (e.g., fibroblasts) [44].

C. Robustness of vertical trajectories decreases as
adhesion formation rate increases

Since f(0, Vy, A, y) = 0 then Vx = 0 is always a trivial
solution of Vx = f(Vx, Vy, A, y). We thus first investi-
gate the existence of persistent motion perpendicular to
the substrate pattern in the reduced system (2)- (5) with
Vx = 0. Numerical analysis shows that persistent motion
perpendicular to stripes is possible over a large range of
physical parameters. For subsequent results we use pa-
rameter values in Table I unless otherwise mentioned.
Estimation of these parameters is discussed in the Meth-
ods section of [28]. Values are taken to be the same as in
[28], except for η, ānl, s̄, d, which are modified resulting in
a decrease to the period of the (A0, U) limit cycle. These
changes were necessary to achieve meaningful results and
are the result of the simplifications of the model.

Surprisingly our numerical analysis also shows persis-
tent vertical trajectories exist for all values of ā0 (in con-
trast to results obtained in the full PDE model). First
taking the effective linear attachment rate ā0 = .0025,
the A0-U system exhibits a limit cycle (i.e., stick-slip
behavior), which in turn results in large oscillations in
the y velocity, see Fig. 1. Taking ā0 = .9, then the
A0-U system tends to equilibrium but a purely perpen-
dicular motion still exists. Oscillations in the y velocity
result only from the non-homogeneity of the substrate
and thus are smaller than in the case of oscillating A0

and U0. Since persistent motion perpendicular to stripes
is observed for all values of ā0, in order to corroborate
our results with the full PDE simulations, we aim to un-
derstand the robustness of perpendicular trajectories via
a stability analysis of the vertical motion as a function of
ā0. That is, we consider the long time direction of mo-
tion if the initial x-velocity Vx is chosen to be non-zero.
Due to the algebraic dependence of Vx in (1) classical lin-
ear stability analysis techniques are not available. Thus,
to study stability of vertical trajectories, we exhaustively
search initial conditions numerically in order to see long
time asymptotics, for details see Section IV.

We define θ to be the angle (in degrees) of the initial
velocity of the cell from the positive vertical axis, see Fig.
1. For each ā0 we exhaustively search initial conditions
y0 in order to determine the maximal value of θ which
gives rise to persistent vertical motion. We define max θ
to be the maximal θ over all possible initial conditions.
The dependence of max θ on ā0 is shown in Fig. 3.

We observe that max θ is largest where a0 is small, indi-
cating that vertical motion is more robust in this regime.
This corresponds with the results in [28]; in particular
max θ is largest in the regime that the cell undergoes
stick-slip motion (i.e., limit cycles in the A0 − U sys-
tem). Stick-slip motion physically represents alternating
phases of protrusion and retraction of the leading edge
of the cell. For example, as actin filaments and adhesion
sites form at the leading edge of the cell, stresses counter-
ing actin polymerization grow and protrude the leading
edge. The adhesion sites can be thought of as many weak
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(a) (b)

FIG. 1. (a) Sketch of cell motion on substrate with patterned stripes of adhesiveness described by (1)-(5); θ measures the
deflection of the initial velocity from the vertical axis. (b) For small values of ā0 the keratocyte experiences significant
oscillations in velocity, adhesion density, and substrate deformations, here, ā0 = .0025. Oscillations in number of adhesions
and substrate deformations are linked to stick-slip motion. For ā0 > .8, values of A0 and U tend to a stable equilibrium. Due
to inhomogeneity of the substrate, the velocity Vy still has oscillations although with smaller amplitude.
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FIG. 2. (a) Bifurcation diagram showing the onset of finite velocity cell motion (with dimensionless cell velocity ζ) as the
dimensionless driving force κ increases (where ζ and κ are defined in Section IIB). In the absence of substrate patterns
(k0 = 0), the minimal driving force for the onset of motion is κc ≈ .746 (solid line), originally calculated in [28]. In the presence
of substrate patterns (k0 = 2.5) the minimal driving force for cell motion decreases to κc ≈ 3.95, providing evidence that a
smaller driving force is required for motility of cells on patterned substrates. (b) The effect α on the direction of motion of the
cell. The parameter α measures the rate of advection of the cell by the actin network and is a function, e.g., of the integrin
ligand bond strength and actin filament stiffness. From the same initial position (x, y) = (0, .6) (approximate center of an
adhesive stripe) we plot the location of the cell for various values of α after simulation time t = 25. We take as initial velocity
the solution of (1)-(2) closest to (Vx, Vy) = (.3, .6). For small values of α (α < 3) the cell halts and is trapped in a non-adhesive
stripe, for moderate values of α (3 < α < 4) the cell exhibits perpendicular motion, and for large values of α (α > 4) the cell
exhibits parallel motion. This qualitative change in behavior based on cell biophysics suggests a mechanism for cell sorting.



5

TABLE I. Physical parameter values used in numerical simulations.

parameter value description
R0 3 radius of cell
β 3 creation of p at interface
τ1 10 degradation of p inside cell
k0 2.5 wave number of substrate pattern
α 1− 3 advection of ρ by p

η 1 dissipation in the adhesive layer
G .15 substrate stiffness
ā0 .0025 − 1.4 linear attachment rate of adhesion sites
ānl 15 effective collective (nonlinear) attachment rate of adhesion sites
s̄ 10 local saturation of adhesion sites
d 10 detachment rate of adhesion sites
b 5 sharpness of breaking function

Uc

√
5 critical extension to break adhesive contacts

µ .5 effective cell/substrate traction

(b)

FIG. 3. (a) The maximal angle of the initial velocity for which the cell tends to persistent perpendicular motion is max θ.
For small values of ā0 perpendicular motion is possible (max θ > 0). For large values of ā0 only parallel motion is possible.
The dotted line at ā0 = .8 represents the maximal value for which (A0, U) exhibits a limit cycle; for ā0 < .8 the cell exhibits
stick-slip behavior (i.e., (A0, U) exhibits a limit cycle); there the cell potentially has non-zero max θ. This provides evidence
that perpendicular motion is facilitated by stick-slip behavior Simulations are done using the system (1)-(5). (b) Simulation
of (7)-(8) with (3)-(5) (ε = .0005) shows a larger basin of attraction for perpendicular motion. Even for nearly horizontal
initial conditions the cell may eventually move perpendicular to stripes, as originally observed in the full phase-field model [28].
Dependence of max θ on ā0 is no longer continuous. Interestingly, the existence of perpendicular motion corresponds almost
exactly to the regime of stick-slip behavior.

bonds, so that a stochastic breaking of adhesion results
in a larger load of stress on the remaining adhesion sites,
leading ultimately to a retraction of the leading edge.

When ā0 is sufficiently large, the pair (A0, U) tends
to an equilibrium (A∞, U∞). The equilibria A∞ and U∞

both increase with ā0. Interestingly U∞ is approximately
U∞ ≈ R0 when max θ = 0. Although substrate vari-
ations of the order of magnitude of the cell size are un-
physical (an artifact of our approximations), we conclude
that large substrate variations may lead to stabilization
of parallel motion whereas small substrate variations al-
low for perpendicular motion to stripes. This hypothe-

sis agrees with previous numerical and experimental evi-
dence which shows that cells may overcome variations in
substrate stiffness provided the substrate is sufficiently
stiff [28, 32].

D. Aspect ratio of substrate stripes sorts cells
depending on actin polymerization strength

We investigate the motion of cells on substrates with
striped patterns of adhesiveness where the ratio of ad-
hesive stripe width to non-adhesive stripe width is not



6

necessarily equal. Let L1 be the width of the adhesive
stripe and L2 to be the width of the non-adhesive stripe
so that L := L1 + L2 is the period of the substrate pat-
tern. We investigate the effect of varying the ratio L1/L
on max θ.

Here, we keep ā0 constant (ā0 = .0025) and vary
L1. Since α is a key physical parameter measuring the
strength of actin polymerization, we additionally investi-
gate how changing α changes these data. The results are
summarized in Fig. 4.

It is clear that if L1 = 0 or L1 = L then the cell cannot
create a biased directionality and max θ = 0. This is
expected since if the adhesive stripe is too small then the
cell cannot develop a sufficient number of adhesive bonds
to the substrate to initiate persistent motion. On the
other hand if L1/L ≈ 1 the substrate is entirely adhesive
and the substrate is effectively homogeneous.

Interestingly we observe an inverse, monotonic depen-
dence between the actin polymerization strength α and
the percentage of adhesiveness of the substrate which re-
sults in perpendicular motion to stripes. If the substrate
is predominantly non-adhesive then the cell requires high
actin polymerization strength to generate perpendicular
motion and vice-versa. This suggests that different ef-
fectiveness of internal biophysical parameters may lead
to different behaviors of the cell depending on the shape
of the patterned substrate, providing evidence for cell
sorting and directed cell motility. In Figure 2 we plot
the location of cells with varying values of α after sim-
ulation time t = 25. We initialize all cells at location
(x, y) = (0, .6), which is in the middle of an adhesive
stripe of the substrate. For comparison, we take as ini-
tial velocity for each cell the solution of (1)-(2) closest
to (Vx, Vy) = (.3, .6). We observe that for small values
of α (α < 3) the cell halts on the non-adhesive stripe.
Additionally, for moderate values of α (3 < α < 4) the
cell exhibits perpendicular motion, while for large values
of α (α > 4) the cell exhibits parallel motion to stripes.

E. Inertia increases the basin of attraction of
persistent perpendicular motion

Thus far, the basin of attraction for vertical motion
has been bounded by max θ < 40. However in full PDE
simulations even with motion initialized parallel to the
stripes, the cell switches directions and begin moving
perpendicular to the stripes (provided a0 is sufficiently
small) so that max θ ≈ 90. We predict that this discrep-
ancy arises from the lack of memory in the reduction (1)
- (5). That is, we neglect both shape deformation and
directional inertia (or memory) which are present in the
full PDE model. In particular, there is finite time relax-
ation of the actin vector field which is neglected in the
reduced equations.

To include these inertial effects we modify (1)-(2):

εẍ+ ẋ = f(ẋ, ẏ, A, y) (7)

εÿ + ẏ = g(ẋ, ẏ, A, y), (8)

where ε is an effective inertial coefficient characterizing
the time of relaxation of the cell’s directional inertia.
This coefficient is a function of both shape deformations
and relaxation of the actin polymerization field. Mathe-
matically it is also important to note that ε > 0 provides
regularization in (7)-(8) absent in (1)-(2), e.g., given ini-
tial conditions, solutions are now unique for all time. We
compare numerical results with those results obtained for
ε = 0, see Fig. 4. Again, our interest is to study the de-
pendence on max θ as a function of ā0.
As (7)-(8) is a singular perturbation of (1)-(2), it is

natural that the behavior drastically changes qualita-
tively. However, it is surprising that the value of max θ
becomes approximately piecewise constant in numerical
studies. We observe that for ε = .0005 the positive value
of max θ is very large: max θ ≈ 77, agreeing with sim-
ulations in [28]. This suggests that memory of shape
deformations as well as persistence of the actin network
may be correlated with persistent motion perpendicular
to the stripes. Moreover we note that by varying the
value of ε over two orders of magnitude (ε = 0.0001 to
ε = 0.01), the effect on values of max θ is very small, so
we omit these results.

III. DISCUSSIONS

We have presented a reduced system derived from the
full phase-field model of [28]. The reduced system is
much less computationally expensive to solve while still
retaining meaningful qualitative solutions: we reproduce
both perpendicular and parallel persistent cell motions
on periodically striped substrates. Our numerical study
indicates that the robustness of vertical and horizon-
tal motions can be quantified via consideration of long
time asymptotics over all initial conditions (measured by
max θ). These simulations indicate that small adhesion
site formation rates are necessary for persistence of per-
pendicular motions.
Moreover, we observed an inverse, monotonic depen-

dence of actin polymerization strength on the amount
of adhesive substrate which would lead to perpendicu-
lar motions. We believe that carefully engineered sub-
strates could utilize this relationship in applications of
cell sorting and directed cell motility. We interpret the
inverse dependence of actin polymerization strength and
substrate adhesion on the ability to move perpendicular
to stripes physically as follows. The actin polymeriza-
tion strength and substrate adhesion together generate
traction forces of the cell on the substrate. So, our re-
sults indicate that if the traction forces generated by the
cell on the substrate are too large, then the cell cannot
achieve perpendicular motion to stripes. On the other
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ε = 0.005ε = 0

FIG. 4. The value of α and substrate pattern affect the direction of keratocyte motion. The value of α measures the rate of
advection of the cell by the actin network. The patterned substrate has constant period L but has varying width L1 of the
adhesive stripe. It is seen that if α is small then the cell requires a wider adhesive stripe in order to move perpendicular to the
stripe and vice versa. This suggests a mechanism for cell guiding and sorting. These trends hold both for dynamics with and
without inertia. For all simulations we fix ā0 = .0025. For simulations with inertia we use ε = 0.005.
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hand, if the generated traction forces are small (but still
large enough to generate persistent motion), then the cell
may move perpendicular to stripes.
Further developing this physical mechanism, one can

imagine a cell which is initially moving perpendicular to
stripes. If the substrate adhesion bonds are too strong,
then the cell is “pulled” towards the adhesive parts of
the substrate, preventing the cell from crossing nonad-
hesive stripes. On the other hand, if substrate adhesion
bonds are relatively weak, then the directional inertia of
the actin network may overcome those forces which are
“pulling” the cell towards adhesive regions so that the
cell crosses the non-adhesive stripe and achieves perpen-
dicular motion.
Finally, by including memory (e.g. due to a finite re-

laxation time of the cell shape) we obtain a singularly
perturbed system which shows closer agreement with full
phase-field simulations: for small values of ā0 the initial
velocity may be almost parallel to stripes and still we
observe persistent perpendicular motion over long time.
These results suggest that shape deformation and direc-
tional inertia of the cell are necessary for the cell to move
perpendicular to the substrate stripes in a robust way.
We believe that this methodology of reduction from a

PDE model to finite dimensional models (e.g., systems
of ordinary differential equations) may be applicable to
a wide range of physical models. Their subsequent an-
alytical and numerical study may provide new physical
insights.

IV. METHODS

We solve system (1) - (5) using a forward Euler finite
difference scheme, resulting in an explicit scheme for both
A0 and U . For example, At+∆t

0 , the value of A0 at time
t +∆t, depends only on the values of the previous time
steps:

At+∆t
0 = At

0 +∆t
[

ā0 − d(U t)At
0 + ānl(A

t
0)

2 − s̄(At
0)

3
]

.
(9)

We note that Vx is defined via an algebraic equation, as
opposed to a differential equation. As such, to solve the
implicitly defined velocities Vx and Vy we first require a
nonlinear function solver. We use a predefined function
in Scilab (fsolve), which is based on an iterative Powell
hybrid method and again use a forward Euler finite dif-
ference scheme to update (xt+∆t, yt+∆t), the position of
the cell at time t + ∆t, based on the velocity at time t,
(V t

x , V
t
y ):

xt+∆t = xt +∆tV t
x (10)

yt+∆t = yt +∆tV t
y . (11)

We verified the validity of the numerical scheme by tak-
ing sufficiently small time discretizations until the nu-
merical solutions converged.
In order to conduct an exhaustive search through all

initial conditions we first simulate the longtime dynamics

of (4)-(5) to determine either the value of the equilibrium
point or the stable limit cycle. In the former case, we
assign the limiting equilibrium value as the initial condi-
tions for A0 and U . In the latter case, we fix a point on
the limit cycle. For consistency, we choose the point on
the limit cycle where A0 is maximal. Simulations indi-
cate that fixing this initial condition for (A0, U) is qual-
itatively the same as simulation of all initial conditions
for (A0, U) on its limit cycle.
When viewed as an algebraic system, (1)-(2) has non-

unique solutions (Vx, Vy) for fixed y. Thus for a fixed
value of y0 ∈ [0, k0/2π] we compute all admissible initial
velocities Vx(0), Vy(0) and simulate the long time dynam-
ics of each. We note that since solutions of (1)-(2) will
generically be non-unique, to ensure physical solutions we
assume that velocities are continuously changing in time;
that is we initialize the iterative solver at the velocity of
the previous time step. This provides a type of iner-
tia which we distinguish from that introduced in (7)-(8):
indeed continuity of velocity captures inertia which is
present even in the absence of actin dynamics and shape
deformations. System (7)-(8) reincorporates the inertia
of the actin filaments and shape deformations of the cell,
which are originally lost in the minimal approximation.
For each numerical solution we deduce if either (i) the

motion becomes eventually horizontal, (ii) the motion
becomes eventually vertical, (iii) the motion eventually
stops, or (iv) there is no continuous in time velocity which
solves (1)-(2) for all time. Since the equations (1)-(2) are
nonlinearly coupled, case (iii) may arise, for example, as
the result of bifurcations in the Vx-Vy solution plane as
A or y vary. If such a discontinuity occurs, it is deemed
unphysical and so we omit this scenario from our analy-
sis. We believe that these unphysical results are due to
the decoupling of the (A0, U) dynamics from the (Vx, Vy)
dynamics, which may lead to “out-of-phase” oscillations
of the (A0, U) and (Vx, Vy) systems. We expect that re-
coupling their dynamics (e.g., by replacing (5) by (6))
may remove these unphysical behaviors; this is left for
future work.
Thus, a summary of our numerical algorithm to solve

(1)-(5) is

1. Fix physical parameter values

2. Initialize the values (A0, U) to correspond to either
the maximal A0 value of the limit cycle or the equi-
librium value.

3. For all initial positions y ∈ [0, k0/2π] and all initial
velocities (which solve (1)-(2)), calculate the long
time behavior of the velocity (Vx, Vy).

To solve the system with inertia, (7)-(8), we only
change the method by which we solve for (Vx, Vy). Here,
let (S, T ) = (Vx, Vy) so that

εṠ + S = f(S, T,A, y) (12)

εṪ + T = g(S, T,A, y) (13)
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constitutes a system of first order differential equations
(with known parameter y). Then, as above we use a for-
ward Euler finite difference scheme to solve for S, T in
terms of the values at previous time steps. We note that
solving (7)-(8) requires small time steps ∆t ≪ ε to en-
sure convergence as it is a singularly perturbed system.

In general we may take any initial velocities Vx(0), Vy(0),
however we restrict ourselves to initial conditions which
are compatible with initial velocities computed in the
case that ε = 0 so that results may be compared: given
an initial y0 we initialize Vx(0), Vy(0) to be admissible
solutions to the system (1)-(2).
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V. APPENDIX

A. Phase-field model

In [14] a 2D phase-field model of cell motility was intro-
duced to describe the onset and persistence of cell motil-
ity as well as a broad range of cell morphologies. This
model contains two PDEs. First, a phase-field param-
eter ρ describes the location of the cell membrane (i.e.,
ρ ≈ 1 on the interior of the cell and ρ ≈ 0 outside of the
cell). Second, the motion of the cell membrane is actively
driven by a vector field p which models the averaged ori-
entation field of the actin filament network.
The coupling of these equations reflects two main ex-
perimental observations: (i) the nucleation of branches
of actin filaments near the cell membrane via Wiskott-
Aldrich syndrome proteins (WASP) activation of the
ARP2/3 complex and (ii) presence of actin filaments al-
lows for the creation of adhesive contacts and subsequent
transfer of momentum of the polymerizing actin network
to the substrate driving the cell membrane. Addition-
ally the model enforces approximate volume preservation.
The full PDE model introduced in [14] is:

∂tρ = Dρ∆ρ− (1− ρ)(δ − ρ)ρ− αAp · (∇ρ), (14)

∂tp = −τ−1
1 p− τ−1

2 (1− ρ2)p− β∇ρ− γ[(∇ρ) · p]p. (15)

Volume preservation of the cell is enforced by introduc-
ing a time-dependence in the double-well potential of the
phase-field model via δ = δ(t) (for details, see [14]):

δ(t) :=
1

2
+ µ

(
∫

ρ(x, y, t)dxdy − V0

)

, (16)

with µ the stiffness of the volume preservation constraint.
Integration here and in all subsequent calculations is
taken over the 2D plane. For our subsequent analysis we
assume that τ−1

2 = γ = 0. In particular, the term con-
taining γ accounts for symmetry breaking due to myosin
driven contraction in the rear of the cell; since our sub-
sequent analysis initializes data with non-zero velocities,
this symmetry breaking is not required for capturing per-
sistent motion. Moreover it is mentioned in [28] that self-
sustained cell motion is possible in the system (14)-(15)
even without this term. We refer the interested reader to
[14, 28] for a full description of the model.
In [14] it is assumed for simplicity that the friction gen-

erated from adhesion complexes is homogeneous so that
A is constant. To account for the complex interaction
between cell and substrate it is necessary to include the
dynamics of adhesion site formation, see [28]:

∂tA = DA∆A+ ρ(a0p
2 + anlA

2)− sA3 − d(U)A. (17)

These adhesion contacts describe integrin complexes
which (through a series of intermediate proteins such as
zyxin, talin, and vinculin) engage both the substrate and
the cytoskeleton.
In the final term of (17), the function d(U) describes

the coupling of A to the average substrate deformation
U(t), with U = |U|:

d(U) =
1

2
(1 + tanh[b(U2 − U2

c )]), (18)

where U satisfies

d

dt
U = −

1

η
(GU +V), (19)

where η is the effective viscous friction of the substrate, G
is an effective spring constant and V is the velocity of the
cell’s center of mass. That is, the substrate is viewed as
a Kelvin-Voigt visco-elastic material and adhesion sites
are broken if deformations exceed the threshold Uc.
As all attachment/detachment rates are effective pa-

rameters, they incorporate both characteristics of the
adhesion complex as well as the substrate preparation.
Thus, spatial inhomogeneity in the substrate may be in-
troduced through coefficients, e.g., spatial dependence of
a0 = a0(y).

B. Derivation of the reduced system

We reduce the system (14) to a two-dimensional sys-
tem for the location of the center of the cell (x, y). All
assumptions are analogous to those made in [28]. The
biggest difference is that we do not assume that Vy ≪ 1
and as such we have more complex coupling between all
equations. We first assume that the cell has fixed circular
shape for all time:

ρ(x, y, t) = ρ(x− x0(t), y − y0(t)), (20)
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where

ρ(x, y) = exp(−(x2 + y2)/R2
0). (21)

In particular, using ansatz (20) and definition (16), we
see that the total area enclosed by the cell is fixed and
that δ ≡ 1

2 . We denote the velocity of the center of the
cell V = (Vx, Vy) = (ẋ0, ẏ0). Multiplying (14) by ∂xρ,
and integrating over the domain yields

Vx

∫

(∂xρ)
2 = α

∫

Ap · (∇ρ)∂xρ. (22)

Likewise multiplying (14) by ∂yρ and integrating we have

Vy

∫

(∂yρ)
2 = α

∫

Ap · (∇ρ)∂yρ. (23)

We likewise assume that

p(x, y, t) = p(x− x0(t), y − y0(t)) (24)

to rewrite equation (15):

−V · ∇p = −τ−1
1 p− β∇ρ. (25)

Under the assumption that |V | is small:

p(x− τ1Vx, y − τ1Vy) = p− τ1V · ∇p+O(τ21V
2) (26)

= −τ1β∇ρ(x, y). (27)

Thus to first order

p(x, y) = −τ1β∇ρ(x + τ1Vx, y + τ1Vy). (28)

To simplify the equation for A we first consider the
problem on a homogeneous substrate (i.e., a0 is constant)
and consider the following ansatz for the adhesion sites
density: A = A0(t)ρ(x, y, t)+δA1(x, y, t) where δ is much
smaller than the size of the cell. That is, we assume that
A is essentially spatially constant on the interior of the
cell. Plugging this expansion into (17) and integrating
over the domain we have to leading order:

d

dt
A0 = ā0 − d(U)A0 + ānlA

2
0 − s̄A3

0, (29)

where

ā0 = a0
〈ρp2〉

〈ρ〉
, ānl = anl

〈ρ3〉

〈ρ〉
, s̄ = s

〈ρ3〉

〈ρ〉
, (30)

with 〈f〉 :=
∫

fdxdy.
Similarly we can simplify the equation forU to a scalar

equation under the assumption that U and V are essen-
tially co-linear. As in [28] we make the approximation
V (t) ≈ 〈αA0p〉 ≈ ᾱA0, where µ is a numerical constant:

−η∂tU = GU + µA0. (31)

We note that the assumption V (t) ≈ ᾱA0 decouples
the A0 − U system from the Vx − Vy system. This is

a restrictive assumption, which we alternatively moti-
vate as follows: the equation for substrate deformation
is η d

dtU = GU + V . Writing the equation for velocity
in the form V = F (A0, y), we have after substitution
η d
dtU = GU + F (A0, y). Averaging with respect to the

y-variable (e.g., when the substrate period is fast com-
pared to the limit cycle period), then the equation is

written η d
dtU = GU + F̃ (A0), decoupling the systems.

Finally, in order to simulate the patterned substrate
we approximate A to have the form

A = A0(t)

(

1

2
(1 + sign(sin(k0y)))

)

. (32)

For subsequent numerical simulations, we use the first
two terms of the Fourier expansion of (32) for simplicity
and regularity.
By plugging in (28), (32) into (22)-(23), we derive

the equations Vx = f(Vx, Vy, A, y), Vy = g(Vx, Vy, A, y),
where f and g are defined as follows:

f :=I0 · (I1 − 6e−(1/12)k2

0
R2

0(I2 + I3)

− 2e−(3/4)k2

0
R2

0(I4 + I5))

where

I0 :=

(

4αAβ

243πR4
0

)

e−(2τ2

1
(V 2

x
+V 2

y
))/(3R2

0
)τ21Vx

I1 :=3π(−3R2
0 + 4τ21 (V

2
x + V 2

y ))

I2 :=2k0R
2
0τ1Vy cos(k0((τ1Vy)/3 + y0))

I3 :=(−6R2
0 + k20R

4
0 + 8τ21 (V

2
x + V 2

y ))

· sin(k0((τ1Vy)/3 + y0))

I4 :=6k0R
2
0τ1Vy cos(k0(τ1Vy + 3y0))

I5 :=(−6R2
0 + 9k20R

4
0 + 8τ21 (V

2
x + V 2

y ))

· sin(k0(τ1Vy + 3y0)),

and

g :=J0 · (J1 · J2 + J3 + τ1Vy(−3R2
0

+ 4τ21 (V
2
x + V 2

y ))(J4 + J5)).

where

J0 :=−

(

4αAβ

243πR4
0

)

e−(3/4)k2

0
R2

0
−(2τ2

1
(V 2

x
+V 2

y
))/(3R2

0
)τ1

J1 :=− 24R2
0 + k20R

4
0 + 4τ21 (2V

2
x + 3V 2

y )

J2 :=3e(2k
2

0
R2

0
)/3k0R

2
0 cos(k0((τ1Vy)/3 + y0))

J3 :=3k0R
2
0(−24R2

0 + 9k20R
4
0 + 4τ21 (2V

2
x + 3V 2

y ))

· cos(k0(τ1Vy + 3y0))

J4 :=− 3πe(3k
2

0
R2

0
)/4 + 12e(2k

2

0
R2

0
)/3

· sin(k0((τ1Vy)/3 + y0))

J5 :=4 sin(k0(τ1Vy + 3y0))
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For all simulations we use parameter values from Table
I.
If we assume that Vy = 0 we of course recover equation

(14) in [28]. We note that due to homogeneity of the
substrate in the x direction, equation Vx = f(Vx, Vy, A, y)
is algebraic; letting ζ = Vx:

ζ = f(ζ, ẏ, y) (33)

ẏ = g(ζ, ẏ, y). (34)

Importantly (33)-(34) may not be in general solvable (or
have a continuous in time solution) for all values of ẏ, y.
This leads to difficulty of both numerical simulations as
well as prevents the use of classical linear stability anal-
ysis.

We highlight here that the reduction described above is
similar to the one conducted in [28] however we addition-

ally incorporate expansions for the Vy component. More-
over the equation for the effective adhesion A0 is derived
using the asymptotic expansion A = A0(t)ρ(x, y, t) +
δA1(x, y, t) which gives rise to the effective coefficients
(30).
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