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We propose a new framework for modeling the evolution of functional failures and recoveries
on complex networks, with traffic congestion on road networks as the case study. Different from
conventional approaches, we transform the evolution of functional states into an equivalent dynamic
structural process – dual vertex splitting and coalescing embedded within the original network
structure. The proposed model successfully explains traffic congestion and recovery patterns at the
city-scale based on high-resolution data from two megacities. Numerical analysis shows that certain
network structural attributes can amplify or suppress cascading functional failures. Our approach
represents a new general framework to model functional failure-recovery on flow-based networks,
and allows understanding of the interplay between structure and function for flow-induced failure
propagation and recovery.

I. INTRODUCTION

Flow-induced functional failures are common phenom-
ena on many human engineered and natural flow-based
networks. The functional performance of such networks
is reflected by how efficiently flow is propagated across
the network, and their functional failures are mostly due
to flow overload (e.g. traffic congestion on transporta-
tion network; power surge on electric grids; flooding on
drainage network). Traffic congestion on urban road net-
works is a typical case of functional failure processes on
flow-based networks. It can be perceived as a form of
temporary partial functional failure resulting from high
traffic load. Under congestion, certain segments of roads
are temporarily closed or operating with reduced effi-
ciency, causing partial or full functional losses in the net-
work. Compared with structural disruptions, functional
failures such as traffic congestions are more frequent, and
pose significant operational and monetary loss to urban
communities.

It is always desired to design infrastructure networks
that suppress the emergence and cascading of functional
failures. However, even the first step towards this goal,
modeling the functional failure process and the resulting
network performance, has been shown to be a difficult
and not well-understood problem. The structural char-
acteristics and functional features of flow-based networks
interact in complex ways that jointly determine how and
where the functional failures emerge, how the functional
failures propagate and how recovery occurs [1–8].

Traditional approaches on functional failure analy-
sis seek to obtain the network functional performance
by solving for flow patterns on the network using
optimization-based methods [9, 10] or traffic simulation
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[11, 12]. This detaches network functional performances
from structural details, leading to an incomplete under-
standing of the underlying mechanisms of the failure-
recovery processes. Incorporating the propagation char-
acteristics of real-world flows and their overloading be-
haviors on structural analysis has long been recognized
as a challenging research question [13–15]. This is be-
cause the flow patterns on the network are governed by
both the flow propagation principles (e.g., traffic equi-
librium in traffic networks [9, 10], routing behavior in
information networks [16–18], minimum energy dissipa-
tion principle in river networks [19, 20], etc.) as well as
the network structure [21]. Overlaying flow propagation
principles on the structure of networks is difficult, which
has been shown to be analytically tractable only under
special cases, such as trees [20], star-like and homoge-
neous structured networks [14] or ring-and-hub structure
[2, 22]. To model the functional failures and recoveries
in real-world networks, new analytical tools need to be
developed to capture the non-trivial interactions between
network structure and functions.

We propose a vertex split-recovery model for exam-
ining traffic congestion evolution process on urban road
networks. Unlike traditional studies that distribute traf-
fic flow on the network and use road capacities to identify
congestion [9, 10], the proposed model transforms conges-
tion as a dynamic structural process on the network. The
model is built upon a dual representation of road net-
works augmented with functional states. We show that
the congestion/recovery on a road network under this
representation is equivalent to the splitting/coalescing
of dual vertices. To construct the model, we collect
high temporal resolution network traffic state data from
two megacities in China (Beijing and Shanghai). Based
on the insights from empirical observations, we model
the vertex split-recovery process as a composite of four
stochastic processes: 1) self-splitting, vertex split due to
network-wide loading of traffic; 2) self-contagion, conges-
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tion propagates along the same roads (same dual vertex);
3) neighbor-contagion, congestion cascades to neighbor-
ing roads (neighboring dual vertex); and 4) recovery, con-
gestion on road segments recovers (coalescing of split dual
vertices). The proposed model can explain the conges-
tion evolution phenomenon in the real-world data, and
provides new insights on the interplay of structure and
function in flow-based networks.

II. FUNCTIONAL DUAL MAPPING AND
VERTEX SPLIT-RECOVERY

Conventional representation of road networks perceives
intersections as vertices and road segments as edges, re-
ferred to as primal networks. Recently, the dual rep-
resentation of road networks is gaining more attention
by researchers, which represents the intersections as dual
edges, and merges the individual road segments into
meaningful stretches of roads represented as dual ver-
tices based on certain criteria, e.g. axial direction, name
of the street, road classes or continuity [23–25]. The con-
cept of dual representation is different from the ”dual
graph” in graph theory, which relates to the faces of pla-
nar graphs. The Hierarchical Intersection Continuity Ne-
gotiation (HICN) model [25, 26] is among the best dual
representation approaches for road networks. According
to HICN, two consecutive road segments belong to the
same road if they have same road class and the convex an-
gle they form is close to 180 degree. The benefits of using
dual representation are that the dual-mapped networks
are no longer constrained by the planar embedding, and
uncover the underlying network hierarchy. For example,
the important roads in the network tend to be long and
connected to many other roads, which leads to large ver-
tex degree in the dual-mapped network. An important
finding is that both small-world and scale-free properties
are observed in the dual representation of road networks
[23–25]. It is found that the dual vertex degree distribu-
tions of different road networks have similar power-law
exponent γ varying between 2-3 [23, 24].

We consider an extended form of HICN dual mapping
that incorporates the functional states of the network, re-
ferred as functional dual mapping. The key idea is to per-
form dual mapping on a function state encoded network.
This treatment enables converting the congestion evolu-
tion, a functional process into a structural process (see
Fig.1). Fig.1 provides an illustration of functional dual
mapping. Consider the road 2 in network G in Fig.1(a),
under dual representation, road 2 will be mapped to a
dual vertex in Fig.1(c) that consists of road segments
KH, HE, EB. Assume road segment HE gets congested
and temporarily lost its functional connectivity. From
the functional perspective, the current network is equiv-
alent to a network with road segment HE removed (re-
ferred as G′). If dual mapping is performed on G′, road
2 will be represented as two disconnected dual vertices 2′

and 2′′ in Fig.1(d). Under functional dual mapping, the

congestion and recovery on road segments are equivalent
to dual vertex splits and merging of the previously split
dual vertices in the functional dual-mapped networks (re-
ferred as function augmented dual network). We refer
to the original dual-mapped network as the base dual
network GD(VD, ED), which corresponds to the network
without any congestion.

To track the dynamic vertex split-recovery process that
represents the congestion evolution, the functional dual
mapping is applied and creates a series of function aug-
mented dual networks GtD(V tD, E

t
D) for each time step t

(see Appendix A). The variations of dual degree distri-
butions within a day for the function augmented dual
networks can be found in Fig.2. The degree distribu-
tion of the base dual network can be fitted into a power
law distribution p(k) ∼ k−γ for k ≥ kmin. In the func-
tion augmented dual network, high degree dual vertices
are more likely to experience vertex split, causing faster
probability decay at the tail. This lead to the deviation of
power law distribution, but can be better fitted to power
law with exponential cutoff distribution p(k) ∼ k−γe−κk.

FIG. 1: Illustration of functional dual mapping and
vertex split-recovery process. (a) Primal representation
of the road network, the roads are labeled as numbers
and intersections are labeled as letters. (b) The dual
representation of the road network in (a). (c) and (d)

are the split and recovery of dual vertex 2 due to
congestion on HE segment of road 2.

III. EMPIRICAL OBSERVATIONS

To explore the behavior of real-world vertex split-
recovery process, we perform empirical analyses using
network congestion evolution data from two megacities
in China: Beijing (road network within 4th ring road,
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FIG. 2: Plots of the evolution of dual degree
distributions for function augmented dual networks: (a)
Beijing road network (2015/12/14), (b) Shanghai road
network (2016/7/7). The black line and the lines with
color represent the degree distribution of the base dual
network and the function augmented dual networks for
different times in the day. Logarithmic binning is used
for better clarity. The degree distribution of the base

dual network can be fitted into a power law distribution
p(k) ∼ k−γ for k ≥ kmin = 3, γ = 2.58 (Beijing) and

k ≥ kmin = 4, γ = 2.48 (Shanghai).

contains 17,148 road segments) and Shanghai (road net-
work within the Middle ring road, contains 18,173 road
segments). The network-wide link travel times of these
two megacities were collected from an on-line digital map
service in China (Baidu Map) every 40-60min from 6:00
to 24:00 using a data crawler, which allows for track-
ing the congestion evolution at an hourly basis (Beijing:
around 40min, Shanghai: around 60min). Seven days of
network state data from Beijing road network in Decem-
ber 2015 (12/6-12/8, 12/10-12/12 and 12/14), and six
days of data from Shanghai in July 2016 (7/7, 7/9-7/13)
were collected. All road travel time data were converted
to road speeds. The collected link travel times were fur-
ther compiled into binary functional states (failed state 0:

congested; working state 1: not congested) at each time
step. We identify a link as congested when its speed is
less than 20% of its speed limit. For simplicity, we model
the road network as an undirected network. For a road
segment that carries bidirectional traffic, we consider the
segment in the failed state if traffic of any of the two
directions gets congested. Fig.3 presents some observed
behaviors for the vertex split-recovery process using the
seven days’ congestion evolution data from Beijing road
network.

The vertex degree and splitting histories of dual ver-
tices are found to be the two major factors governing the
vertex splitting process. Important roads in the network
usually serve as backbones of the network and tend to
have high vertex degrees in the dual-mapped network.
These roads are more likely to carry larger amount of
traffic, thus prone to congestion. Fig.3a confirms the
intuition that the overall normalized vertex split proba-
bility shows a positive correlated trend with dual vertex
degree, especially low degree dual vertices. The extreme
probability values (0 or 1) for high dual degree vertices
are caused by their small sample sizes. There are only 1
or 2 such dual vertices in the function augmented dual
networks at certain time step, thus more likely to yield
probability of 0 or 1.

Numerical analysis also reveals the facilitative impact
of splitting history on future vertex splits. Suppose a
dual vertex is split at some time step, and then con-
gestion is more likely to propagate along the same road
as well as to neighboring roads, causing further ver-
tex splits at later time steps. Some typical examples
of this phenomenon are the propagation of traffic kine-
matic waves [27] and the queue spillover at oversatu-
rated roads [28]. It is observed that the conditional
probability of vertex split under the existence of vertex
split on the original dual vertex (self-split) in previous
time step (P (split|has previous split) = 0.23) is signifi-
cantly higher than the case when there is no previous
self-splits (P (split|no previous split) = 0.03). Similarly,
the conditional vertex split probability under the exis-
tence of neighbor splits in previous time step (P (split|has
previous neighbor split) = 0.05) is about twice as large
as the case when none of the neighboring dual vertices
split (P (split|no previous neighbor split) = 0.03). This
phenomenon is also related to the formation of gridlock
in road networks [29], where traffic congestion spreads
across neighboring roads and cause severe local network
functional failure. Both observations confirm that split
history increases the vertex split probability, and the im-
pact of historical self-split is much larger than the splits
occurring on neighboring dual vertices.

We also examined the changes of dual degree after each
vertex is split. To simplify the analysis, we only consid-
ered binary splits. If there are multiple vertex splits at
a time step, we decompose them into a series of binary
vertex splits. For each binary split, assume the origi-
nal dual vertex with degree k splits to two sub-vertices
with dual degree k′ and k′′, the ratio Rk = k′/k (referred
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FIG. 3: Behavior of vertex split-recovery process using the seven days’ congestion evolution data from Beijing road
network. (a) is the plot of normalized vertex split probability. The y-axis in (a) is the normalized vertex split

probability P̄s(k)/P̄ (k). P̄ (k) and P̄s(k) are the average proportions of degree k dual vertices and the degree k dual
vertices with vertex split in the function augmented dual networks. Both P̄ (k) and P̄s(k) are obtained by averaging

the results from function augmented dual networks of all time steps during the day. (b) is the probability
distribution of the degree ratio Rk for binary vertex splits, which can be fitted to a Beta distribution

(Beta(1.697, 1.697)). (c) is the distribution of the duration time t between the time that the vertex gets split and
the time it recovers, which can be approximated by exponential distribution.

as degree ratio) is found to be roughly approximated by
symmetric Beta distribution Beta(β+ 1, β+ 1) (Fig.3b),
where β ∼ 0.7. This indicates that the conditional split
probability of a degree k dual vertex can be modeled as:
P (k′|k) ∝ [k′(k−k′)]β . It suggests that the dual vertices
are more likely to split into two dual vertices with similar
dual degrees rather than highly unbalanced dual degrees.

Fig.3c presents the distribution of time duration for a
split vertex to recover. The time duration is measured
as the number of data collection steps (around 40min
for Beijing road network). Due to Internet delay dur-
ing the data collection process, the actual length of each
time step can be slightly different (typically 2-5min). It
is found that the duration time t can be approximated
by an exponential distribution (Pc(t) = θe−θt, t > 0).
The recovery process can be captured using a remark-
ably simple statistical distribution which is common in
modeling the survivor times of many physics, biology and
economics processes [30, 31]. Moreover, the exponential
duration time distribution for the dual vertices that re-
main in split condition also implies a constant recovery
rate in the system.

IV. VERTEX SPLIT-RECOVERY MODEL

We propose a vertex split-recovery model for the func-
tional failure process on urban road networks based on
the equivalent representation of road congestion and ver-
tex split/recovery. We introduce following model as-
sumptions based on the insights from the previous em-
pirical observations:

1. Degree 1 dual vertices do not split.

2. Binary split and no degree loss: a dual vertex with

degree k splits into two sub-vertices with degree i and
k − i.

3. Conditional splits: the resulting degree of the split
sub-vertices of a dual vertex with degree k follow some
conditional splitting probability distribution P (i, k −
i|k).

4. Self-splitting : each dual vertex can split with some
self-split rate ρ(k, η(t)) due to the network loading of
flow, where η(t) is a functional measure of network
loading level at time t. We further assume ρ(k, η(t)) =
(k − 1)η(t).

5. Self-contagion: if a dual vertex with degree k has
unrecovered split, it will continue splitting with rate
g(k) = τ(k − 1), where τ is a fixed rate.

6. Neighbor-contagion: a split dual vertex will cause its
neighbor to split with fixed rate λ. Moreover, if the
neighboring dual vertex with degree k already splits
into sub-vertices, the impact on each sub-vertex with
degree ki is λki−1k−1 (ratio of the potential number of

splits for the sub-vertex and the original dual vertex).

7. Recovery : each vertex split recovers with fixed rate θ.

With above model assumptions, we can simulate the
vertex split-recovery process on the function augmented
dual network. However, directly solving the detailed net-
work configuration at a particular time step will be an-
alytically intractable. Instead, we are interested in the
expected stationary solution of the vertex split-recovery
process at the stable state under constant network load-
ing level (η(t) = η). This solution is relatively easy to
obtain while providing sufficient insights about the final
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impact of vertex split-recovery process. In the follow-
ing, we present a two-level model to obtain this expected
stationary solution. The microscopic-level model charac-
terizes the expected behavior for a degree k dual vertex
after S splits, which focuses only on an individual dual
vertex. The macroscopic-level model characterizes the
evolution of the number of splits for each dual vertex in
the entire network.

A. Microscopic-level model

If we remove the recovery history of the dual vertex (if
a dual vertex has split but later recovered, we ignore this
split) until time t, the splitting history of a dual vertex
can be represented as a ranked planar Markov branching
tree [32]. Markov branching trees were introduced by
Aldous [33] as a class of random binary or multifurcating
phylogenetic models, which is widely used in phylogenetic
studies [33–35]. A ranked plane tree is defined as a tree
that we distinguish the left and right child vertices of an
internal vertex, and every internal vertex is labeled by an
integer keeping track of the ordering in which the splits
occur during the construction of the tree. The internal
ordering are necessary in our case, since each dual vertex
is comprised of an ordered set of road segment, and such
ordering are preserved during the vertex splits caused by
functional failures. Fig.4 presents an illustration of the
ranked planar tree representation of the vertex splitting
history.

FIG. 4: Illustration of the ranked planar tree
representation of vertex splitting history. Road A (dual
degree k = 5) experiences congestion in time t1 and t2,

which result in two dual vertex splits. Under the ranked
planar tree representation, it can be represented as two

consecutive branching of the tree.

Here we consider a special generating process that ap-
proximates the ranked planar tree for the splitting history
of a dual vertex with degree k having S splits:

1. First split: the first split partition the dual vertex into
leaf vertices with degree k1 and k−k1 according to the

conditional splitting distribution P (k1, k − k1|k).

2. At ith split: in all leaf vertices, selecting a leaf vertex
j of degree kj with probability proportional to kj − 1.
Split vertex j into two new leaf vertices with degree
kj1 and kj − kj1 according to P (kj1, kj − kj1|kj).

3. Stop after all S splits performed.

Based on the empirical observations, we define the con-
ditional splitting distribution has the form of P (i, k−i|k).
That is

P (i, k − i|k) =
[i(k − i)]β∑k−1
j=1 [j(k − j)]β

(1)

When k → ∞, the normalized splitting location
i/k asymptotically follows symmetric Beta distribution
(Beta(β + 1, β + 1)). This generative process is simi-
lar to the incremental construction method in the Beta-
splitting model for evolutionary trees proposed by Sain-
udiin and Véber [32], which constructs the evolutionary
tree by incrementally partitioning an interval (vertices
are represented as intervals). The value of β represent
different splitting behaviors:
• β = 0: uniform split. The split location is chosen

uniformly at k − 1 possible locations.
• β > 0: split location favors more in the middle section.

This is the case reflected in the empirical observation,
where we have β ∼ 0.7.
• β < 0: split location favors more on splitting in the

two ends.
In the microscopic-level model, we are interested

in the expected degrees of leaf vertices for a de-
gree k dual vertex after S splits. Define M(k, S) =
[m1(k, S),m2(k, S), · · · ]T , where mi(k, S) is the expected
number of the split sub-vertices with degree i for a dual
vertex with degree k after S splits. For S = 1, it can be
easily shown that

mi(k, 1) =

{
2[i(k−i)]β∑k−1
j=1 [j(k−j)]β

, i < k

0, i ≥ k
(2)

For S > 1 and i = 1, 2, · · · , k − S − 1, it can be proved
following recursive formulation holds (see Appendix B):

mi(k, S + 1) =
k − S − i
k − S − 1

mi(k, S)+

1

k − S − 1

k−S∑
s=i+1

(s− 1)ms(k, S)mi(s, 1)

(3)

Although the closed form expression for above recur-
sive formulation is only known for the reduced case β = 0
(see Appendix C), mi(k, S) can be computed by re-
cursively solving Eq.3 or using Monte Carlo simulation
based on the generating process. Numerical tests show
that the expected degree distribution for the split sub-

vertices mi(k,S)
S+1 asymptotically follows a Beta distribu-

tion Beta(α̃(k, S), β̃(S)), where α̃(k, S) is monotonically

increasing with the increase of both k and S, and β̃(S)
decreases with the increase of S (Fig.5).
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FIG. 5: Monte Carlo simulation results of the expected proportion of the degree i split sub-vertices after S splits
(mi(k, S)/(S + 1)) for degree k dual vertices: (a) k = 10, (b) k = 100. Computed using 50,000 simulation runs of the

generating process of the microscopic-level model.

B. Macroscopic-level model

The macroscopic-level model focuses on the entire net-
work rather than individual dual vertices. It character-
izes the evolution of the number of splits for each dual
vertex in the entire network at stable state (t→∞) un-
der constant network loading level (η(t) = η). We model
the evolution of the number of splits of a dual vertex v
with degree k in the network as a continuous time Markov
chain involving k states (0, 1, ..., k−1). Each state repre-
sents the number of split Sv . To simplify the model, we
further assume that the states can only increase or de-
crease Sv by 1 at each transition. This can be perceived
as a special generalization of the Susceptible-Infected-
Susceptible (SIS) model in epidemiology [36]. The differ-
ences are that SIS model only considers two states: sus-
ceptible (S) and infected (I) and the transition between
these two states; while in the macroscopic-level model,
we have transitions among k states.

For a dual vertex v in the based dual network, let ki be
the degree of its ith child vertex after splitting. Define
the sign function sgn(Sv) = 1 if Sv > 0; 0 otherwise.
The rate of transition between states can be modeled as
follows:

• Transition rate from Sv → Sv + 1 (Sv < k − 1):

Sv+1∑
i=1

[
ρ(ki, η) + g(ki)sgn(Sv) + λ

ki − 1

k − 1

∑
(u,v)∈ED

sgn(Su)
]

= (k − 1− Sv)
[
η + τ · sgn(Sv) +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
] (4)

• Transition rate from Sv → Sv − 1 (Sv > 0): θSv

Eq.4 computes the overall rate of increase in Sv con-
tributed by its Sv + 1 child vertices, where ρ(ki, η)
and g(ki)sgn(Sv) are the self-splitting and self-contagion
rates of the ith child vertex; λki−1k−1

∑
(u,v)∈ED sgn(Su) is

the overall neighbor-contagion rate on the ith child vertex
from all the split neighboring dual vertices (sgn(Su) > 1).

Let probability distribution Xv(t) =
(xv0(t), xv1(t), ..., xvk−1(t)), where xvS(t) is the proba-
bility of dual vertex v at time t having S splits. Suppose
all dual vertices initially do not have vertex splits
(xv0(0) = 1, ∀v ∈ VD), using the previous transition
scheme, the state equation for each dual vertex v at time
t in the network can be written as:

dxv0(t)

dt
= −xv0(t)(k − 1)

[
η +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

+ θxv1(t)

dxv1(t)

dt
= −xv1(t)(k − 2)

[
η + τ +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

− θxv1(t) + xv0(t)(k − 1)
[
η +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

+ 2θxv2(t)

dxvS(t)

dt
= −xvS(t)(k − 1− S)

[
η + τ +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

− SθxvS(t) + xvS−1(t)(k − S)
[
η + τ +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

+ (S + 1)θxvS+1(t), 1 < S < k − 1

dxvk−1(t)

dt
= xvk−2(t)

[
η + τ +

λ

k − 1

∑
(u,v)∈ED

sgn(Su)
]

− (k − 1)θxvk−1(t)

(5)

The state equations model the changes of xvS(t) caused by
four different types of state transitions: 1) the decrease
due to transition from S to S + 1; 2) the decease due to
recovery from S to S−1; 3) the increase due to transition
from S−1 to S; and 4) the increase due to recovery from
S + 1 to S.

Directly solving such a large coupled differential equa-
tion system is highly complex. We utilize the degree-
based mean field (DBMF) approximation [37–40] to gain
some insights on the behavior of the stationary solution.
The DBMF approximation for dynamical processes on
networks assumes that all vertices of degree k are sta-
tistically equivalent. Under DBMF approximation, we
only need to consider Xk(t) = (xk0(t), xk1(t), ..., xkk−1(t)),

where xkS(t) is the proportion of degree k dual vertices
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that has S splits. Specifically, we consider two cases:
(1) no degree correlation: the average probability that a
dual vertex has a split neighbor at time t, φ(t) is same
for all dual vertices; (2) general degree correlation: the
average probability that a dual vertex of degree k has a
split neighbor φ̃(t|k) depends on its degree.

1. DBMF approximation with no degree correlation

If we assume there is no degree correlation in the net-
work, then the overall neighbor-contagion rate for a dual
vertex v with degree k can be approximated as [40, 41]:

λ
∑

(u,v)∈ED

sgn(Su) ' λkφ(t) (6)

where φ(t) is the average probability that a dual vertex
has a split neighbor at time t. If there is no degree cor-
relation, φ(t) is given as [40]:

φ(t) =
∑
k′>1

k′P (k′)

〈k〉
(1− xk

′

0 (t)) (7)

where P (k) is the proportion of degree k dual vertices in
the based dual network, and 〈k〉 is the average degree of
the base dual network. The above expression gives the
average probability of finding a split dual vertex following
a randomly chosen dual edge. For simplicity, let

Λk1(t) =
η + λk

k−1φ(t)

θ
, Λk2(t) = Λk1(t) +

τ

θ
(8)

Under DBMF approximation, the state equations Eq.5
can be simplified as

dxk0(t)

dt
= −xk0(t)(k − 1)θΛk1(t) + θxk1(t)

dxk1(t)

dt
= −xk1(t)(k − 2)θΛk2(t)− θxk1(t)+

xk0(t)(k − 1)θΛk1(t) + 2θxk2(t)

dxkS(t)

dt
= −xkS(t)(k − 1− S)θΛk2(t)− SθxkS(t)

+ xkS−1(t)(k − S)θΛk2(t) + (S + 1)θxkS+1(t),

1 < S < k − 1

dxkk−1(t)

dt
= xkk−2(t)θΛk2(t)− (k − 1)θxkk−1(t)

(9)

We are interested in the stable proportion of dual ver-
tices of degree k that has i splits (xki (t)) when t → ∞,
which correspond to the stationary distribution of the
continuous time Markov chain. The stationary distribu-

tion can be analytically solved by setting
dxkS
dt = 0, ∀S =

{0, 1, 2, ..., k − 1},∀k. Solving the system of equations,
we obtain for k > 1:

xki
∗

=

(
k − 1

i

)
Λk1
(
Λk2
)i−1

xk0
∗
, i = 1, 2, · · · , k−1 (10)

where Λk1 ,Λ
k
2 are Λk1(t),Λk2(t) with φ(t) value taken at

the stationary solution (φ∗). As
∑k−1
i=0 x

k
i
∗

= 1, thus

xk0
∗

=

[
1 +

Λk1
Λk2

k−1∑
i=1

(
k − 1

i

)(
Λk2
)i]−1

=

[
1 +

Λk1
Λk2

[(
1 + Λk2

)k−1 − 1
]]−1 (11)

Solving for φ∗ using Eq.7, we have

φ∗ =
1

〈k〉
∑
k′>1

k′P (k′)·

−1 +
[
1 +

η+τ+ λk′
k′−1

φ∗

θ

]k′−1
τ

η+ λk′
k′−1

φ∗
+
[
1 +

η+τ+ λk′
k′−1

φ∗

θ

]k′−1 (12)

Above nonlinear equation can be solved numerically. Us-
ing the solution of φ∗, we can obtain xk0

∗
and xki

∗
.

2. DBMF approximation with general degree correlation

For the case when considering the general degree cor-
relation, the overall neighbor-contagion rate can be ap-
proximated as

λ
∑

(u,v)∈ED

sgn(Su) ' λkφ̃(t|k) (13)

where φ̃(t|k) is the average probability that a degree k
dual vertex has a split neighbor. It can be computed
using P (k′|k), the conditional probability of a degree k
dual vertex that has a degree k′ neighbor as follows [40]:

φ̃(t|k) =
∑
k′

P (k|k′)(1− xk
′

0 ) (14)

P (k′|k) can be evaluated empirically from the actual base
dual network, which incorporates more structural details
of the network. Under such condition, the Λk1(t) and
Λk2(t) in the no degree correlation case now become

Λ̃k1(t) =
η + λk

k−1 φ̃(t|k)

θ
, Λ̃k2(t) = Λ̃k1(t) +

τ

θ
(15)

It can be shown the state equation Eq.9 still holds, but
with Λk1(t) and Λk2(t) replaced by Λ̃k1(t) and Λ̃k2(t). The
final stationary solutions can be derived as

xki
∗

=

(
k − 1

i

)
Λ̃k1
(
Λ̃k2
)i−1

xk0
∗
, i = 1, · · · , k − 1 (16)

xk0
∗

=

[
1 +

Λ̃k1
Λ̃k2

[(
1 + Λ̃k2

)k−1 − 1
]]−1

(17)
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where Λ̃k1 , Λ̃
k
2 are Λ̃k1(t), Λ̃k2(t) with φ̃(t|k) taken the value

of φ̃(∞|k) (φ̃(t|k) value at stationary solution xki
∗
.

Under the general degree correlation, there is no sim-
ple form stationary solution due to the coupling of dual
vertices of different degree. The state equations for

x20
∗
, x30
∗
, xkmax0

∗
now becomes all coupled, as the com-

putation of Λ̃k1 and Λ̃k2 involves φ̃(∞|k) and all xk0
∗
, k =

1, 2, ..., kmax. However, xki
∗

is still numerically solvable
for finite networks, which can be obtained by solving a
large system of nonlinear equations involving Eq.14-17
for all dual vertex degrees.

C. Dual vertex degree distribution under
stationary solution

Combining the analytical results from the microscopic
and macroscopic-level model, the expected total number
of dual vertices N∗ and the dual vertices of degree k, N∗k
in the stable function augmented dual network are:

N∗ = n

kmax∑
k=1

P (k)

k−1∑
S=0

(S + 1)xkS
∗

(18)

N∗k = n

kmax∑
k′=k

P (k′)

k′−1∑
S=0

mk(k′, S)xk
′

S

∗
(19)

where n and kmax are the total number of dual vertices
and the maximum degree in the base dual network. The
expected degree distribution for the function augmented
dual network under stable condition can thus be obtained
as P ∗(k) = N∗k/N

∗.

V. NUMERICAL RESULTS

A. Fitting to real world data

The stationary solution of vertex split-recovery model
under DBMF approximation is completely determined
by three key parameters, namely: 1) normalized network
loading level w1(t) = η(t)/θ; 2) normalized self-contagion
rate w2 = τ/θ and 3) normalized neighbor contagion rate
w3 = λ/θ. Here, w1(t) is a dynamic variable that mea-
sures the relative loading level of the entire network; w2

and w3 are fixed parameters governed by network struc-
ture.

We fit the proposed model to empirical data to un-
cover the actual w1(t), w2 and w3 values in the test net-
works. The fitting is achieved by minimizing the over-
all statistical divergence between the model predicted
and empirical dual degree distributions of the function
augmented dual networks. Let P ∗T (k) and QT (k) be the
model predicted and empirical dual degree distribution
for time period T . We minimize the overall statistical di-
vergence of the two distributions over the entire day, de-
fined as minw1(t),w2,w3

∑
T J(P ∗T ||QT ), where J(P ∗T ||QT )

is the Jensen-Shannon divergence [42] between distribu-
tion P ∗T and QT . Jensen-Shannon divergence is a popu-
lar measure for evaluating the dissimilarity between two
probability distributions and widely used in statistics and
information theory.

Fig.6 presents sample fitting results of the vertex split-
recovery model (see the Supplemental Material (SM) for
complete fitting results [43]). The larger extent of de-
viation for dual vertex degree distribution under severe
congestion against no congestion condition can be clearly
observed. It is observed that the vertex split-recovery
model captures the expected behavior of dual degree dis-
tribution of the function augmented dual networks for
both cities under different congestion levels. The fit-
ted results for w2 and w3 are found to be different in
Beijing and Shanghai road networks, but within same
range. The mean and standard deviation of w2 and w3

in Beijing road network under DBMF with no degree
correlation are w̄2 = 0.0744, σ(w2) = 8.3 × 10−3, w̄3 =
4.3 × 10−4, σ(w3) = 3.3 × 10−4 (w̄2 = 0.0687, σ(w2) =
0.0109, w̄3 = 3.6 × 10−4, σ(w3) = 2.0 × 10−4 for DBMF
with general degree correlation). The values for Shang-
hai road network are w̄2 = 0.125, σ(w2) = 0.015, w̄3 =
5.0 × 10−4, σ(w3) = 7.0 × 10−6 (w̄2 = 0.0915, σ(w2) =
0.0099, w̄3 = 8.6 × 10−4, σ(w3) = 4.0 × 10−5 for DBMF
with general degree correlation). Shanghai road network
exhibits larger w2 and w3 values than Beijing road net-
work, likely because it has a more decentralized and ho-
mogeneous network structure. Beijing road network has
a typical ring-and-radial structure, where the major ring
roads and radial express ways have high traffic capacity;
whereas Shanghai road network is more grid-like. This
makes congestion overall easier to propagate along same
or neighboring roads in Shanghai road network (higher
w2 and w3 values).

Fig.7 presents the evolution of fitted w1(t) for a typical
weekday and a weekend for both Beijing and Shanghai
road networks. It agrees well with the real-world network
traffic loading level, where high traffic loading in morn-
ing and evening peaks as well as low traffic loading in off-
peak hours are well captured. Beijing and Shanghai have
shown slightly different traffic loading patterns, where
higher traffic loading is observed from noon to early after-
noon period (12:00 - 17:00) in Shanghai network. These
results show that w1(t) can be a good measure for the ac-
tual traffic loading level at network-scale, which reflects
the explanatory power of the vertex split-recovery model.

To further validate the vertex split-recovery model, we
compare the total number of dual vertices and the vertex
splits between the empirical data and the expected val-
ues obtained from the vertex split-recovery model. The
expected number of vertex splits N∗ is computed using
Eq.19, and the expected total number of vertex splits
NES is computed as follows:

NES = n

kmax∑
k=2

P (k)

k−1∑
s=1

s · xks
∗

(20)
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FIG. 6: Evolution of dual degree distributions for: (a) Beijing road network (2015/12/10), and (b) Shanghai road
network (2016/7/11). The top figures in (a) and (b) are the road speed plots at three sample time steps. The

bottom figures in (a) and (b) present the corresponding dual vertex degree distributions for: 1) base dual network
(no congestion); 2) function augmented dual network (actual congestion scenario); 3) network configurations

predicted by vertex split-recovery model under different DBMF approximation schemes (no degree correlation and
general degree correlation); and 4) power-law with exponential cutoff fittings of the dual degree distributions.

where xk
∗

s is the stationary solution of the proportion of
degree k dual vertices that has s splits. The results of N∗

and NES under both DBMF approximation with no de-
gree correlation and general degree correlation are com-
puted. Two metrics, namely mean absolute error (MAE)

and mean relative error (MRE), are used for evaluation,
which are computed as follows:

EMAE =

∑n
i=1 |di − d̂i|

n
, EMRE =

∑n
i=1 |di − d̂i|∑n

i=1 di
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FIG. 7: Fitting result for w1(t) using DBMF
approximation with general degree correlation.

where di is the empirical observation i and d̂i is the value
computed using the vertex split-recovery model. Fig.8-
9 present the sample results for a typical weekday and
a weekend for both Beijing and Shanghai road networks
(complete results see the Supplemental Material [43]).

The comparison results show that N∗ and NES com-
puted from the vertex split-recovery model generally
agree with the patterns of empirical data. It is found
that for the total number of dual vertices N∗, the MRE
and MAE for Beijing road network are less than 2.5%
and 150 respectively. For Shanghai road network, the
MRE and MAE are less than 1.5% and 80 respectively.
For the total expected number of vertex splits NES , the
MRE and MAE for Beijing road network are less than
16% and 105 respectively. The results of MRE and MAE
for Shanghai road network are less than 11% and 72 re-
spectively. On weekends, when the traffic loading level is
lower, even smaller MAE and MRE results are achieved
for both cities.

It should be noted that N∗ and NES are obtained us-
ing the stationary solution of the vertex split-recovery
model, which corresponds to the stable network config-
uration under constant traffic loading level after suffi-
ciently long observation period. As the real world traffic
loading is constantly changing, such stable network con-
figuration is not easily achievable. It is reasonable to
expect certain level of discrepancy between the empirical
data and the predictions from the model. Considering the
relatively low level of MAE and MRE values, the vertex
split-recovery model provides a reasonably well approxi-
mation of the real world congestion evolution process.

B. Expected functional loss for dual vertices

There is a minor difference in the dual vertex degree
distribution results between DBMF approximation with
no degree and general degree correlation (Fig.6). This is
because considering general degree correlation only im-
proves the approximation of the neighbor-contagion pro-
cess. Given that the normalized neighbor-contagion rate

w3 is very small compared with other parameters, the
impact of considering degree correlation is limited.

As w3 is very small, if set w3 = 0, we can approximate
the expected number of vertex splits for dual vertices
with degree k (k > 1) under stationary solution in close
form:

NES
k =

∑k−1
s=1 s · xks

∗ ≈ w1(k−1)(1+w1+w2)
k−2

1+
w1

w1+w2
[(1+w1+w2)k−1−1] (21)

When normalized by the maximum possible number of

vertex split k − 1, it can be shown
NESk
k−1 ≤

w1+w2

1+w1+w2
and

the equal sign is attainable only when k → ∞. The
quantity NES

k /(k − 1) can be perceived as a measure
of the expected level of functional loss for dual vertices
of degree k , for which NES

k /(k − 1) = 0 indicates no
congestion present and 1 indicates all the segments of
the road are congested.

Fig.10 presents the impact of w1 on NES
k /(k − 1) for

dual vertices of different degrees. NES
k /(k−1) converges

to w1+w2

1+w1+w2
as k becomes large. This leads to an interest-

ing observation, that although high dual degree vertices
are more likely to experience vertex split, they seem to
converge to the same level of expected functional loss. In
the vertex split-recovery model, dual vertices with more
splits have higher recovery rate (more congested segments
are likely to recover), which suppresses dual vertices from
further splitting. This is similar to the existence of the
equilibrium state between the susceptible and infected
population in SIS model. One possible real world ex-
planation is that, a severely congested road will lose con-
siderable fraction of functional connectivity, which might
forbid further entry and propagation of traffic flow; this
in turn could impede the further worsening of congestion.
Another possible explanation is related to the moving
jam effect [44, 45], that the road segments get congested
and recovered as the jam moves along the road. In this
situation, although congestion is present, the road still
maintains certain functional level.

C. Network Performance

The vertex split-recovery model can serve as a simple
but powerful tool in analyzing network performance un-
der real or hypothetical traffic loads. Fig.11a plots the
impact of w1 on the average probability that a dual vertex
has a split neighbor φ∗. A high value of φ∗ corresponds
to a heavily congested network. We find that Shanghai
network performs better than Beijing road network under
light traffic loading levels, but tends to perform slightly
worse under high loading situations. As mentioned previ-
ously, Shanghai network is less hierarchical and grid-like,
making it more resistive to the emergence of congestion,
but at the same time, opens more channels for the further
propagation of congestion, causing worse performance at
high loading levels. On the contrary, Beijing road net-
work depends more on major ring and radial expressways,



11

No correlation: General correlation:
MAE=90.7
MRE=1.48%

MAE=149
MRE=2.43%

DBMF: no degree correlation

DBMF: general degree correlation

DataT
o

ta
l 
n

u
m

b
e

r 
o

f 
d

u
a

l 
v
e

rt
ic

e
s

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

Time t (Hour)
10 12 14 16 18 20 22 2486

Beijing: weekday 2015/12/11

(a)

No correlation: General correlation:
MAE=37.9
MRE=0.633%

MAE=59.6
MRE=0.996%

DBMF: no degree correlation

DBMF: general degree correlation

DataT
o

ta
l 
n

u
m

b
e

r 
o

f 
d

u
a

l 
v
e

rt
ic

e
s

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

Time t (Hour)
10 12 14 16 18 20 22 2486

Beijing: weekend 2015/12/12

(b)

No correlation: General correlation:
MAE=70.7
MRE=1.25%

MAE=76
MRE=1.34%

DBMF: no degree correlation

DBMF: general degree correlation

Data

Time t (Hour)
10 12 14 16 18 20 22 24

T
o

ta
l 
n

u
m

b
e

r 
o

f 
d

u
a

l 
v
e

rt
ic

e
s

4500

5000

5500

6000

6500

86

Shanghai: weekday 2016/7/11

(c)

No correlation: General correlation:
MAE=44.8
MRE=0.805%

MAE=31.9
MRE=0.574%

DBMF: no degree correlation

DBMF: general degree correlation

Data

Time t (Hour)
10 12 14 16 18 20 22 24

T
o

ta
l 
n

u
m

b
e

r 
o

f 
d

u
a

l 
v
e

rt
ic

e
s

4500

5000

5500

6000

6500

86

Shanghai: weekend 2016/7/10

(d)

FIG. 8: Comparison of the total number of dual vertices from emprical data (red line) and the expected total
number of dual vertices (N∗) obtained from the vertex split recovery model for Beijing and Shanghai road network.

which increases the chances of the emergence of conges-
tion. Existence of high capacity major roads also allows
for handling higher traffic volume and the hierarchical
structure reduces potential congestion propagation path-
ways under high traffic loading. The differences of the
network performances is further reflected on the dual de-
gree distributions of the functional augmented dual net-
works. Fig.11b and 11c present the comparison of the
two networks under the same set of network loading lev-
els. Larger extent of deviation of the dual degree distri-
bution can be observed in Shanghai network under high
network loading levels compared to Beijing road network.

Another interesting finding is the close relationship of
vertex split-recovery model with the emergence of expo-
nential cutoff behavior in the dual degree distribution.
As shown in Fig.6, power law with exponential cutoff
distribution (P (k) ∼ k−γe−κk) can serve as an excel-
lent approximation of the stationary solution of vertex
split-recovery model for k ≥ kmin (kmin = 3 for Beijing
network and kmin = 4 for Shanghai network). Unfortu-
nately, the complex mathematical form of the stationary
solution forbids the analytical derivation of this corre-
sponding relationship. However, when compared with
the fitted normalized network load level w1 and the pa-
rameters of γ and κ, a remarkably simple linear relation-

ship can be shown. Fig.12 presents the sample results
of the γ − w1 and κ − w1 relationships for Beijing and
Shanghai road networks. We observe that γ ≈ α0−α1w1

and κ ≈ α2w1 (the constant term in κ−w1 linear fitting
is relatively small and can be ignored), where α0, α1 and
α2 are positive constants. This analysis shows that the
normalized network loading level w1 plays a central role
that causes the dual vertex degree distribution of func-
tion augmented dual network deviates from power law
distribution, and the emergence of the exponential cutoff
behavior.

VI. CONCLUSION

Our theoretical analysis, combined with observational
data from two megacities in China, enables examination
and prediction of how functional failures (traffic conges-
tion) and recoveries evolve on structurally intact road
networks. We successfully described the deviation of the
dual vertex degree distribution from power law distri-
bution, and the emergence of exponential cutoff behav-
ior under congestion using a vertex split-recovery model.
The model links the network-level functional loss with
the traffic loading level, and provides a statistical char-
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FIG. 9: Comparison of the total number of unrecovered vertex splits at each time step in empirical data (red line)
and the expected number of vertex splits (NES) obtained from the vertex split recovery model for Beijing and

Shanghai road network.
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acterization of the likelihood of experiencing functional
failures for dual vertices. We also show that certain net-
work topological features can amplify network functional
failures through negative feedbacks, while other topolog-
ical features can suppress congestion cascading. Evolu-
tion of functional failure depends on the interaction of
network topology and loading. Grid-like road network

in Shanghai performs better at low traffic loadings, but
propagates congestion at higher loadings. In contrast,
ring-and-radial structure of Beijing road network allows
higher traffic volumes, but is vulnerable to emergence of
congestion.

Performing functional analysis by overlaying real-world
flow propagation principles on the structural details of
flow-based networks is a challenging problem due to the
need of modeling flows. Our work provides a new scien-
tific approach to tackle this complex problem. Instead
of analyzing the flow pattern on the network, we can
model the flow induced functional process as an equiva-
lent structural process. The vertex split-recovery model
is a perfect example showing how traffic congestion on
road networks can be modeled as a structural process
on a transformed graph, which combines both the flow
propagation principle of traffic and network structure.
By finding appropriate equivalent structural processes
for different types of flow and networks, a similar anal-
ysis approach can be applied to other flow-based net-
works. Future research can be done to further explore
such equivalent structural processes, and develop a gen-
eralized theory for flow-based complex networks.
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FIG. 11: Comparison of network performance under different normalized network loading levels. (a) Impact of w1

on the average probability that a dual vertex has a split neighbor at the stationary solution (φ∗). Obtained by
solving for the stationary solution under the DBMF approximation with no degree correlation assumption. (b) and

(c) are plots of the dual degree distributions of Beijing and Shanghai road networks under the same set of
normalized network loading levels. The light traffic condition is taken as the typical w1 value in late night hours;

heavy traffic condition is selected as the typical peak hour w1 value.
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APPENDIX

A. Construction of function augmented dual
network

The vertex split-recovery process is defined on the
function augmented dual networks. We use two proce-
dures to construct the function augmented dual network
for each time step. We first construct the base dual net-
work using the hierarchical intersection continuity nego-
tiation (HICN) dual mapping technique [25]. The HICN
dual mapping merges consecutive road segments into the
same dual vertex if they belong to the same road class and
the convex angle they form is close to 180 degree. The
details of HICN dual mapping procedure can be found
in Algorithm 1. Once the base dual road network is con-
structed, we overlay the functional states on the network
and perform functional dual mapping to track the split-
recovery trajectory for each dual vertex in each time step.
Details of the functional dual mapping procedure can be
found in Algorithm 2.

Algorithm 1: HICN dual mapping procedure

1. Scan the primal network, put all primal edges into
the unused edge set EN . Let the used edge set
EU = ∅, dual vertex set VD = ∅, and dual edge set
ED = ∅.

2. If EN 6= ∅, pick a primal edge eP from EN , create a
candidate edge eCD = eP ; otherwise go to step 4.

3. Grow eCD by recursively executing follows until
eCD cannot be extend further:

(a) Inspect the two end points of eCD. For each of
the end point, if it connects to any edge
e ∈ EN , compute the convex angle θi for eCD

and ei.

(b) Merge eCD and ei if following conditions
satisfied:

i. eCD and ei are of the same road class.

ii. θi = max{θ1, θ2, ...} and θi < θmax, where
θmax is the predefined maximum threshold
angle (π/3 used in actual implementation).

(c) If eCD and ei can be merged, then
eCD ← eCD

⋃
{ei}, EN ← EN \ ei,

EU ← EU

⋃
{ei}

4. Create dual vertex vD = eCD and let
VD ← VD

⋃
{vD}. Go back to step 2.

5. Construct the dual-mapped network. For every two
dual vertices vDi and vDj represented as a set of
primal edges, if they contain primal edges that
intersecting with each other, construct a dual edge
eDijbetween vDi and vDj .

Algorithm 2: Functional dual mapping
procedure

1. Create the base dual road network G0
D(V 0

D, E
0
D)

using Algorithm 1.

2. At time step t. For each dual vertex vt−1
Di
∈ V t−1

D :

(a) Let V t
D = ∅, Et

D = ∅.
(b) Scan the functional state of each primal edges

contained in vt−1
Di

:

i. If any primal road segments are at failed
state (congested), split the dual vertex
vt−1
Di

into a set of new dual nodes

VS = {V t
Di1

, ..., V t
Dis
} at the location of the

failed road segments. Set V t
D ← V t

D

⋃
VS .

ii. Otherwise, set vtDi = vt−1
Di

. Set

V t
D ← V t

D

⋃
{vtDi}.

3. For all dual vertices ṼDi = {vtDi1 , v
t
Di2

, .., V t
Dis
} that

originally evolved from v0Di , check the primal edges
in working state (not congested) that contained in

v0Di but not in dual vertices in ṼDi . Merge the dual
vertices at the location of such primal edges and
update the dual vertices in ṼDi as well as V t

D

accordingly.

4. Build the dual-mapped network Gt
D(V t

D, E
t
D). For

each pair of dual nodes vtDi and vtDj in V t
D, add a

dual edge eDij to Et
D if vDi , vDj share a common

primal vertex.

B. Derivation of the recursive formulation for the
microscopic-level model

For S > 1 and i = 1, 2, · · · , k−S− 1, it can be proved
following recursive formulation holds for the expected
number of the split sub-vertices with degree i for a dual
vertex with degree k after S splits:

mi(k, S + 1) =
k − S − i
k − S − 1

mi(k, S)+

1

k − S − 1

k−S∑
s=i+1

(s− 1)ms(k, S)mi(s, 1)

(22)

Proof. Consider a dual vertex with degree k after S splits
(remove the effect of historical vertex recoveries). If per-
form one more split (suppose S < k− 1), the probability
of selecting a leaf vertex with degree s is:

ms(k, S) · s− 1

k − S − 1

as the probability of select the leaf vertex with degree s
is proportional to s − 1. Split this vertex will decrease
the expected number of leaf vertices with degree s by
one, but increase the expected number of leaf vertices
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with degree other than s by M(s, 1). Hence the expected
changes on M after splitting this vertex is

∆M
s = ms(k, S) · s− 1

k − S − 1
[M(s, 1)− Es]

where Es is a vector that only the sth element is 1, others
are zeros. The expected number of sub-vertices with dif-
ferent degrees for the dual vertex with degree k after S+1
splits can be obtained by summing ∆M

s for all possible s
(s = 1, 2, ..., k − S):

mi(k, S + 1) = mi(k, S) +
1

k − S − 1

k−S∑
s=1

∆M
s

=
k − S − i
k − S − 1

mi(k, S)+

1

k − S − 1

k−S∑
s=i+1

(s− 1)ms(k, S)mi(s, 1)

We hence obtained the recursive formulation for comput-
ing mi(k, S). Note in above derivation, we used the fact
that mi(s, 1) = 0 for i ≥ 0.

C. Close form solution of Eq.3 under β = 0

The close form expression of the recursive formulation
Eq.3 is not known. However, the reduced uniform split
case β = 0 can be analytically derived as follows:

mi(k, S) =

{
S(S+1)
k−S

∏S−1
j=1 (1− i

k−j ), i ≤ k − S
0, i > k − S

(23)

Proof. If β = 0, then we have uniform split, that is
P (i, k − i|k) = 1/(k − 1), and

mi(k, 1) =

{
2

k−1 , i < k
0, i ≥ k

We prove the validity of the close form expression using
induction. When S = 1, the expression obviously holds.
Assume the expression holds for S ≤ c, then

mi(k, c+ 1) =
k − c− i
k − c− 1

mi(k, c)+

1

k − c− 1

k−c∑
s=i+1

(s− 1)ms(k, c)mi(s, 1)

=
k − c− i
k − c− 1

mi(k, c) +
2

k − c− 1

k−c∑
s=i+1

ms(k, c)

As

ms(k, c) =
c(c+ 1)

k − c

c−1∏
j=1

(1− s

k − j
) =

c(c+ 1)
∏c−1
r=1(k − r − s)∏c

j=1(k − j)

k−c∑
s=i+1

ms(k, c) =
c(c+ 1)∏c
j=1(k − j)

k−c∑
s=i+1

c−1∏
r=1

(k − r − s)

Let

Fs =

c−1∏
r=1

(k − r − s), Gs = s · Fs

Thus

Fs+1 =
k − (c− 1)− (s+ 1)

k − 1− s
Fs =

k − c− s
k − s− 1

Fs

Then

kFs+1 − (s+ 1)Fs+1 = (k − c)Fs − s · Fs

We have

kFs+1 −Gs+1 = (k − c)Fs −Gs

Summing the cases for s = i+ 1 to k − c,

k

k−c∑
s=i+1

Fs+1 −
k−c∑
s=i+1

Gs+1 = (k − c)
k−c∑
s=i+1

Fs −
k−c∑
s=i+1

Gs

Note that Fk−c+1 = 0, Gk−c+1 = 0, thus

k−c∑
s=i+1

Fs+1 =

k−c∑
s=i+1

Fs−Fi+1,

k−c∑
s=i+1

Gs+1 =

k−c∑
s=i+1

Gs−Gi+1

Thus

c

k−c∑
s=i+1

Fs − kFi+1 +Gi+1 = 0

And

k−c∑
s=i+1

Fs =
k − i− 1

c
Fi+1

Consequently,

mi(k, c+ 1) =
k − c− i
k − c− 1

mi(k, c) +
2c(c+ 1)∏c+1
j=1(k − j)

·

k − i− 1

c

c−1∏
r=1

(k − r − i− 1)

=
c(c+ 1)

∏c
r=1(k − r − i)∏c+1

j=1(k − j)
+

2(c+ 1)
∏c
r=1(k − r − i)∏c+1

j=1(k − j)

=
(c+ 1)(c+ 2)

k − c− 1

c∏
j=1

(1− i

k − j
)

We proved that the proposed expression also holds for
mi(k, c+ 1), by induction, the claim holds.
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[12] A. Solé-Ribalta, S. Gómez, and A. Arenas, R. Soc. open
sci. 3, 160098 (2016).

[13] D. S. Johnson, J. K. Lenstra, and A. Kan, Networks 8,
279 (1978).
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