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(Ψ̄Ψ)2 in the presence of three external electromagnetic

real potentials V (x), a potential barrier, a constant potential, and a potential well.
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I. INTRODUCTION

The relativistic generalization of the nonlinear Schrödinger (NLS) equation,
namely the nonlinear Dirac (NLD) equation has emerged as a natural model in
many physical systems, such as extended particles [1, 2], light solitons in waveguide
arrays and experimental realization of an optical analog for relativistic quantum
mechanics [3], Bose-Einstein condensates in honeycomb optical lattices [4–6], and
phenomenological models of quantum chromodynamics [7], among many others.

Solitary waves in the 1 + 1 dimensional nonlinear Dirac (NLD) equation have
been studied [8, 9] in the past in the case of massive Gross-Neveu [10] (with N =
1, i.e. just one localized fermion) and massive Thirring [11] models). Soler [12]
proposed in 1970 that the self-interacting 4-Fermi theory was a useful model to
study extended fermions. Subsequently, Strauss and Vázquez [13] were able to
study the stability of this model under dilatation and found the domain of stability
for the Soler solutions. These solutions are solitary waves which can have either
one- or two humps, depending on the value of the frequency ω ∈ (0, 1). Recent
studies using a split operator method suggested that all stable NLD solitary waves
have a one-hump profile, but not all one-hump waves are stable, while all waves
with two humps are unstable [14]. In particular for the scalar-scalar self-interaction
(g2/2)(Ψ̄Ψ)2 the solitary waves were stable in simulations only if ω ∈ [0.56, 1) [14].

The interaction between solitary waves of different initial charge was studied in
detail for the scalar-scalar case in the work of Alvarez and Carreras [15] by Lorentz
boosting the static solutions and allowing them to scatter. More accurate simu-
lations have been performed by Shao and Tang in [16], where a new quasi-stable
long-lived oscillating bound state from the binary collisions of a single-humped soli-
ton and a two-humped soliton was observed. The dynamics of single solitons also
has been studied for the NLD equation with external electromagnetic fields as well
as under forcing conditions [9, 17, 18]. The functional shape of the initial soliton
does not change, however the soliton is accelerated in the ramp potential, or its
center oscillates around the initial position in the cases of harmonic and periodic
potentials. For smaller values of ω the soliton, after some transient time, is again
unstable.

In this paper we study the very interesting behavior of the time evolution of soli-
tary wave solutions of the Soler model when we add a potential barrier, a constant
potential or a potential well, where the evolution is governed by the massless NLD
equation in that external potential and is controlled by the initial conditions
(ICs). For that problem we will numerically show that the initial pulse
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can: (i) propagate unidirectionally, (ii) rapidly split into two pulses mov-
ing in opposite directions, or (iii) focus before splitting. Moreover, in
all these cases, the resulting pulses travel with the speed of light and
the charge Q as well as the energy E are conserved. We find that the
self-interaction goes to zero after a critical time and one is left with two solutions
of the massless linear Dirac equation having solitary wave shape, traveling at the
speed of light in opposite directions. For the case of a constant external poten-
tial we find exact solutions to the full massless NLD equation which are also exact
solutions of the massless linear Dirac equation. These analytic solutions provide
insight into our numerical results as they represent a single pulse at time zero which
becomes two pulses moving in opposite directions at later times. We remark that
the linearized massless NLD equation with a constant potential can be
transformed to the (1+1) dimensional wave equation (i.e. the d’Alembert
equation) using light cone coordinates. The general solution consists of
two pulses of arbitrary shapes which move in opposite directions with
the speed of light [19].

The massless Dirac equation is of interest in its own right, e.g. graphene
harbors massless Dirac fermions [20]. Similarly, the general solution of
the massless Maxwell-Dirac equations in 1+1 dimensions corresponds to
two wave packets propagating in opposite directions with the speed of
light without changing shape, which is useful in the study of concentrated
propagating waves [21].

This paper is organized as follows: In Sec. II, we present the numerical solutions of
the massless NLD equation using different initial conditions for: (a) a potential
barrier, (b) a constant potential and (c) a potential well. In Sec. III we find the exact
analytical solutions of the massless NLD equation with a constant external potential.
In Sec. IV we discuss our main findings and conclusions. The conservation of the
charge and the energy is discussed in the Appendix, where we also show that if
the external potential is symmetric, V (x) = V (−x), for certain symmetries of the
massless NLD equation the momentum is also conserved.

II. NUMERICAL SOLUTIONS FOR THE MASSLESS NLD EQUATION

The NLD equation in 1 + 1 dimensions with scalar-scalar self-interaction is given
by

iγµ∂µΨ−mΨ + g2(Ψ̄Ψ)Ψ = 0, (1)
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where

Ψ(x, t) =

 ψ(x, t)
χ(x, t)

 , (2)

is a two-component spinor field, Ψ̄ = Ψ†γ0 is the adjoint spinor, γµ are the Dirac
matrices. We choose the representation γ0 = σ3 and γ1 = iσ2, where σj are the
Pauli matrices, m is the mass and g is the coupling constant.

We add electromagnetic interactions through the gauge covariant derivative

i∂µΨ→ (i∂µ − eAµ)Ψ. (3)

Using the freedom of gauge invariance, we choose the axial gauge A1 = 0, eA0 =
V (x). In this gauge the nonlinear Dirac equation becomes

iγµ∂µΨ−mΨ + g2(Ψ̄Ψ)Ψ = γ0V (x)Ψ. (4)

As initial condition (IC) for the numerical solution of Eq. (4) we take the exact
static solitary wave solution of Eq. (1) [17, 22]

ψ(x, 0) = A(x), χ(x, 0) = iB(x), (5)

with

A(x) =

√
2β1
√
m+ ω

g

cosh β1x

m+ ω cosh 2β1x
, (6)

B(x) =

√
2β1
√
m− ω
g

sinh β1x

m+ ω cosh 2β1x
, (7)

where β1 =
√
m2 − ω2. We cannot set m = 0, because β1 would be imaginary.

Therefore we replace m in Eqs. (6)-(7) by a new parameter µ. That is, we use as
IC Eq. (5) with

A(x) =

√
2β
√
µ+ ω

g

cosh βx

µ+ ω cosh 2βx
, (8)

B(x) =

√
2β
√
µ− ω
g

sinh βx

µ+ ω cosh 2βx
, (9)

where β =
√
µ2 − ω2. This IC has essentially the same properties as Eqs. (6)-(7):

it is localized, A(x) is symmetric and B(x) is antisymmetric.

As we want to investigate the massless NLD equation, we now set m = 0 in Eq.
(4). Since the fields can be scaled, without loss of generality we can consider g = 1.
Moreover, we choose µ = 1 which means that ω is in the range 0 < ω < 1.
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For the potential in Eq. (4) we consider three cases: a potential barrier V1(x) =
ω + µ sech 2βx, a constant potential V2(x) = ω, and a potential well V3(x) = ω −
µ sech 2βx. For all three cases we have included the constant term ω, because it
will turn out that the energy, E =

∫
dx T 00, in the second case is equal to ωQ.

The energy and the charge are conserved (see the Appendix). Here T 00 denotes the
density of the energy (in the energy-momentum tensor notation).

Our numerical simulations have been performed by means of a fourth-order Runge-
Kutta method. We choose N + 1 points starting at n = 0 and vanishing boundary
conditions Ψ(±L, t) = 0. The other parameters related with the discretization of
the system are x ∈ [−L,L], ∆x = 0.02, L = 100 and ∆t = 0.0001.

We first choose the parameter ω = 0.9 for which the initial charge density

ρ(x, 0) = |ψ(x, 0)|2 + |χ(x, 0)|2 = A(x)2 +B(x)2, (10)

is a single pulse. The simulation shows that this initial pulse splits into two pulses
which move in opposite directions with the speed of light (Fig. 1). Interestingly,
this scenario is the same for the three potentials used for Fig. 1. The splittings take
place for short times 0 < t < ts ≈ 10 and differ for the different potentials (Fig. 1).

Notice that the NLD Eq. (4) with m = 0 is invariant under the transformation
ψ(x, t)→ ψ(−x, t), χ(x, t)→ −χ(−x, t) and x→ −x. Therefore,

ψ(x, t) = ψ(−x, t), χ(x, t) = −χ(−x, t). (11)

These symmetries are fulfilled by the numerical solutions in Fig. 1, since the initial
conditions (5) with (8)-(9) also satisfy (11). This is observed for short and long
times in Figs. 2 and 3. Figure 3 shows an additional feature: for t � ts (ts is a
transient time), i.e. for the red pulses at t? = 20 and the blue pulses at t? = 40, the
following holds:

ψ(x, t) = sign(x)χ(x, t). (12)

As a consequence,

Ψ̄Ψ = |ψ(x, t)|2 − |χ(x, t)|2 → 0. (13)

This means that the nonlinear term in Eq. (4) vanishes. This fact has also been
observed in the simulations of Fig. 1 for both the potential well and the
potential barrier.

As the nonlinear term of the NLD equation approaches zero for t� ts, the pulses
which travel to the right and to the left with speed of light are solutions of the
linearized NLD equation for t� ts and will be given in the next section.
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When we choose ω � µ = 1, e.g. ω = 0.1, the initial charge density Eq. (10)
exhibits two humps. This facilitates the splitting into two pulses. Therefore the
transient time ts = 5 is much shorter here than in the case ω = 0.9.

Defining

f(x, t) = ψ(x, t) + χ(x, t), (14)

h(x, t) = ψ(x, t)− χ(x, t), (15)

another interesting implication of Eq. (12) is that

f(x, t) = 0, x < 0, (16)

h(x, t) = 0, x > 0 (17)

As an example we present a snapshot of the real and imaginary parts of f(x, 40)
for all x in Fig. 4. Interestingly, the pulse in Fig. 4 resembles a semi-compacton
[23], because it practically vanishes for x < 0 and on the right-hand side it vanishes
exponentially.

So far we have used different potentials, but always the same initial condition,
namely Eqs. (5) with (8)-(9), and for t� ts we obtained always the same scenario
for the dynamics of the pulses. The splitting of the initial pulse into two
pulses, which again move in opposite directions, can also be obtained
using other ICs, provided that the charge density of the ICs is a localized
function. For instance, one can choose

ψ(x, 0) = 2 a1 sech β x, χ(x, 0) = 0, (18)

where a1 =
√

(µ− ω)/2 instead of Eqs. (5) with (8)-(9). We numerically
verified (not shown here) that the charge densities |ψ(x, t)|2 and |χ(x, t)|2
approach each other which means that the nonlinear term in the NLD
equation vanishes for t � ts. In this case, ψ(x, t) and χ(x, t) also possess
the symmetries in Eq. (11). However, for other localized ICs, a collision
of two traveling waves can be observed before they split. Indeed, in Fig.
5, for a constant potential, starting with the initial conditions:

ψ(x, 0) =

√
2a

2
eiπ/4 (sech[b(x+ x0)]− i sech[b(x− x0)]), (19)

χ(x, 0) =

√
2a

2
eiπ/4 (sech[b(x+ x0)] + isech[b(x− x0)] ), (20)

the evolution of the charge density is shown for a = 1, b = 2 and x0 = 10.
The wave, initially centered at x = −x0 travels to the left, whereas the
one centered at x = x0 travels to the right. They meet at x = 0 when
t = 10 and then separate without changing their shapes.
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FIG. 1. Snapshots of the charge density. (a), (c), (e): t? = 0 (black solid lines), t? = 2 (red dashed lines) and t? = 4 (blue
dotted lines). (b), (d), (f): t? = 0 (black solid lines), t? = 20 (red dashed lines) and t? = 40 (blue dotted lines). (a), (b):
potential barrier V1(x) = ω+µ sech 2βx. (c), (d): constant potential V2(x) = ω. (e), (f): potential well V3(x) = ω−µ sech 2βx.
Parameters: g = 1, ω = 0.9 and µ = 1. IC: Eqs. (5) with (8)-(9).

III. EXACT ANALYTICAL SOLUTIONS OF THE MASSLESS NLD EQUATION

In the previous section we have used three different potentials and also different
ICs and obtained very similar results for t� ts. Therefore, we now concentrate on
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FIG. 2. Snapshots of the real ((a), (c)) and imaginary ((b), (d)) parts of the spinor components ψ and χ. Black solid lines:
t? = 0, red dashed lines: t? = 2, blue dotted lines: t? = 4. Constant potential V2(x) = ω. Parameters and ICs: same as in Fig.
1.

the simplest case, namely a constant potential V2(x) = ω.

The two components of the NLD Eq. (4) with m = 0 satisfy

i∂tψ + i∂xχ+ g2{|ψ|2 − |χ|2}ψ = ωψ (21)

−i∂tχ− i∂xψ + g2{|ψ|2 − |χ|2}χ = −ωχ. (22)

Using the transformations (14) and (15) we obtain

∂tf + ∂xf − i
g2

2
{fh? + f ?h}h = −iωf, (23)

∂th− ∂xh− i
g2

2
{fh? + f ?h}f = −iωh. (24)

First, we seek localized solutions of the linearized Eqs. (23)-(24)

∂tf + ∂xf + iωf = 0, (25)

∂th− ∂xh+ iωh = 0, (26)
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FIG. 3. Same as Fig. 2, but for longer times: black solid lines: t? = 0, red dashed lines: t? = 20, blue dotted lines: t? = 40.
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FIG. 4. Snapshots of fr(x, t) (solid line) and fi(x, t) (dashed line) at t = t? = 40. Constant potential: V (x) = ω = 0.9, same
parameters and IC as in Fig. 1.

with ICs

f(x, 0) = ρ1(x)eiθ1(x), h(x, 0) = ρ2(x)eiθ2(x), (27)

where the amplitudes ρ1 and ρ2 are real functions, which go to zero for x→ ±∞, and
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FIG. 5. Parameters: m = 0, g = 1, and V (x) = 0.1. IC: using (19)-(20) with a = 1, b = 2 and x0 = 10. (a): density of
the charge versus x. Simulations: solid line (t = 0), dashed line (t = 10) and dotted line (t = 20) (solid and dotted lines are
superimposed). Blue and red lines, exact solutions at t = 10, 20, respectively; are superimposed with dashed and dotted lines.
(b): contour plot of the density of charge evolution.

the phases θ1 and θ2 are also real functions. The equations (25)-(26) are decoupled
and have the solutions

f(x, t) = e−iωtρ1(x− t)eiθ1(x−t), h(x, t) = e−iωtρ2(x+ t)eiθ2(x+t). (28)

Substituting Eqs. (28) in Eqs. (14)-(15) we obtain

ψ(x, t) =
1

2
e−iωt

[
ρ1(x− t)eiθ1(x−t) + ρ2(x+ t)eiθ2(x+t)

]
, (29)

χ(x, t) =
1

2
e−iωt

[
ρ1(x− t)eiθ1(x−t) − ρ2(x+ t)eiθ2(x+t)

]
. (30)

This is the solution of the linearized massless NLD equation.
Notice that the linearized massless NLD equation with a constant

potential can be transformed to the (1+1) dimensional d’Alembert equa-
tion by invoking light cone coordinates [19]. The solution of the latter
equation comprises two arbitrarily shaped pulses moving in opposite di-
rections. Our solution [Eqs. (29), (30)] is composed of two localized waves
with the shapes ρ1(x) and ρ2(x), which travel in opposite directions with the speed
of light, namely unity. For the particular cases ρ1 = 0 or ρ2 = 0, the initial
pulse propagates unidirectionally with the speed of light. For complex
constant potentials, i.e. ω is a complex constant, the solution [Eqs. (29)-
(30)] predicts a decaying or growing function depending on the sign of
the complex part of the potential (see Appendix).

This is very similar to the numerical solutions of the full NLD equation for t� ts,
which we obtained in Sec. II. For this time regime the nonlinear term in Eq. (4)
vanished because Ψ̄Ψ = |ψ(x, t)|2 − |χ(x, t)|2 → 0.
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As we want to find exact analytical solutions of the full NLD equation we require
that the nonlinear terms in Eqs. (21)-(22) and (23)-(24) vanish for all times

|ψ|2 − |χ|2 =
1

2
[fh? + f ?h] = 0. (31)

When this condition is fulfilled, Eqs. (29)-(30) are exact solutions of the full NLD
equation for all times. The condition, Eq. (31), explicitly reads

ρ1(x− t)ρ2(x+ t) cos Θ(x, t) = 0, (32)

with Θ(x, t) = θ2(x+ t)− θ1(x− t), and is fulfilled in three cases:

ρ1(x− t) = 0, (33)

or

ρ2(x+ t) = 0, (34)

or

θ2(x+ t)− θ1(x− t) = ±π
2
. (35)

For ρ1 ≡ 0, here f(x, t) = 0 and ψ(x, t) = −χ(x, t) = 1
2e
i[θ2(x+t)−ωt]ρ2(x+ t). In this

case a pulse with the shape ρ2(x) travels to the left with the speed of light. Similarly,
for ρ2 ≡ 0 a pulse travels to the right with the speed of light. For instance,
assuming ψ(x, 0) = χ(x, 0) = exp(−x2), i.e. θ1(x) = 0, ρ1(x) = 2 exp(−x2)
and ρ2(x) = 0, the solution [Eqs. (29)-(30)] becomes ψ(x, t) = χ(x, t) =
e−iωt exp[(−(x− t)2].

Let us consider Eq. (35). As it must be fulfilled for all x and t, the only solution is
that θ1 and θ2 are constants. Thus, choosing the minus sign in the condition (35),
the other exact solution of the massless NLD equation finally reads

ψ(x, t) =
1

2
ei(θ1−ωt) [ρ1(x− t)− iρ2(x+ t)] , (36)

χ(x, t) =
1

2
ei(θ1−ωt) [ρ1(x− t) + iρ2(x+ t)] . (37)

This solution contains an arbitrary constant θ1 and arbitrary, localized functions
ρ1(x, t) and ρ2(x, t), whereas the solution (29)-(30) of the linearized massless NLD
equation contained four arbitrary functions θ1(x, t), θ2(x, t), ρ1(x, t) and ρ2(x, t).
Considering instead the plus sign in (35) is equivalent to interchanging ψ(x, t) with
χ(x, t). Clearly, this interchange leaves invariant Eqs. (21)-(22).

To proceed it is shown that if the IC together with the massless NLD equation
satisfy further symmetries, the solution given by Eqs. (36)-(37) is simplified. Indeed,
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Eqs. (21)-(22) are invariant under the transformation ψ(x, t) → −iχ(−x, t), and
x→ −x. This means that

ψ(x, t) = −iχ(−x, t). (38)

The exact solutions Eqs. (36)-(37) satisfy the symmetry (38) only when

ρ1(x− t) = ρ2(−x+ t), ρ1(x+ t) = ρ2(−x− t). (39)

In this case, the exact solution of the full NLD equation reads

ψ(x, t) =
1

2
ei(θ1−ωt) [ρ1(x− t)− iρ1(−x− t)] , (40)

χ(x, t) =
1

2
ei(θ1−ωt) [ρ1(x− t) + iρ1(−x− t)] . (41)

This has an important consequence: In Eqs. (36)-(37) the right and the left running
pulses generally have different shapes ρ1(x) and ρ2(x), as shown in the evolution
of the density of charge in Fig. 6, where the initial conditions satisfy

f(x, 0) =
√

2a sech[b(x+ x0)] e
iπ/4, (42)

h(x, 0) =
√

2a
1 + tanh[b(x− x0)]

cosh[b(x− x0)]
e−iπ/4. (43)

Although θ1 is constant, ρ1(x) 6= ρ2(−x), therefore the symmetry (38) is
not expected (see Fig. 7). However, choosing

ψ(x, 0) = a sech[bx], χ(x, 0) = ia sech[bx], (44)

where a and b are constants, ρ1(x) and ρ2(x) satisfy Eq. (39), and the symmetry
in Eq. (38) is fulfilled. Notice that in this case, ρ1(x, 0) = ρ2(x, 0) = ρ(x, 0) =√

2a sech[bx], θ1 = π/4 and θ2 = −π/4. The exact solution (36)-(37) now becomes

ψ(x, t) =
1 + i

2
a e−iωt{sech[b(x− t)]− isech[b(x+ t)]}, (45)

χ(x, t) =
1 + i

2
a e−iωt{sech[b(x− t)] + isech[b(x+ t)]}. (46)

Figures. 8 and 9 show the solutions represented by Eqs. (45)-(46). These solutions
serve as a test of our simulations, i.e. the numerical solution of the massless NLD
equation, using the ICs, Eqs. (44). The simulation also confirms that the charge
and the energy are the constants Q = 4a2/|b| = 2 and E = ωQ = 0.2, respectively,
predicted by the theory. Moreover, the momentum P is zero.

Other symmetries, as for instance the ones represented by Eq. (11). drastically
reduce Eqs. (36)-(37) to the trivial solution ρ1(x, t) = ρ2(x, t) = 0, i.e. ψ(x, t) =
χ(x, t) = 0.
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FIG. 6. Parameters: m = 0, g = 1, and V (x) = 0.1. IC: using (42)-(43) with a = 1, b = 2 and x0 = 10. (a): density of
the charge versus x. Simulations: solid line (t = 0), dashed line (t = 10) and dotted line (t = 25) (solid and dotted lines are
superimposed). Blue and red lines, exact solutions at t = 10, 25, respectively, are superimposed with dashed and dotted lines.
(b): contour plot of the density of charge.
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FIG. 7. Parameters: m = 0, g = 1, and V (x) = 0.1. IC: using (42)-(43) with a = 1, b = 2 and x0 = 10. Real ((a), (c)) and
imaginary ((b), (d)) parts of ψ(x, t∗) and χ(x, t∗) versus x. Simulations: solid line (t = 0), dashed line (t = 10) and dotted line
(t = 30). Blue and red lines, exact solutions at t = 10, 30, respectively, are superimposed with dashed and dotted lines.
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FIG. 8. Real ((a), (c)) and imaginary ((b), (d)) parts of the spinor components ψ and χ, using the ICs given by Eq. (44).
Simulation: solid lines: t? = 0, dashed lines: t? = 10 and dotted lines: t? = 20. Blue and red lines, exact solutions at
t? = 10, 20, respectively, are superimposed with the dashed and dotted lines. Parameters: m = 0, g = 1, ω = 0.1, a = 1 and
b = 2.

IV. CONCLUSIONS

In this paper we have investigated a notable property of the massless NLD equation
in the presence of an external field – the fact that initial pulses centered at the origin
of the external field break into two pulses traveling in opposite directions (with the
speed of light), which after a short time become solutions of the massless linear
Dirac equation. We have presented numerical simulations starting with various
pulse initial conditions for the case of three different external potentials: a potential
barrier, a potential well and a constant potential.

By considering exact solutions of the massless NLD equation in the presence of a
constant potential which are also solutions of the linear Dirac equation we were able
to gain insight into why an initial pulse at time zero becomes two solutions of the
linear Dirac equation moving in opposite directions at later times. The latter exact
solution also served as a test for our numerical procedure. We note that not only



15

-30 -20 -10 0 10 20 30

x

0

0.2

0.4

0.6

0.8

1

|ψ
(x
,t
*
)|
2

(a)

-30 -20 -10 0 10 20 30

x

0

0.2

0.4

0.6

0.8

1

|χ
(x
,t
*
)|
2

(b)

-30 -20 -10 0 10 20 30

x

0

0.5

1

1.5

2

|ψ
(x
,t
*
)|
2
+
|χ
(x
,t
*
)|
2

(c)

FIG. 9. (a), (b): Charge densities of spinor components versus x. Simulation: solid lines: t? = 0, dashed lines: t? = 10 and
dotted lines: t? = 20. Blue and red lines, exact solutions at t? = 10, 20, respectively, are superimposed with the dashed and
dotted lines. (c): Charge density versus x. (d): contour plot of the charge density. Same parameters and ICs as in Fig. 8.

does the initial pulse break into two pulses traveling with the speed of
light in opposite directions but also that the initial pulse can propagate
along one direction, or that two initial pulses can first focus (i.e. merge)
and then split. Moreover, the pulse can either decay or grow when the
potential is complex.

V. APPENDIX: CONSERVATION LAWS

The NLD Eq. (4) can be derived in a standard fashion from the Lagrangian density

L =

(
i

2

)
[Ψ̄γµ∂µΨ− ∂µΨ̄γµΨ]−mΨ̄Ψ +

g2

2
(Ψ̄Ψ)2 − Ψ̄γ0V (x)Ψ . (47)
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Multiplying Eq. (4) on the left by Ψ̄, multiplying the adjoint NLD equation on the
right by Ψ and summing up, we obtain the continuity equation

∂

∂t
(Ψ̄γ0Ψ) +

∂

∂x
(Ψ̄γ1Ψ) = 2VI(x)Ψ̄γ0Ψ, (48)

where Ψ̄γ0Ψ = |ψ|2 + |χ|2 is the density of charge and VI(x) is the imaginary part
of the potential. Integrating over x and assuming that Ψ vanishes at ±∞ we obtain
that, for a real potential, the charge is conserved, i.e.

dQ

dt
=

∂

∂t

∫
dx(Ψ̄γ0Ψ) = 0. (49)

Moreover, if VI(x) is constant the evolution of the charge is governed by

dQ

dt
= 2VI Q, (50)

which predicts a decay and growth of the initial pulse for VI < 0 and VI > 0,
respectively.

Multiplying Eq. (4) on the left by Ψ̄x, multiplying the adjoint NLD equation on
the right by Ψx and taking the difference between these two expressions, we obtain
the continuity equation

∂T 01

∂t
+
∂T 11

∂x
= Ψ̄xγ

0V (x)Ψ + Ψ̄γ0V ?(x)Ψx , (51)

where the density of momentum is

T 01 =
i

2
(Ψ̄xγ

0Ψ− Ψ̄γ0Ψx), (52)

T 11 = −mΨ̄Ψ +
g2

2
(Ψ̄Ψ)2 +

i

2
[Ψ̄γ0Ψt − Ψ̄tγ

0Ψ]. (53)

Integrating over x and assuming that T 11(−∞)− T 11(∞) = 0 we obtain

dP

dt
=
∫
dx[Ψ̄xγ

0V (x)Ψ + Ψ̄γ0V ?(x)Ψx], (54)

where the momentum is

P =
∫
dxT 01. (55)

In the case of a real constant potential V (x) = V2(x) = ω, the momentum is
conserved. Moreover, if the real potential is symmetric, i.e. V (x) = V (−x) and the
spinor field satisfies either the symmetry in Eq. (11) or in Eq. (38), it can be shown
that P is also conserved.
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Multiplying Eq. (4) on the left by Ψ̄t, multiplying the adjoint NLD equation on
the right by Ψt and taking the difference between these two expressions, we obtain
the continuity equation

∂T 00

∂t
+
∂T 10

∂x
= Ψ̄γ0

∂VR
∂t

Ψ + i VI(x) [Ψ̄γ0Ψt − Ψ̄tγ
0Ψ], (56)

where VR denotes the real part of the potential and

T 10 =
i

2
(Ψ̄γ1Ψt − Ψ̄tγ

1Ψ), (57)

and the density of energy is

T 00 = − i
2

(Ψ̄γ1Ψx − Ψ̄xγ
1Ψ) +mΨ̄Ψ− g2

2
(Ψ̄Ψ)2 + Ψ̄γ0VR(x)Ψ. (58)

Integrating over x Eq. (56), the energy, E =
∫
dx T 00, is conserved for the time-

independent real potential, if T 10(−∞)− T 10(+∞) = 0.
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