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Chimera state has been well studied recently, but little attention has been paid to its transition to synchro-

nization. We here study this topic by considering two groups of adaptively coupled Kuramoto oscillators. By

searching the final states of different initial conditions, we find that the system can easily show a chimera state

with robustness to initial conditions, in contrast to the sensitive dependence of chimera state on initial conditions

in previous studies. Further, we show that in the case of symmetric couplings, the behaviours of the two groups

are always complementary each other, i.e. robustness of chimera state, except a small basin of synchronization.

Interestingly, we reveal that the basin of synchronization will be significantly increased when either the coupling

of inner groups or that of inter-groups are asymmetric. This transition from the attractor of chimera state to the

attractor of synchronization is closely related to both the phase delay and the asymmetric degree of coupling

strengths, resulting in a diversity of attractor’s patterns. A theory based on the Ott-Antonsen ansatz is given to

explain the numerical simulations. This finding may be meaningful for the control of competition between two

attractors in biological systems such as the cardiac rhythm and ventricular fibrillation etc.

PACS numbers:

I. INTRODUCTION

The collective behaviors of coupled oscillators, especially

those on complex networks, have been intensively studied in

the fields of both nonlinear science and complex networks for

a long time and most of the attentions has been paid to the syn-

chronization [1–5]. It is now well known that the synchroniza-

tion on complex networks can be seriously influenced by net-

work topologies such as the small world network [6, 7], scale-

free networks [8, 9], weighted networks [10, 11], and multi-

layered networks [12, 13] etc. In recent years, a new kind of

partial synchronization, called chimera state (CS), have been

discovered and accordingly, a lot of attentions have been fo-

cused on it.

CS was first noticed by Kuramoto and Battogtokh in non-

locally coupled identical oscillators in 2002 [14] and then

named as Chimera State by Abrams and Strogatz in 2004

[15]. It is a kind of coexistence of coherent and incoherent

behaviors in the system of identical oscillators from judicious

chosen initial conditions and thus depends sensitively on the

asymmetric distribution of initial conditions. After that, CS

has attracted a lot of attention in the past decade [16–28] and

has been successfully used to explain the phenomenon of uni-

hemispheric sleep of many creatures in real world such as dol-

phin, birds, some aquatic mammals, and reptiles etc [29–33].

So far, CS has been extended to the case of nonlocally coupled

oscillators where its sensitive dependence on initial conditions

is significantly reduced. In this way, one can expect CS in

different systems such as the neural systems [34–38], chaotic

systems [39–41], high dimensional systems [19, 42–46] and

even experimental systems [47–54] etc.

Although these great achievements, little attention has been

paid to the transition from CS to synchronization. If we con-
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sider CS and synchronization as two attractors, the transi-

tion between them represents a competition, which can be

expected in many biological systems. For examples, in the

heart, there is a competition between the normal rhythmic ac-

tivity and cardiac fibrillation [55–57]. In the neocortex, there

is a competition between the down state (resting state) and up

state (state of depolarization) [58–60]. Thus, it is very neces-

sary to study the transition between CS and synchronization.

In this paper, we present an adaptive model of CS to study

the transition between CS and synchronization, which consists

of two groups of adaptively coupled Kuramoto oscillators. By

this model we show that its CS has robustness to initial condi-

tions, in contrast to the sensitive dependence of CS on initial

conditions in previous studies. On the other hand, according

to the best of our knowledge, most studies of CS are focused

on the case of symmetric couplings. Thus, it is unclear what

will happen if the couplings are asymmetric. To figure out the

answer, we here focus on the influence of asymmetric cou-

plings on CS. We find that the basin of synchronization is very

small when the couplings are symmetric in both the inner and

inter-groups. However, the basin of synchronization will be

significantly increased and accordingly, the basin of CS will

be decreased, when either the couplings of inner groups or

that of inter-groups become asymmetric. A theoretical anal-

ysis based on the Ott-Antonsen ansatz is presented to explain

the numerical results. We also find that this transition can be

influenced by both the phase delay and the asymmetric degree

of coupling strengths.

The paper is organized as follows. In Sec.II, we introduce

the adaptive model of CS and numerically study its collective

behaviors. In Sec.III, we make a theoretical analysis and a

comparison with the numerical simulations. Finally, in Sec.

IV, we give conclusions and discussions.
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II. THE ADAPTIVE MODEL OF CS AND ITS

NUMERICAL SIMULATIONS

We consider a model of two groups of coupled identical

oscillators, defined as

θ̇i,a = ω +
Racaa
N

N
∑

j=1

sin(θj,a − θi,a − α)

+
Racab
N

N
∑

j=1

sin(θj,b − θi,a − α),

θ̇i,b = ω +
Rbcbb
N

N
∑

j=1

sin(θj,b − θi,b − α)

+
Rbcba
N

N
∑

j=1

sin(θj,a − θi,b − α), (1)

where a and b represent the two groups, respectively, and

i = 1, · · · , N represents the N oscillators in each group.

The oscillators are globally coupled with coupling strengths

caa and cbb in the groups a and b, respectively, and coupling

strengths cab and cba between the two groups, respectively. α
is a phase lag parameter. If there is no special explanation,

we set α as α = π
2 − 0.1, which was chosen by many CS

papers [31–33]. The couplings are attractive when α < π/2
and repulsive when α > π/2.

The parameters Ra and Rb represent the order parameters

in the groups a and b, respectively, and are defined as

Rae
iΦa =

1

N

N
∑

j=1

eiθj,a , Rbe
iΦb =

1

N

N
∑

j=1

eiθj,b . (2)

where Φa and Φb denote the average phases in the groups a
and b, respectively. From this definition we see that the cou-

pling strength of each group is controlled by their individual

local order parameters Ra and Rb, respectively. Thus, the

coupling strengths are closely correlated to their local coher-

ence and can be regarded as adaptive couplings. This kind of

adaptive coupling was addressed in Refs. [13, 61], where the

oscillators were considered to be nonidentical with ωi satisfy-

ing a distribution and the purpose was to study the explosive

synchronization. But we here consider the case of identical

oscillators and focus on the transition between CS and syn-

chronization. In fact, the adaptive control is a key topic in the

field of engineering control. Thus, the model (1) with adaptive

local order parameters may provide new insights to the field

of engineering control.

Firstly, we consider the case of symmetric coupling, i.e.

caa = cbb and cab = cba. We take the initial phases of Eq.

(1) from the circular Cauchy distribution [62]

g(θ(0)) =
1− |γ|2

2π|eiθ − γ|2
(3)

which can be easily generated from a Lorentzian distribution

g(x) = 1
π
[ η
(x−x0)2+η2

] with η being the half width at half
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FIG. 1: (color online). (a) and (b) represent the stationary state of

CS for a specific distribution of initial conditions with Ra(0) =
0.8214, Rb(0) = 0.1087 and ∆Φ(0) = Φa(0) − Φb(0) = π

4
.

(a) The dashed blue and solid red lines denote the Ra and Rb, re-

spectively. (b) ∆Φ(t) versus t. (c) and (d) represent the values of

averaged Ra and Rb in the phase diagrams of initial conditions, re-

spectively, with the initial phase difference fixed at ∆Φ(0) = π

4
.

maximum and x0 being the center of the distribution. Mak-

ing a transformation X = x+i
x−i

, we can get a new complex

variable X , which is distributed on a unit circular in complex

plane. The phases of X are distributed as the circular Cauchy

distribution. By changing x0 and η, we can easily change the

average and deviation of the circular Cauchy distribution and

thus change the initial order parameter of the oscillators.

In numerical simulations, we take the system size as N =
50 for each group and let caa = cbb = 1.0 and cab = cba =
1.0. Without loss of generality, we let the natural frequency

ω in Eq. (1) be zero. We find that CS can be easily observed

in the system of Eq. (1). Fig. 1(a) shows the dependence

of Ra and Rb on time t in stationary state, where the initial

order parameters are chosen as Ra(0) = 0.8214 and Rb(0) =
0.1087. We see that Ra is always unity while Rb is much

smaller than unity, indicating that the oscillators in group a
are synchronized while that in group b are not synchronized,

i.e. the feature of CS. Further, we let ∆Φ(t) ≡ Φa(t)−Φb(t)
be the average phase difference between the two groups. Fig.

1(b) shows the dependence of ∆Φ(t) on time t, corresponding

to Fig. 1(a). It is easy to see that ∆Φ(t) is in oscillatory,

confirming the difference of states between the groups a and

b.

It has been pointed out that CS depends sensitively on the

distribution of initial conditions [31, 33]. Thus, to success-

fully observe CS, one has to carefully choose the initial con-

ditions. However, we here surprisingly find that the CS in Eq.

(1) does not depend sensitively on its initial conditions, i.e.

the adaptive model of Eq. (1) has robustness to initial condi-

tions. Fig. 1(c) and (d) show the dependence of the averaged
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order parameters Ra and Rb of the two groups on different

initial order parametersRa(0) and Rb(0), respectively, where

the initial phase difference between the two groups is fixed as

∆Φ(0) = Φa(0)−Φb(0) =
π
4 . Comparing the corresponding

regions between Fig. 1(c) and Fig. 1 (d), we see that Ra will

be unity onceRb is around zero, and vice versa, indicating the

CS of the system (1). We also notice that the collective be-

haviours of the two groups are almost always complementary

each other, implying that its CS is robust to initial conditions,

i.e. a robustness of CS.

We may notice from Fig. 1(a) that Ra is a constant 1, while

the value of Rb in the group b is not only small but also oscil-

latory. To understand it in detail, Fig. 2(a) shows the effec-

tive frequencies 〈θ̇i〉 and the instantaneous frequencies θ̇i(t)
by the red “squares” and green “points”, respectively. We see

that in the group a with i ∈ [1, 50], both 〈θ̇i〉 and θ̇i(t) are

constants around −1 but with a small difference. While in the

group b with i ∈ [51, 100], 〈θ̇i〉 is a constant 0 but θ̇i(t) are

different for different oscillators and are well organized into a

smooth curve. Fig. 2(b) and (c) show the evolutions of θ̇i(t)
for the groups a and b, respectively. From Fig. 2(b) we see

that θ̇i(t) are synchronized and periodically changed with t

between −1.04 and −0.98, resulting in 〈θ̇i〉 = −1.01 for the

group a. From Fig. 2(c) we see that θ̇i(t) are unsynchronized

but formed a traveling wave with amplitudes ±0.04, resulting

in 〈θ̇i〉 = 0 for the group b. Combining Fig. 2(a) with (c) to-

gether, we see that they are exactly the Bellerophon state with

synchronized average frequencies but unsynchronized instan-

taneous frequencies, i.e. a phenomenon discovered in non-

identical oscillators [63–65].

We have to point out that this is the first time to observe the

Bellerophon state in populations of identical oscillators. This

finding forces us to pay more attention on the CS in Fig. 1(c)

and (d). By carefully checking their behaviours, we interest-

ingly find that they are not always complementary each other,

but have a small probability for the two groups to be synchro-

nized. For conveniently characterizing this phenomenon, we

follow the Ref. [68] to let “S” denote the attractor of synchro-

nization with Ra = Rb = 1 and “C” the attractor of CS. Fig.

3(a) shows the result in the phase diagram of initial conditions.

We see that the region of attractor “S” is very small, but it does

exist. Then, a key question is what is the relationship between

these two attractors. To go a deeper step toward this question,

we change the symmetric couplings in Eq. (1) into asymmet-

ric ones and discuss two kinds of asymmetric couplings in the

following.

Secondly, we consider the first kind of asymmetric cou-

plings with caa = cbb but cab 6= cba, i.e. non-symmetric

inter-group couplings. In numerical simulations, we keep

caa = cbb = 1.0 but take cab = 0.1 and cba = 1.0 as an

example. We find that the attractor “S” can be enhanced by

the asymmetric couplings. Fig. 3(b) shows the result. Com-

paring Fig. 3(b) with (a) one can see that the region of the

attractor “S” is significantly increased. To figure out the an-

swer, we show the phase diagrams of Ra and Rb in Fig. 3(c)

and (d), respectively. From them we notice two points: (i) The

whole region of Fig. 3(d) is synchronized, reminding us the

phenomenon of symmetric states requiring system asymme-
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FIG. 2: (color online). Dynamical behaviours in the two groups a and

b. (a) The distributions of effective frequencies 〈θ̇i〉 (red “squares”)

and instantaneous frequencies θ̇i(t) (green “points”) where the index

with i ∈ [1, 50] represent the group a and that with i ∈ [51, 100]

denote the group b. (b) and (c) show the evolutions of θ̇i(t) for the

groups a and b, respectively.

try [66]. This synchronization in the whole region of initial

conditions of group b destroys its two states property and thus

destroys the complementary feature between the two groups

or the robustness of CS. (ii) Comparing Fig. 3(c) with Fig.

1(c) one can see that the region of non-synchronization in Fig.

3(c) is increased and its value of Ra is larger than that in Fig.

1(c), indicating that the asymmetric couplings reduce the con-

trast ratio between the states of synchronization and nonsyn-

chronization in CS. These two points make the region of the

attractor “S” be significantly increased.

So far, we have fixed the average initial phase difference as

∆Φ(0) = π
4 . However, we find that the value of ∆Φ(0) will

also influence the region of the attractor “S”. Let us take the

group a as an example. Fig. 4(a) and (b) show the phase dia-

grams of Ra for ∆Φ(0) = 0 and 2π
3 , respectively, where the

other parameters are fixed the same as in Fig. 3(c). Compar-

ing Fig. 4(a) with (b) and also comparing them with Fig. 3(c),

one can see that their regions of the attractor “S” are largely

different each other, indicating the key role of ∆Φ(0) in the

region of the attractor “S”.

In sum, the robustness of chimera states with respect to ini-

tial conditions is only reflected in 2D slice ofRa(0) andRb(0)
for all the cases of Fig. 1(c) and (d), Fig. 3(c) and (d) and

Fig. 4(a)-(d). Considering that the initial condition space is
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FIG. 3: (color online). (a) The synchronized region “S” for the case

of symmetric coupling, corresponding to Fig. 1(c) and (d). (b) The

synchronized region “S” for the case of asymmetric coupling with

cab = 0.1 and cba = 1.0. (c) and (d) represent the phase diagrams of

Ra and Rb corresponding to (b), respectively. We have ∆Φ(0) = π

4

for all these cases.
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FIG. 4: (color online). Influence of the average initial phase differ-

ence in the group a. (a) and (b) represent the region of the attractor

“S” for the case of asymmetric coupling with ∆Φ(0) = 0 and 2π

3
,

respectively. (c) and (d) represent the theoretical solutions corre-

sponding to (a) and (b), respectively.

3D (Ra(0), Rb(0) and ∆Φ(0)), it is better to also show this

robustness to the third parameter ∆Φ(0). For this purpose,

we calculate the possibility P for the system to stay at the

attractor “S” in the 2D plane of Ra(0) and Rb(0). Instead

of enumerating the diversity of the patterns “S”, it is maybe

better to count the ratio P between the region of the attractor

“S” and the total region including both the regions of “S” and

“C”. That is, P will be proportional to the region of initial

0 π 2π
ΔΦ(0)
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����

����
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P

����
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���
�����
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FIG. 5: (color online). Dependence of P on ∆Φ(0) where the ini-

tial conditions of Ra(0), Rb(0) are homogeneously distributed in

(0, 1]. The red “circles” represent the case of symmetric coupling

with cab = 1.0 and cba = 1.0, while the blue “squares” denote the

case of asymmetric coupling with cab = 0.1 and cba = 1.0.

conditions which finally go to the attractor “S” [67, 68]. Fig.

5 shows how P changes with ∆Φ(0) where the red “circles”

represent the case of symmetric coupling with cab = 1.0 and

cba = 1.0 and the blue “squares” denote the case of asymmet-

ric coupling with cab = 0.1 and cba = 1.0. We see that (1) P
depends on ∆Φ(0) and (2) P for the “squares” are larger than

the corresponding P for the “circles”, indicating that asym-

metric coupling enhance the transition from chimera state to

synchronization.

Based on Figs. 3-5, we conclude that the region of the at-

tractor “S” depends not only on the asymmetric couplings but

also on the average initial phase difference. Moreover, we find

that the phase lag parameter α in Eq. (1) also influences the

region of the attractor “S”. The left panels of Fig. 6, i.e. (a),

(c), (e) and (g), show the patterns of “S” in the phase diagram

of ∆Φ(0) and ∆R(0) for different cab and α, with the limits

of Ra(0) + Rb(0) = 1.0 and caa = cbb = 1.0, cba = 1.0.

We see that their patterns can be quite different, indicating the

induced diversity of the attractor “S”.

We fix caa = cbb = 1.0, cba = 1.0 and let cab change. For

each cab, we let Ra(0), Rb(0) change in (0, 1] and let ∆Φ(0)
change in (0, 2π]. Fig. 7(a) shows the dependence of P on

cab where the three curves represent the cases of α = π
2 −

0.1, α = π
2 − 0.3 and α = π

2 − 0.5, respectively. We see

that with the increase of cab, P is approximately decreased.

Consider the fact that the increase of cab means a decrease

of the difference between cab and cba. Thus, the increase of

coupling asymmetry will result in a decrease of the robustness

of CS, i.e. an increase of the region of the attractor “S”.

Thirdly, we consider the second kind of asymmetric cou-

plings with cab = cba but caa 6= cbb, i.e. non-symmetric

inner-group couplings. In detail, we keep cab = cba = 1.0
and caa = 1.0, but let cbb change. We find the similar be-

haviours as that of the left panels of Fig. 6, i.e. the region

of the attractor “S” can be also enhanced by the asymmet-
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FIG. 6: (color online). Typical patterns of the attractor “S” on the

phase diagram of ∆Φ(0) and ∆R(0) for different pairs of cab and α,

with the limits of Ra(0)+Rb(0) = 1.0 and caa = cbb = 1.0, cba =
1.0. The left panels represent the numerical simulations, while the

right panels represent the corresponding theoretical results. The pa-

rameters are as follows. (a) and (b): cab = 0.9 and α = π

2
− 0.5; (c)

and (d): cab = 0.7 and α = π

2
− 0.5; (e) and (f): cab = 0.25 and

α = π

2
− 0.3; (g) and (h): cab = 0.0822 and α = π

2
− 0.1.

ric inner-group coupling. The left panels of Fig. 8, i.e. (a),

(c), (e) and (g), shows the patterns of “S” on the phase dia-

gram of ∆Φ(0) and ∆R(0) for different cbb, with the limits

of Ra(0) + Rb(0) = 1.0 and α = π
2 − 0.3. We see that

the region of the attractor “S” also show a diversity of pat-

terns. Therefore, the ratio P can be used to characterize the

dependence of the region of the attractor “S” on cbb. Fig. 7(b)

shows the results where the three curves represent the cases of

α = π
2 − 0.1, α = π

2 − 0.3 and α = π
2 − 0.5, respectively.

Comparing Fig. 7(b) with (a), we see that they are similar each

other when cbb < 2. However, P will be easy to reach unity

when cbb > 2, indicating that a strong degree of asymmetric

inner-group coupling will destroy the robustness of CS.

III. THEORETICAL ANALYSIS

To conveniently analyze the collective dynamics, Ott and

Antonsen presented an approach to significantly reduce the

dimension of globally coupled oscillators [69, 70], resulting in

the low dimensional behavior of system. We here adopt this
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FIG. 7: (color online). The diversity of the patterns “S” induced by

the asymmetric couplings. (a) P versus cab for the case of asymmet-

ric inter-group couplings with fixed caa = cbb = 1.0 and cba = 1.0.

(b) P versus cbb for the case of asymmetric inner-group couplings

with fixed caa = 1.0 and cab = cba = 1.0. The initial values

of Ra(0), Rb(0) are homogeneously taken from (0, 1] and ∆Φ(0)
from (0, 2π].

idea to analyze the coexistence of the attractor “S” and the

attractor “C”. In the thermodynamical limit, the state of the

oscillator system at time t can be described by a continuous

distribution function, f(θ, ω, t). Taking the group a of system

(1) as an example, its continuity equation is as follows

∂fa
∂t

+
∂(vafa)

∂θ
= 0, (4)

where fa(θa, ωa, t) is the distribution function at time t and

phase θ of an oscillator. va(θa, ωa, t) is its angular velocity

and can be defined as

va = ωa (5)

+Racaa

∫ 2π

0

∫

∞

−∞

sin(θ′a − θa − α)fa(θ
′

a, ω
′

a, t)dθ
′

adω
′

a

+Racab

∫ 2π

0

∫

∞

−∞

sin(θb − θa − α)fb(θb, ωb, t)dθbdωb.

Let us introduce a complex order parameter z, defined as

za = Rae
iΦa =

∫ 2π

0

∫

∞

−∞

eiθafa(θa, ωa, t)dθadωa, (6)

zb = Rbe
iΦb =

∫ 2π

0

∫

∞

−∞

eiθbfb(θb, ωb, t)dθbdωb. (7)
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FIG. 8: (color online). Typical patterns of the region of the attractor

“S” on the phase diagram of ∆Φ(0) and ∆R(0) for different cbb,

with the limits of Ra(0) +Rb(0) = 1.0 and α = π

2
− 0.3. The left

panels represent the numerical simulations, while the right panels

represent the corresponding theoretical results. The parameters are

as follows. (a) and (b): cbb = 1.2; (c) and (d): cbb = 1.5; (e) and (f):

cbb = 1.56; (g) and (h): cbb = 2.0.

whereRa andRb represent the order parameters of the groups

a and b, respectively. Then, va(θa, ωa, t) can be simplified

into

va(θa, ωa, t) = ωa +
Racaa
2i

[zae
−iθae−iα − z∗ae

iθaeiα]

+
Racab
2i

[zbe
−iθae−iα − z∗b e

iθaeiα]. (8)

According to the Ott-Antonsen ansatz [69, 70], the distribu-

tion fa(θa, ωa, t) can be written as a Fourier series in the form

fa(θa, ωa, t) =
ga(ωa)

2π
{1 + [

∞
∑

n=1

[ha(ωa, t)e
iθa ]n + c.c]},

(9)

where the c.c stands for complex conjugate. Substituting

Eqs.(8) and (9) into Eq. (4) and doing the same derivation

as Ref. [31], we obtain

Ṙa =
Ra −R3

a

2
[caaRa cosα+ cabRb cos(Φa − Φb + α)],

Φ̇a = ω0 −
(1 +R2

a)

2
×[caaRa sinα+ cabRb sin(Φa − Φb + α)]. (10)

Similarly, we have the equations of order parameter for the

group b as

Ṙb =
Rb −R3

b

2
[cbbRb cosα+ cbaRa cos(Φb − Φa + α)],

Φ̇b = ω0 −
(1 +R2

b)

2
×[cbbRb sinα+ cbaRa sin(Φb − Φa + α)]. (11)

Eqs. (10) and (11) are our theoretical results.

We now let ω0 = 0 and use Eqs. (10) and (11) to confirm

the above numerical simulations. We first go to the cases of

Fig. 4(a) and (b) and use their corresponding parameters to

solve the Eqs. (10) and (11). Fig. 4(c) and (d) show the

results. Comparing Fig. 4(c) and (d) with their corresponding

numerical results of Fig. 4(a) and (b), respectively, we see

that Fig. 4(c) is very similar to Fig. 4(a) and Fig. 4(d) is very

similar to Fig. 4(b), indicating that the theoretical results and

numerical simulations have confirmed each other.

Then, we use the theoretical Eqs. (10) and (11) to the cases

of Fig. 6(a), (c), (e) and (g) by taking their corresponding

parameters. Fig. 6(b), (d), (f) and (h) show the results. Com-

paring them with their corresponding numerical results of Fig.

6(a), (c), (e) and (g), respectively, we see their highly consis-

tence, indicating again that the theoretical results and numer-

ical simulations have confirmed each other. Similarly, Fig.

8(b), (d), (f) and (h) show the theoretical results correspond-

ing to Fig. 8(a), (c), (e) and (g), respectively. Once again, they

are consistent with each other.

Moreover, to understand the transition from chimera state to

synchronization better, we would like to make a further anal-

ysis on the dependence of synchronization on the parameters

by following Refs. [31] and [68]. Letting ψ = Φa − Φb and

ω0 = 0, Eqs. (10) and (11) can be combined into

Ṙa =
Ra −R3

a

2
[caaRa cosα+ cabRb cos(α+ ψ)],

Ṙb =
Rb −R3

b

2
[cbbRb cosα+ cbaRa cos(α− ψ)],

ψ̇ = −
1 +R2

a

2
[caaRa sinα+ cabRb sin(α+ ψ)]

+
1 +R2

b

2
[cbbRb sinα+ cbaRa sin(α− ψ)] (12)

For a synchronized solution of Eq. (12), we have Ra = Rb =
1, which corresponds to the fixed point of Ṙa = 0, Ṙb =
0, and ψ̇ = 0. We pay attention to the case of asymmetric

coupling, which may come from either inter-group coupling

cab 6= cba or inner-group coupling caa 6= cbb.



7

In the case of cab 6= cba, we consider caa = cbb = 1 and

cba = 1 as an example. From the third equation Eq. (12) we

have

ψ0 = α− arctan

[

sin(2α)cab
cos(2α)cab + 1

]

. (13)

Thus, the fixed point of synchronized solution (1, 1, ψ0) de-

pends on the asymmetric parameter cab and the parameter α.

For simplicity, we denote SSψ0
as the fixed point. To analyze

the stability of the fixed point, we check the Jacobian matrix

of Eq. (12)

M =





a1 a2 a3
b1 b2 b3
c1 c2 c3



 (14)

where

a1 =
1

2
(−3R2

a + 1)[caaRa cosα+ cabRb cos(ψ + α)]+

1

2
(−R3

a +Ra)caa cosα

a2 =
1

2
(−R3

a +Ra)cab cos(ψ + α)

a3 = −
1

2
(−R3

a +Ra)cabRb sin(ψ + α)

b1 =
1

2
(−R3

b +Rb)cba cos(α− ψ)

b2 =
1

2
(−3R2

b + 1)[cbbRb cosα+ cbaRa cos(α− ψ)]+

1

2
(−R3

b +Rb)cbb cosα

b3 =
1

2
(−R3

b +Rb)cbaRa sin(α− ψ)

c1 = −Ra[caaRa sinα+ cabRb sin(ψ + α)]−

1

2
(R2

a + 1)caa sinα+
1

2
(R2

b + 1)cba sin(α− ψ)

c2 = −
1

2
(R2

a + 1)cab sin(ψ + α) +Rb[cbbRb sinα+

cbaRa sin(α− ψ)] +
1

2
(R2

b + 1)cbb sinα

c3 = −
1

2
(R2

a + 1)cabRb cos(ψ + α)−

1

2
(R2

b + 1)cbaRa cos(α− ψ) (15)

Substituting the fixed point into (15), we obtain the eigenval-

ues of (14) as

λ1,2,3 =











−caa cosα− cab cos(ψ + α)

−cbb cosα− cba cos(α− ψ)

−cab cos(ψ + α)− cba cos(α− ψ)

(16)

The synchronized solution SSψ0
will be stable when the max-

imum of the three eigenvalues of (16) is negative; otherwise, it

will be unstable. Fig. 9(a) shows the results where the red and

blue points represent the stable and unstable regions, respec-

tively. It is easy to notice that the chimera state exists only

when α is around π/2.

cab0
0.5

1.0

α
0

π
4

π
2

0

π
4

π
2

ψ0

cbb�

�

�

α
0

π
4

π
2

0

π
4

π
2

��� ���

FIG. 9: (color online). Stability analysis of the synchronized solution

SSψ0
where the red and blue points represent the stable and unstable

regions, respectively. (a) Case of cab 6= cba; and (b) case of caa 6=
cbb.

In the case of caa 6= cbb, we consider cab = cba = 1 and

caa = 1 as an example. From the third equation Eq. (12) we

have

ψ0 = arcsin

[

sinα(cbb − 1)

2 cosα

]

(17)

Fig. 9(b) shows the dependence of the synchronized solution

SSψ0
on the parameters α and cbb where the red and blue

points represent the stable and unstable regions, respectively.

It confirms again that the chimera state exists only when α is

around π/2.

Finally, we discuss the bifurcation diagram of chimera state

by following Refs. [31] and [68]. We take the case of synchro-

nized group b and unsynchronized group a as an example, i.e.

Rb = 1 and 0 < Ra < 1. By Ṙa = 0 we obtain

caaRa cosα+ cabRb cos(ψ + α) = 0 (18)

In the case of cab 6= cba, we consider caa = cbb = 1 and

cba = 1, which gives

Ra = −
cab cos(ψ + α)

cosα
(19)

By ψ̇ = 0 we have

cab = −
sin(α)R3

a +Ra sinα− 2Ra sin(α − ψ)− 2 sinα

(R2
a + 1) sin(ψ + α)

(20)

To obtain the saddle-node bifurcation, the sub-Jacobian ma-

trix of Eq. (12) must satisfy

∆ =

∣

∣

∣

∣

a1 a3
c1 c3

∣

∣

∣

∣

= 0 (21)

To obtain the Hopf bifurcation, the trace of (21) must satisfy

T = a1 + c3 = 0 (22)

Sweeping α and ψ yields the correspondingRa and cab. Fur-

thermore, we calculate the probability for chimera state by
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FIG. 10: (color online). Bifurcation diagram for chimera states

where the dotted red, solid blue and dashed green lines represent

Hopf, saddle-node and homoclinic bifurcations, respectively. (a)

Case of cab 6= cba; and (b) case of caa 6= cbb. The probabilities for

chimera states are measured by realizing 1000 random initial condi-

tions for each set of parameters.

realizing 1000 random initial conditions for each set of pa-

rameters. Fig. 10(a) shows the results.

In the case of caa 6= cbb, we consider cab = cba = 1 and

caa = 1. By doing the same process as in Fig. 10(a) we

obtain Fig. 10(b). From both Fig. 10(a) and (b) we see that

the asymmetric coupling increases the transition from chimera

state to synchronization.

IV. DISCUSSIONS AND CONCLUSIONS

The interesting of CS comes from its counterintuitive coex-

istence of coherent and incoherent oscillations in populations

of identical oscillators where we can traditionally only expect

either a complete synchronization or an unsynchronized state.

Since the finding of CS in 2002 [14], most of the attention

has been paid to its conditions and its diversity [36, 71], while

little attention has been paid to the relationship between the

attractor “S” and the attractor “C”. We here show that for the

symmetric coupled populations, the basin of the attractor “S”

is ignorable in the phase diagram of initial conditions (see Fig.

3(a) for example), which implies that it is not very necessary

to pay attention to the attractor “S” and thus no necessary to

discuss the relationship between the attractor “S” and the at-

tractor “C”.

However, in realistic situations, the couplings are generally

asymmetric. Take the human beings as an examples, which

was shown to have a first-night effect [72], i.e. a kind of CS

for the unihemispheric sleep in the first night of traveling ho-

tel. It is well known that the left and right hemispheres of

the brain are taking different functions with asymmetric cou-

plings between them. Thus, it is very necessary to study how

the asymmetric couplings influence the relationship between

the attractor “S” and the attractor “C”, which is just done in

this work. We interestingly find that the asymmetric couplings

do influence the basins of both the attractor “S” and the attrac-

tor “C” in the phase diagram of initial conditions and result in

the diversity of patterns for the attractor “S”, which may have

applications in controlling of CS.

This asymmetry enhanced synchronization can be further

understood as follows. For the classical model of two coupled

groups in [31], its chimera state depends sensitively on the

chosen initial conditions. In other words, its synchronization

can be easily observed by randomly chosen initial conditions.

Thus, it is not very interesting to study its enhanced synchro-

nization. But for the adaptive model (1), its chimera state

has robustness because of the control of local order param-

eters. Take the asymmetric case of cab 6= cba as an example.

When cab = cba, every oscillator in the two groups will be in

the same position. In this case, the local order parameters in

(1) will try to keep their local behaviours and thus results in

the robustness. However, when cab 6= cba, the oscillators in

one group will have different positions than that in the other

group. Suppose cab > cba. We divide cab into two parts,

i.e. cab = cba + (cab − cba). The part of cba will contribute

a mean-field to every oscillator in the system, while the part

of (cab − cba) will contribute a perturbation. This perturba-

tion will kick the oscillators out of their local states and thus

enhance the synchronization between the two groups. This

synchronization mechanism has been confirmed in both the

symmetry breaking system [66] and weighted networks [11].

In conclusion, we have presented an adaptive model to de-

scribe both the robustness of CS and the relationship between

the attractor “S” and the attractor “C”. We find that in the

case of symmetric couplings, the two groups may easily go to

different final states and thus show a robustness of CS. More

interestingly, we study two kinds of asymmetric couplings and

show that there is a finite probability for the two groups to go

to the attractor “S”, i.e. partially destroying the robustness of

CS. No matter it is the asymmetric inter-group couplings or

the asymmetric inner-group couplings, we reveal that both of

them can show the diversity of patterns for the attractor “S” in

the phase diagram of initial conditions. Moreover, a theoreti-

cal analysis of dimension reduction is provided to explain the

numerical simulations.
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