
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Inferring low-dimensional microstructure representations
using convolutional neural networks
Nicholas Lubbers, Turab Lookman, and Kipton Barros

Phys. Rev. E 96, 052111 — Published  9 November 2017
DOI: 10.1103/PhysRevE.96.052111

http://dx.doi.org/10.1103/PhysRevE.96.052111


Inferring low-dimensional microstructure representations using convolutional neural
networks

Nicholas Lubbers,1, 2, ∗ Turab Lookman,2 and Kipton Barros2

1Department of Physics, Boston University, Boston, MA
2Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: September 29, 2017)

We apply recent advances in machine learning and computer vision to a central problem in
materials informatics: The statistical representation of microstructural images. We use activations
in a pre-trained convolutional neural network to provide a high-dimensional characterization of a
set of synthetic microstructural images. Next, we use manifold learning to obtain a low-dimensional
embedding of this statistical characterization. We show that the low-dimensional embedding extracts
the parameters used to generate the images. According to a variety of metrics, the convolutional
neural network method yields dramatically better embeddings than the analogous method derived
from two-point correlations alone.

I. INTRODUCTION

A central problem in materials design is the analysis,
characterization, and control of materials microstructure.
Microstructure is generated by non-equilibrium processes
during the formation of the material and plays a large role
in the bulk material’s properties [1–5]. In recent years,
machine learning and informatics based approaches to
materials design have generated much interest [6–10].
Effective statistical representation of microstructure has
emerged as an outstanding challenge [11–13].

Standard approaches begin with an n-point expansion,
and typically truncate at the pair correlation level [14–
17]. Pair correlations can capture information such as
the scale of domains in a system, but miss higher order
complexities such as the detailed shape of domains or
relative orientation of nearby domains [18–21]. Three-
point correlations (and successors) quickly become com-
putationally infeasible, as the number of n-point corre-
lations scales exponentially with n. Furthermore, they
are not tailored to capture the statistical information of
interest. Much current work involves deploying a set of
modified two-point correlations to better capture certain
microstructural features [16, 22–25].

Independently, researchers in machine learning for
computer vision have been developing powerful tech-
niques to analyze image content [26–30]. Deep Convolu-
tional Neural Networks (CNNs) have emerged as a partic-
ularly powerful tool for image analysis [31]. Of particular
interest to materials microstructure analysis is literature
regarding texture reconstruction and modeling [32–36];
in this context a texture is an image with roughly trans-
lation invariant statistics. Indeed, Gatys et al. have re-
cently demonstrated that correlations between CNN ac-
tivations capture the statistics of textures exceptionally
well [37, 38].

Here, we apply the Gatys et al. CNN texture vector
representation of image statistics to the problem of char-
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acterizing materials micrographs. The texture vector is
a statistical representation of an image derived from the
processing of a pre-trained CNN; we use the Visual Ge-
ometry Group’s VGG-19 network [28], which has been
trained to classify 1.2 million natural images [39]. We
demonstrate that the texture vectors generated using the
VGG-19 network can capture complex statistical corre-
lations visible in microstructure images in Fig. 1. Specif-
ically, we use the CNN texture vector to characterize an
original microstructural image, and then generate a new,
random image constrained to the same statistics. It is
remarkable that using only a single original image, the
algorithm generates texture images nearly indistinguish-
able to the eye. In the case of materials micrographs,
where data can be expensive to collect, the ability for a
method perform well on small datasets is crucial. Our
approach can be considered one of transfer learning, i.e.,
the application of a model trained on one problem to
achieve results on a different, but related problem. The
fidelity in Fig. 1 motivates us to pursue the CNN tex-
ture vector as a tool for mapping relationships between
materials processing, microstructure, and properties.

As a step towards microstructure analysis, we demon-
strate and quantify the ability of the CNN texture vector
to extract hidden information from a collection of syn-
thetic texture images. Images in our datasets are gener-
ated under different “processing” conditions, i.e. a few
generating parameters. The goal is to extract a compact
statistical representation of the dataset that captures the
relevant statistics associated with the hidden generating
parameters—that is, to back out the processing parame-
ters of micrographs directly from the images alone. Our
use of synthetic data, with a tightly controlled ground
truth, provides us quantitative measures of error in the
unsupervised learning process.

Despite being very high-dimensional, the CNN texture
vector offers a good notion of abstract distance between
texture images: The closer the generating parameters,
the smaller the distance between texture vectors. We
use manifold learning to embed each image as a point in
a low-dimensional space such that, ideally, the embed-
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FIG. 1: (Color online) Texture synthesis of materials microstructures using the CNN algorithm from [37]. The CNN
synthesizes each “Reconstruction” image from a single “Original” image. (Image attributions listed in Appendix A.)

ded distances match the texture vector distances. The
structure of the embedded points then reveals informa-
tion about the set of images. For our synthetic dataset,
we show a simple relationship between the embedded co-
ordinates and the generating parameters. More broadly,
dimensionality reduction techniques may serve as the ba-
sis for characterization of materials properties that are
controlled by complex materials microstructures. A re-
cent example is the work of Ref. 40, which uses a method

similar to ours to map the space of ultrahigh carbon steel
microstructures.

Our approach applies unsupervised learning, a pattern-
discovery framework to seek new aspects of microstruc-
ture without using labeled data. This approach is appli-
cable to problems where the ground truth is unknown,
e.g., the forensic analysis of microstructures. Several re-
cent applications of machine learning to microstructure
have used supervised learning algorithms [41–47] such as
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support vector machines and classification trees, which
make inferences based on labeled data. Like our work,
Ref. 46 uses image features extracted from CNNs to aid
microstructure analysis.

The remainder of the paper is organized as follows:
Section II gives background on recent CNN architectures
for image recognition, and specifics of the VGG net-
work. Section III details our algorithms for statistical
microstructure analysis and Sec. IV evaluates their accu-
racy on test datasets. Section V provides discussion and
interpretation of our results, and we conclude in Sec. VI.

II. REVIEW OF CONVOLUTIONAL NEURAL
NETWORKS

CNNs have emerged in recent years as state-of-the-art
systems for computer vision tasks [26–29]. They form a
modern basis for image recognition and object detection
tasks, and in some cases now outperform humans [30, 48].

The basic computational structure is that of a many-
layered (i.e., deep) artificial neural network. For a brief
overview, see Ref. 31; for a comprehensive text, see
Ref. 49. There are a great variety of deep neural network
architectures; here we first focus on the core components.
Each layer in the network contains many computational
units (neurons). Each neuron takes a set of inputs from
the previous layer and computes a single output (the ac-
tivation) to be used as an input in the next layer. Each
neuron’s activation is constructed as follows: First, the
set of inputs is linearly combined into a scalar using a
set of weights and shifted using a bias. To this sum, the
neuron applies a simple nonlinear map, the activation
function, to generate its activation.

In the learning phase, the network is trained by itera-
tively tuning the weights and biases so that the network
better performs a task. Performance of the network is
quantified by a scalar objective function. Commonly, a
network is trained by supervised learning, in which the
network learns a mapping from inputs to outputs using
a database of training examples. In this case, the objec-
tive function is a measure of error in the network output
summed over all examples of the training set. The ob-
jective function is often differentiable and optimized via
stochastic gradient descent.

A CNN is a specific type of artificial neural network
which is useful for processing data on a spatial and/or
temporal grid. The convolutional layers in CNNs impose
strong restrictions on the structure of weights: Each layer
consists of a bank of trainable filters (sometimes called
kernels) that are convolved with activations from the pre-
vious layer. The convolution outputs are called activa-
tion maps. This technique of constraining and reusing
weights is called weight tying. Note that the convolu-
tional structure preserves spatial locality: The activa-
tion maps at each convolutional layer are interpretable
as images. As in a plain artificial neural network, each
pixel in the output image is passed through a nonlinear

activation function. CNNs also commonly include pool-
ing layers that effectively coarse-grain the image plane.
These layers operate by taking a statistic over a small
region of the image plane, such as the maximum of a fea-
ture’s activations in a 2 × 2 pixel region. Importantly,
the convolutional and pooling layers process the input
image in a (nearly) translation equivariant way. This
directly encoded translational symmetry is designed to
match that of natural images, which as a distribution ex-
hibit repeated patterns centered at a variety of locations.
By alternating between sets of convolution and pooling
layers, CNNs are able to develop sensitivity to very com-
plex correlations over large length scales, which underlies
their strong performance on image recognition tasks.

As in Gatys et al. [37, 38], our work begins with a nor-
malized version of the Visual Geometry Group’s VGG-19
network [28] already trained to classify natural images.
The VGG-19 network placed first in localization and sec-
ond in classification in the ILSVRC 2014 ImageNet Chal-
lenge [39]. The VGG network is known for its simple
architecture and competitive performance. The convo-
lutional kernels each have a 3 × 3 pixel spatial extent.
The nonlinear activation function applied after each con-
volution is a rectifier (ReLU), f(x) = max(0, x). The
convolutional layers are applied in a series of blocks, and
between the blocks, pooling layers are applied (in the
original network, Max pooling, but here as in Refs. 37
and 38 we use Mean pooling). Blocks one and two con-
tain two convolutions each, and blocks three, four, and
five contain four convolutions each. The final stage of the
network adds three fully connected layers—these do not
directly encode spatial information, and so are not used
for translation invariant characterization of images. We
used the optimizing compiler Theano [50] and the neu-
ral network library Lasagne [51] to implement the CNN
methods used in this paper.

III. METHODS

A. CNN texture vector representation of image
statistics

Gatys et al. [37, 38] have developed a robust algorithm
for statistical analysis of texture images relevant to ma-
terials microstructure, which we demonstrated in Fig. 1.
Given an input texture image, the Gatys procedure ex-
tracts a texture vector from activations in the convolu-
tional layers. This calculation is summarized in Fig. 2.
Activations in the CNN are denoted by F lij , where l is
the layer index, i is the feature index, and j is the pixel
index. At each layer, the Gram matrix captures correla-
tions between feature i and feature k,

Glik =
∑
j

F lijF
l
kj . (1)

The summation over pixel index j encodes invariance to
translations in the image plane (up to boundary effects).
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FIG. 2: A schematic view of the creation of a texture vector representation of an image using a CNN. The input
image is processed upward through multiple CNN layers. Activations at each layer produce a stack of filtered

images. Correlations between filtered images, averaged over the image plane, are collected. These statistics are then
concatenated (with optional weighting) to form a texture vector. The activations at higher layers capture texture

information over larger spatial scales.

Compared to the mean feature activations
∑
j F

l
ij alone,

the Gram matrix offers much richer statistical informa-
tion [37]. In the following we suppress feature indices
i and k and view the Gram matrix, Glik → Gl, as a
summary of activation statistics on layer l. For the pur-
poses of texture synthesis, Gatys et al. introduce a scalar,
positive-definite loss between two images xi and xj (let
us note explicitly that i and j now index images) with
Gram matrices Gl(xi) and Gl(xj):

Ll(xi, xj) =
1

Al
||Gl(xi)−Gl(xj)||2, (2)

with || · || the Euclidean norm. Al = 4N2
l M

2
l is a nor-

malization factor for the loss on layer l with Nl features
and Ml pixels. The total loss is the weighted sum of
layer-wise losses,

L(xi, xj) =
∑
l

wiL
l(xi, xj). (3)

In this work we use the VGG network [28], normalized
as in [37, 38], and apply equal weight (wl = 1) to each of
the following layers: “conv1 1”, “conv2 1”, “conv3 1”,
“conv4 1”, and “conv5 1”. It is convenient to define
rescaled Gram matrices, Ĝl = (wl/Al)G

l. Their con-

catenation Ĝ = (Ĝ1, Ĝ2, · · · ) is the scaled texture vector.
The layers we use have feature sizes of [N1, N2, . . .] =

[64, 128, 256, 512, 512], resulting in a total texture vector
length of

∑
lN

2
l ≈ 5 · 105 elements. From the texture

vector of two images, we may form a distance between
images

d2ij = ||Ĝ(xi)− Ĝ(xj)||2 = L(xi, xj). (4)

That is, Ĝ as a function endows two images xi and xj
with a Euclidean distance dij based on their texture rep-
resentations within the CNN. We will show that this dis-
tance is a useful input to machine learning algorithms,
and in particular, manifold learning (see Sec. III C).

B. Power spectrum statistics

To benchmark the CNN texture vector representation,
we compare it against the power spectrum (PS) asso-
ciated with two-point correlations in the image. This
approach is commonly employed for statistical charac-
terization of microstructure. Our test dataset contains
single-component (grayscale) images xi, each represented
as a scalar field φi(r). Assuming translation invariance,
the two-point correlation function of φ(r) is

P2(∆r) =

∫
φ(r′)φ(r′ + ∆r) dr′. (5)
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If ensemble averaged, the full set of n-point correlation
functions would capture all information about the statis-
tical distribution of images.

The PS (also known as the structure factor) S(q) is
the Fourier transform of P2, which can be expressed as

S(q) = φ̃(q)φ̃(−q) = |φ̃(q)|2, (6)

where φ̃(q) is the Fourier transform of φ(r). For this
analysis, we compute the PS after rescaling φ(r) to the
range [−1, 1].

To develop low-dimensional representations of mi-
crostructures, we require a distance between microstruc-
tures. Given two images xi and xj and their respective
power spectra Si(q) and Sj(q), we obtain a new distance
dij between the images,

d2ij =

∫
[Si(q)− Sj(q)]

2
dq, (7)

which should contrasted with the CNN distance in
Eq. (4).

C. Manifold Learning with Multidimensional
Scaling

To assess the quality of the texture vectors for char-
acterizing images we perform manifold learning. The
goal of manifold learning is to find a low-dimensional
representation of the data that faithfully captures dis-
tance information [here, from Eq. (4) or (7)]. Multidi-
mensional Scaling [52–54] (MDS) implements this prin-
ciple as follows: Given a dataset {xi}, a distance func-
tion dij = d(xi, xj) between datapoints, and an em-
bedding dimension D∗, the goal is to find embeddings
xi 7→ x̂i ∈ RD∗

such that the embedded Euclidean dis-
tance d̂ij = ||x̂i − x̂j || best matches dij , i.e. minimizes a
stress function σ. Here, we use Kruskal’s stress [52],

σ =

√∑
(dij − d̂ij)2∑

d2ij
(8)

We will consider embedding dimensions D∗ . 10, which
is very small compared to the dimension of the full CNN
texture vector, roughly 2.5× 105 (Sec. III A).

Note that MDS seeks d̂ij that globally matches dis-
tances dij , and thus captures information about all im-
age pairs. Other schemes, such as Local Linear Embed-
ding [55] or Isomap [56], instead work with a local spar-
sification of the distance matrix dij . In this work, we
select MDS because of its direct interpretibility and con-
ceptual simplicity. MDS requires only one hyperparam-
eter, the embedding dimension D∗. We use the scikit-
learn [57] implementation of MDS, which applies an it-
erative majorization algorithm [58] to optimize the em-
bedding stress σ, Eq. (8).

Noise amplitude A

Scale k

Angle θ

FIG. 3: The space of synthetic textures, generated by
tunable parameters A, k, and θ.

IV. TASKS

A. Image generation process

We argue that although the space of materials mi-
crostructure is very rich, it will admit an effective low-
dimensional representation. For example, a description
of the materials processing (e.g. composition, thermo-
dynamic variables and their rates of change) should be
more compact than a direct description of the resulting
microstructure. A statistical analysis of microstructure
is valuable in that it may lead to further dimensionality
reduction; multiple different processing paths may lead
to the same microstructure. In this work, we study a
database of synthetic 2-D microstructure images gener-
ated from a stochastic process with a few tunable gen-
erating variables. We use Perlin noise [59] to generate
marble-like stochastic images. The method procedurally
calculates a smooth multi-scale noise function h(r) that
generates distorted spatial points uA = r + Ah(r) with
noise amplitude A. Then each texture image xi is real-
ized as a 2-D scalar field

φi(r) = cos[2πki uAi
· n̂θi ], (9)

where n̂θ is a unit vector with angle θ. That is, each im-
age xi consists of sinusoidal oscillation parameterized by
angle (θi), scale (ki), and noise amplitude (Ai) param-
eters. This three-dimensional parameter space is shown
in Fig. 3.

Figure 4 illustrates the multi-scale nature of the set
{xi} of stochastic texture images. At small noise val-
ues, the power spectrum is peaked on two Fourier modes.
With increasing noise amplitudes, the peaks of the power
spectrum broaden.
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(a)

(b)

FIG. 4: Row (a): Synthetic microstructures with scale parameter k = 15 and varying noise amplitudes A. Row (b):
Associated power spectrum, zoomed to relevant region of Fourier space. To aid visualization, the intensities are

scaled by factors of approximately 1, 3, and 100, such that their maxima appear equally dark.

B. Angle reconstruction task

Our first task is to reconstruct a 1-D manifold of im-
ages of fixed noise amplitude and scale parameter, but
varying angle. For each trial, the scale parameter was
fixed to k = 15, corresponding to a modulation wave-
length of 1/15 in units of the linear system size. The
angles θi take values (i/N)π for i ∈ {0, 1, . . . N − 1}.
Note that 0 ≤ θ < π without loss of generality because
n̂θ = −n̂θ+π and thus θ and θ + π are equivalent for our
textures, Eq. (9). In this subsection we explore datasets
with varying dataset sizes N and noise amplitudes A.
We compute distances between the images via the CNN
(Sec. III A) and PS (Sec. III B) methods, then use MDS
(Sec. III C) to map the images into a D∗ = 2 embedding
space.

We quantify reconstruction quality as follows: First,
we find the center of mass of all points in the embedded
space, and use this as the origin. Second, we calculate
angles ϕi about the origin, which are unique up to a single
additive constant c. Finally, we seek a correspondence
between the generating angles θi and the learned values
ϕi/2. The factor of 1/2 is necessary because θi ranges
from 0 to π whereas ϕi ranges from 0 to 2π. We select

the constant c to minimize the root-mean-square error,

RMSE =

√
1

N

∑
i

[θi − (ϕi + c)/2]2 (10)

Once c is optimized, we use the RMSE to measure the
reconstruction quality.

Figure 5 shows embedded manifolds and corresponding
angle reconstructions using dataset size N = 50 and noise
amplitudes A ∈ {1, 2.5, 4}. For low noise amplitudes
A = 1, the CNN distances produce a ring structure which
reflects the generating angles (and associated periodicity)
quite well, whereas the PS method fails. For intermedi-
ate A = 2.5, both CNN and PS distances generate good
angle reconstructions, but there is much less scatter in
the CNN embeddings. For large A = 4, the CNN con-
tinues to give good angle reconstructions despite scatter
in the embedded points, whereas the PS method again
fails. Note that, by construction, the PS method is ro-
tationally symmetric, whereas the CNN method encodes
rotational symmetry only approximately. Consequently,
the CNN embeddings are somewhat elliptical.

Figure 6 shows the RMSE, Eq. (10), for the angle re-
construction task using a variety of dataset sizes N and
noise amplitudes A. The CNN embeddings reliably re-
construct the generating angles θi for a wide range of N
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FIG. 5: (Color online) Angle reconstructions. Each dataset contains N = 50 images with varying angles θi, fixed
scale k = 15, and fixed noise amplitude A ∈ {1, 2.5, 4}. Red circles correspond to the CNN method (Sec. III A) and
blue squares correspond to the PS method (Sec. III B). Row (a): MDS embedded points x̂i using the CNN method.
Arrows represent 2θi where θi is the angle used to generate image angles. Row (b): MDS embedded points x̂i using
the PS method. Row (c): Comparison of θi with corresponding angle (ϕi + c)/2 reconstructed from the embedding

space. The CNN method yields excellent agreement, and clearly outperforms the PS method.

and A. However, the PS embeddings reconstruct θi only
for a narrow window of A, and require a much larger N
to reach comparable accuracy. This behavior can be un-
derstood by referring to Fig. 4: At very small A, the PS
peaks are sharp, and there is little overlap between tex-
ture images with different angles. At very large A, the PS
peaks broaden and exhibit great stochastic fluctuation.
The best reconstructions occur at intermediate A, for
which the peaks have some width but are not dominated
by fluctuations, such that PS distances can accurately

capture differences in the angle parameter.
Figure 7 shows the embedding stress σ, Eq. (8), a mea-

sure of the fidelity of the MDS embedding. The CNN em-
bedding exhibits low stress across a wide range of noise
amplitudes, whereas the PS distances do not easily em-
bed into a D∗ = 2 embedding space. The stress of both
CNN and PS embeddings grows with the noise ampli-
tude. We interpret this as follows: At zero noise, the
space of texture images has a single parameter, the an-
gle. With finite noise, this 1-D manifold of texture im-
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FIG. 6: (Color online) The angle reconstruction error,
Eq. (10), as a function of noise amplitude A, with scale
k = 15. Each dataset consists of N images with varying
angle θi. The CNN method performs well across a wide

range of noise amplitudes A . 4.5, whereas the PS
method does best in a narrow range 2 . A . 3.5. Each

RMSE estimate represents an average over 100
independent trials.

ages expands into a much higher-dimensional space. The
effective expansion volume increases monotonically with
the noise amplitude. Consequently, it becomes increas-
ingly difficult to embed this very high-dimensional man-
ifold using D∗ = 2, which is reflected in the increasing
embedding stress.

C. Three dimensional manifold reconstruction task

Here we embed texture images from all three generat-
ing parameters shown in Fig. 3: the angle 0 ≤ θ < π,
scale 5 ≤ k < 15, and noise amplitude 0.5 ≤ A < 2. We
generate a dataset ofN = 1000 texture images by varying
each parameter through 10 equally spaced increments.
As before, we determine the distances between images
using CNN (Sec. III A) and power spectrum (Sec. III B)
methods, then use MDS (Sec. III C) to embed these dis-
tances into spaces of varying dimension D∗.

Figure 8 shows the embedding stress σ as a function
of embedding dimension D∗. We observe a much lower
stress using the CNN distances. The stress σ decays ex-
ponentially up to about D∗ = 6 and flattens soon after.
That is, with≈ 6 descriptors per image, MDS has learned
a representation of the texture images quite faithful to
the CNN distances. Conversely, for the PS method, σ
decays very slowly with D∗, suggesting that there is no
natural low-dimensional embedding manifold.

The panels in Fig. 9 show the CNN method embed-
dings in a D∗ = 3 space. The generating parameters A,

0 1 2 3 4 5

Noise Amplitude A

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

E
m

b
e
d
d
in

g
 s

tr
e
ss

 σ

PS, N=10

PS, N=20

PS, N=50

PS, N=100

CNN, N=5

CNN, N=10

CNN, N=20

CNN, N=50

CNN, N=100

FIG. 7: (Color online) The embedding stress σ as a
function of noise amplitude A, with scale k = 15. Each
dataset consists of N images with varying angle θi. The
CNN method yields much lower stress embeddings than

the PS method.
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FIG. 8: (Color online) The stress σ as a function of
embedding dimension D∗ for a dataset of N = 1000

images with varying A, k, and θ. Stress from the CNN
method (red) decreases approximately exponentially for
D∗ . 6. Stress from the PS method (blue) decreases
much more slowly. That is, the PS distances do not

naturally embed into low dimensions.

k, and θ emerge as a nonlinear coordinate system that
spans a roughly conical solid in the embedding space.
Column (a) of Figure 9 shows surfaces in which the noise
amplitude A is held fixed, and the parameters θ and k
are allowed to vary. For each A, the embedded points
form an approximately conic surface. Cones with larger
A are nested inside of cones with smaller A. Column (b)
of Figure 9 shows surfaces in which the scale k is held
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Embedding dimension D∗ 2 3 4 5 6 10 50

R2 for scale k .532 .720 .901 .916 .916 .930 .980

R2 for noise amplitude A .183 .231 .908 .950 .951 .972 .983

TABLE I: The coefficients of determination R2 for
linear regression models that map embedded points x̂i

to ki or Ai. For embedding dimensions D∗ ≥ 4, the
linear models achieve R2 values near the ideal of 1.

fixed, allowing A and θ to vary. Surfaces of constant k
are harder to describe, but resemble fragments of conic
surfaces with varying angles. Surfaces with smaller k are
nested inside of ones with larger k. Column (c) of Fig-
ure 9 shows surfaces in which the angle θ is held fixed,
allowing A and k to vary. Rotating to a top-down view
(Fig. 10), one observes that θ is very well captured by
the azimuthal angle of the cone structure.

Figure 11 shows a 3-D projection of the D∗ = 4 embed-
ding. In this projection, we observe that the generating
parameters appear approximately as cylindrical coordi-
nates. The noise parameter A appears approximately
linearly as a longitudinal coordinate.

To quantitatively evaluate the quality of embeddings
for general dimension D∗, we performed linear regression
to model the parameters Ai and ki for each embedding
point x̂i:

Âi = βA · x̂i + γA , (11)

k̂i = βk · x̂i + γk . (12)

The regression vectors βp and scalars γp for p ∈ {A, k}
were found using ordinary least squares by minimizing∑
i(pi − p̂i)2. We then assess fit quality using the coeffi-

cient of determination,

R2 = 1−
∑
i(pi − p̂i)2∑
i(pi − p̄)2

, (13)

where p̄ =
∑
i pi/N . An R2 value of 1 indicates a per-

fectly linear relationship. Table I shows R2 values for k
and A in various embedding dimensions. In particular,
R2 ≈ 1 is achieved already with D∗ = 4 and higher-
dimensional embeddings (D∗ > 4) yield only marginal
increase in fit quality.

Figure 12 shows the D∗ = 6 embedding projected onto
the two dimensions, {βk, βA}, that best linearly model
the noise amplitude and scale parameters. The scale and
noise parameters are nearly orthogonal; the angle be-
tween βk and βA is

θ = arccos

(
βA · βk
‖βA‖‖βk‖

)
= 91.0◦. (14)

V. DISCUSSION

The effectiveness of the PS on the angle reconstruc-
tion task (see Fig. 6) is best for moderate values of the

noise, but weak outside of this window. Although we
discussed the mechanisms at play, this result is at first
counterintuitive; The images consist of perturbed sinu-
soidal stripes that coincide well the Fourier basis used
by the PS. The performance of the CNN texture vector
is much better, achieving high accuracy and consistent
performance across the spectrum of noise. This can be
attributed to several advantages of the CNN-based ap-
proach.

First, the CNN uses local filters as opposed to global
modes. Global features can suffer from interference ef-
fects, where similar small scale features which appear at
a large distances from each other can add together de-
structively. Local features do not suffer from this type
of failure mode, and so are more robust to noisy varia-
tions in patterns. This is similar to advantages of com-
pact support in wavelet approaches to signal processing,
which are well studied [60].

Second, compositions of convolutional filters and non-
linear activations represent very non-trivial correlations
between the pixels within their receptive fields, so that
individual neurons are sensitive to higher order statis-
tics that are not captured in the PS representation. For
example, higher order statistics can directly characterize
complex features such as domain edge curvature.

Lastly, the pooling layers in the CNN operate similarly
to coarse-graining in physics, and is designed to capture
relevant system characteristics while discarding unimpor-
tant ones [61]. In the CNN, repeated convolutional and
pooling operations effectively implement coarse-graining
over multiple layers of abstraction. Features that ap-
pear in deeper layers (i.e. further from the input) of the
CNN have a spatially larger receptive field, and are more
robust to small changes of the input due to the coarse-
graining. Thus, larger-scale CNN features are naturally
insensitive to smaller-scale texture details, which we be-
lieve is key to microstructure analysis as well as computer
vision tasks. A trade-off with deep neural networks is
that it can be difficult to understand concretely what a
particular activation in a CNN represents; however, this
is an active area of research [62–64].

VI. CONCLUSIONS AND FUTURE
DIRECTIONS

We have introduced a method for unsupervised detec-
tion of the low-dimensional structure of a distribution of
texture images using CNNs. We discuss the uses of this as
a framework for the analysis of materials microstructure
to learn dimensionality and topology of microstructure
families using low-dimensional quantitative descriptions
of microstructure. Compact microstructure characteri-
zation forms a platform for the construction of reduced
order models that connect processing to microstructure,
and microstructure to properties. This approach is ap-
plicable to small data sets, which is an important design
factor in materials science and other disciplines where



10

(a) (b) (c)

FIG. 9: (Color online) The D∗ = 3 embedding of a dataset with N = 1000 image of varying noise amplitude A, scale
k, and angle θ. Columns (a), (b), and (c) are colored by A, k, and θ, respectively. For each column, the top panel
shows the embedded points, and the bottom panel displays a schematic representation of surfaces with constant

generating parameter.

FIG. 10: (Color online) Axis-aligned view of the D∗ = 3
embedding colored by angle θ (cf. Fig. 9),

demonstrating strong correspondence with angles in the
embedding space.

acquiring data can be expensive. In this work, we ap-
ply manifold learning to a synthetic dataset. This con-
trolled context enables us to quantify the success of man-
ifold learning. We anticipate that similar manifold learn-

ing approaches will prove effective for follow-on studies
of real materials. For example, DeCost et al. recently
demonstrated success in mapping the microstructures of
ultra high carbon steels [40].

The method presented in this work is computation-
ally efficient. In our Theano implementation, running on
a single GPU, it takes about a millisecond to compute
the distance between texture vectors that represent two
images. MDS operates on all distance pairs, and thus
scales quadratically with the size of the dataset. The
MDS calculation on our full dataset of 103 synthetic im-
ages (Sec. IV C) completed in about 30 minutes. The
dominant cost was the MDS embedding procedure, which
took about 18 minutes. Calculating the ≈ 106/2 texture
vector distances took about 12 minutes.

A limitation of the transfer learning approach is that it
requires a well-trained CNN with applicability to the tar-
get domain, which presently limits our analysis to 2-D mi-
crographs. One path for improvement is to directly train
CNNs on a large database of standardized microstructure
images. Such a database could also be used to develop
latent variable models (e.g. [65]) that would reflect the
microstructural generation process. These end-to-end
models would enable direct inference of low-dimensional
generating parameters and direct generation of new mi-
crostructure image samples.

The work of Ref. 66 suggests that, instead of using
transfer learning on natural images, it may be possible
to characterize microstructure textures using randomized
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FIG. 11: (Color online) The D∗ = 4 embedding of a dataset with N = 1000 images of varying noise amplitude A,
scale k, and angle θ. Panels (a), (b), and (c) are colored by A, k, and θ, respectively. To visualize the data, we select

a 3-D projection that illustrates a decoupling of the generating parameters, in which they manifest as roughly
cylindrical coordinates: A maps to longitudinal height, k to radius, and θ to azimuthal angle.

CNNs. Specifically, Ustyuzhaninov et al. conclude that
suitably structured random, shallow, multiscale networks
can, in some cases, be used to generate higher quality tex-
tures than those generated from a trained CNN. However,
Fig. 1 of Ref. 66 shows that the distance matrix generated
from the trained CNN is closer to the identity compared
to the distance matrix generated from the random net-
work. This suggests that the trained CNN is a better
starting point for comparing texture images. The ca-
pability of random networks to perform low-dimensional
embeddings of microstructures remains an open question.
The use of random networks suggests exciting opportu-
nities to operate on other data modalities, e.g. three-
dimensional microstructure data [25, 41, 67] and/or grain
orientation data [47, 68, 69], both of which are outside
the domain of natural image characterization.

Lastly, we consider the rotation group, which factors
into microstructure analysis in at least two ways. Firstly,
rotations appear through spatial transformations of the
image plane. The standard CNN architecture does not
explicitly incorporate such transformations. This is ev-
ident in the small but consistent biases in the angular
reconstruction task (see Figs. 5 and 6). However, the rel-
atively strong performance of the network on this task
indicates that the network has implicitly learned ap-
proximate representations of the rotation group during
the training procedure. A second way that the rotation
group appears is in grain orientation data. CNNs de-
signed to process RGB images do not directly represent
the group structure of crystalline orientations. Further
texture characterization work might explicitly incorpo-
rate the action of rotations, e.g. building upon Refs. 70–
74.
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Appendix A: Attribution of microstructure images

The images appearing in Fig. 1 are released in the pub-
lic domain, and available online. Permanent links are as
follows. Top row, from left to right:

1. https://commons.wikimedia.org/w/index.php?
title=File:Gailbach-Tonalit.jpg&oldid=
179586143.

2. https://commons.wikimedia.org/w/index.
php?title=File:PearliteSph3.jpg&oldid=
149930090.

3. https://commons.wikimedia.org/w/index.php?
title=File:Martensit.jpg&oldid=144193548.

4. https://commons.wikimedia.org/w/index.php?
title=File:Lamine316L.jpg&oldid=66965939.

Bottom row, from left to right:

5. https://commons.wikimedia.org/w/index.php?
title=File:Microstructure_of_rolled_and_
annealed_brass;_magnification_400X.jpg&
oldid=144992203.

6. https://commons.wikimedia.org/w/index.php?
title=File:Ferrite-perlite-steel-A285.
jpeg&oldid=140529933.

https://commons.wikimedia.org/w/index.php?title=File:Gailbach-Tonalit.jpg&oldid=179586143
https://commons.wikimedia.org/w/index.php?title=File:Gailbach-Tonalit.jpg&oldid=179586143
https://commons.wikimedia.org/w/index.php?title=File:Gailbach-Tonalit.jpg&oldid=179586143
https://commons.wikimedia.org/w/index.php?title=File:PearliteSph3.jpg&oldid=149930090
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https://commons.wikimedia.org/w/index.php?title=File:Martensit.jpg&oldid=144193548
https://commons.wikimedia.org/w/index.php?title=File:Martensit.jpg&oldid=144193548
https://commons.wikimedia.org/w/index.php?title=File:Lamine316L.jpg&oldid=66965939
https://commons.wikimedia.org/w/index.php?title=File:Lamine316L.jpg&oldid=66965939
https://commons.wikimedia.org/w/index.php?title=File:Microstructure_of_rolled_and_annealed_brass;_magnification_400X.jpg&oldid=144992203
https://commons.wikimedia.org/w/index.php?title=File:Microstructure_of_rolled_and_annealed_brass;_magnification_400X.jpg&oldid=144992203
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https://commons.wikimedia.org/w/index.php?title=File:Ferrite-perlite-steel-A285.jpeg&oldid=140529933
https://commons.wikimedia.org/w/index.php?title=File:Ferrite-perlite-steel-A285.jpeg&oldid=140529933
https://commons.wikimedia.org/w/index.php?title=File:Ferrite-perlite-steel-A285.jpeg&oldid=140529933
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FIG. 12: (Color online) The 2-D projection, colored by
(a) scale and (b) noise amplitude, of the D∗ = 6
embedding of a dataset with N = 1000 images of

varying A, k, and θ. This projection was selected using
linear regression to find the two dimensions that best

capture the scale k and noise amplitude A parameters.

7. https://commons.wikimedia.org/w/index.php?
title=File:Pearlite1.jpg&oldid=184321025.

8. https://commons.wikimedia.org/w/index.php?
title=File:Feuerverzinkte_Oberfl%C3%A4che.
jpg&oldid=140580291
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