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Hyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices and are in-
teresting in their own right with ordinary percolation exhibiting not one, but two, phase transitions.
We study four constraint percolation models—#k-core percolation (for k = 1,2, 3) and force-balance

percolation—on several tessellations of the hyperbolic plane.

By comparing these four different

models, our numerical data suggests that all of the k-core models, even for k = 3, exhibit behavior
similar to ordinary percolation, while the force-balance percolation transition is discontinuous. We
also provide a proof, for some hyperbolic lattices, of the existence of a critical probability that is
less than unity for the force-balance model, so that we can place our interpretation of the numerical
data for this model on a more rigorous footing. Finally, we discuss improved numerical methods for
determining the two critical probabilites on the hyperbolic lattice for the k-core percolation models.

I. INTRODUCTION

Geometry plays a key role in driving physical pro-
cesses in such different physics fields as relativity, cosmol-
ogy, quantum field theories, and condensed matter [1-
7]. In condensed matter systems, for example, one may
consider stochastic processes such as an electron mov-
ing through a fixed array of atoms in both euclidean [8]
and hyperbolic geometries [9]. The effect of geometry
on the nature of a phase transition is of particular inter-
est [10, 11]. For example, hyperbolic spaces possessing
a constant negative curvature of —1 have been recently
applied to several condensed matter models, namely the
Ising model [12-18] and percolation [19-21].

Why consider hyperbolic spaces? Hyperbolic geometry
connects to properties of mean field theory, as studied on
Bethe lattices, with the same nonvanishing ratio of sur-
face to volume of compact structures as the size of the
lattice scales to infinity [16, 17]. And yet there are loops
at all length scales as is the case with Euclidean lattices.
Accordingly, hyperbolic lattices provide a test bed for
studying phase transitions in a geometry that interpo-
lates between Bethe lattices and Euclidean lattices. Hy-
perbolic lattices are also interesting from a glassy physics
perspective because they provide a natural mechanism in
two dimensions to frustrate global crystalline order and
allow for a more tractable model to study the glass tran-
sition and jamming in two dimensions [22, 23] .

A hyperbolic lattice is a tessellation of the hyperbolic
plane, usually denoted by the so called Schléfli symbol
{P, @}, where regular polygons of P sides tile the plane
so that @ of these polygons meet at each vertex [24],
and P, ) satisfy the relation

(P-2)(Q—-2)>4 (1)

It should be noted that (1) Euclidean lattices satisfy the
equation (P — 2)(Q — 2) = 4 and (2) for lattices on the
elliptic plane, the relation (P —2)(Q — 2) < 4 holds [25].
Therefore, the elliptic and Euclidean planes admit just a
finite number of tessellations, while the hyperbolic plane

is much more richer admiting an infinite number. We will
use the Poincare disk respresentation of the hyperbolic
plane, which is the unit radius disk with its respective
metric [26].

We will work with several hyperbolic tessellations,
an example of which is seen in Figure 1, to study k-
core [27, 28] and force-balance [29] percolation models
and explore the nature of their transition. Both models
are examples of constraint percolation in that they go
beyond the usual random dilution of sites on a lattice,
otherwise known as percolation. There are constraints
on the dilution (or occupation) of sites. k-core percola-
tion is constraint percolation model where occupied sites
having less than k& occupied neighboring sites are pruned
starting with an initial random and independent occu-
pation of sites. This pruning is done consecutively until
all occupied sites have at least k occupied neighboring
sites. This constraint imposes the scalar aspect of the
local Hilbert stability criterion for purely repulsive par-
ticles, i.e. k> d+ 1 in d dimensions [30], and therefore,
may inform how purely repulsive particles from a jammed
packing [28].

In mean field, k-core percolation resembles some prop-
erties of a mixed phase transition [28], i.e. discontinuity
in the order parameter and a diverging length scale, as in
the jamming transition [31]. And yet, k-core percolation
on Euclidean lattices appears exhibit either a continuous
phase transition in the same universality class as ordi-
nary percolation [32], or no transition [33]. So we ask
the questions: What is the nature of the k-core percola-
tion transition on hyperbolic lattices? Will the transition
behave more like what is found on the Bethe lattice, or
not?

To enforce the local Hilbert stability condition beyond
just the scalar aspect in two-dimensions, at least three
neighboring particles must enclose a particle within a tri-
angle so that forces balance and each particle is locally
mechanically stable. This condition has been encoded
in a constraint percolation model known as force-balance
percolation [29]. Accordingly, the force-balance model in-
troduces the notion of force stability which is not taken



into account by the k-core models. Such a constraint
does not allow for finite clusters at least in Euclidean
geometries, which is very different from k-core percola-
tion. The force balance model was studied in two- and
three-dimensions [29]. Numerical simulations suggested
strongly signs of a discontinuous transition in the stan-
dard order parameter (i.e. the fraction of sites partici-
pating in the spanning cluster), which also occurs in jam-
ming. Numerical simulations also suggested that there
exists a correlation length scale diverging faster than any
power-law, which is different from jamming where numer-
ics suggests a more standard power-law diverging corre-
lation length [34]. We expect force-balance percolation
to exhibit a discontinuous percolation transition on hy-
perbolic lattices since it already appears to be in the
presence of many loops [28, 29]. Perhaps, however, the
diverging length scale on the hyperbolic lattice will be a
power-law, as opposed to faster than a power-law on the
FEuclidean lattice. In any event, the discontinuity in the
onset of the spanning cluster should give us something
to compare against when trying to determine whether or
not k-core percolation exhibits a discontinuous transition
on hyperbolic lattices.

FIG. 1: {3, 7} tessellation on the Poincare disk.

As you will soon discover, many of the numerical tech-
niques developed for the analysis of the phase transi-
tion in ordinary percolation are not as readily applicable
on hyperbolic lattices given the strong boundary effects,
which makes the above questions slightly difficult to an-
swer. There also exists the possible complication that
there are two phase transitions, as has been demonstrated
for ordinary percolation—one transition at the onset of
many spanning clusters touching the boundary and a sec-
ond transition at the onset of all of the spanning merg-
ing into just one spanning cluster [21]. Ref. [35] asked
the above questions for the k = 3 case and concluded,
based on a conjecture and on numerical evidence, that
the mixed nature of the k = 3-core percolation transi-
tion on the Bethe lattice was robust on the hyperbolic

lattice. In light of more recent work identifying crossing
probabilities on the hyperbolic lattice for ordinary perco-
lation [18], we revisit the above questions for k = 3-core
percolation and analyze the other k-core models as well
as force-balance percolation.

The remainder of this manuscript is organized as fol-
lows: We will study several properties of k-core perco-
lation models for k£ = 1,2, 3, and force-balance percola-
tion on hyperbolic tessellations. We present in Section 2
details of the hyperbolic lattice and various percolation
algorithms. In Section 3, we present a theoretical proof
that the threshold for force-balance percolation is strictly
less than one for most of the tessellations. This section is
a bit technical and can be skipped by the reader should
their interest be more in the nature of the phase tran-
sition. We present our numerical results in Section 4,
where we study the crossing probability and other mea-
surements. We summarize and discuss the implications
of our results in Section 5.

II. MODEL AND METHODS

The key step in the simulation process is to construct a
hyperbolic lattice. We do this by implementing the algo-
rithm described in detail in Ref. [36]. In the construction
of a { P, Q} hyperbolic lattice, where again, P denotes the
number of sides of each polygon and @) denotes how many
polygons meet at a vertex, the central polygon is built
first, and this is the first layer. Then, by translations
and rotations of the central polygon, the second layer is
built. This process is followed recursively until a desired
number of layers is constructed. An [-layer is composed
of those polygons that do not belong to an m-layer for
m < [ and share an edge or vertex with a polygon in the
(I = 1)-layer. The algorithm makes use of the Wierstrass
model for hyperbolic geometry, where points lie on the
upper sheet of the hyperboloid, 2% + y2 — 22 = —1. Con-
sequently, rotations and translations are given by 3 x 3
Lorentz matrices. The Wierstrass model is related to
the Poincare model through the stereographic projection
toward the point (0,0, —1)" given by

T 1 T

y| — vl (2)
z L+= 0

The exponential growth of number of vertices with
respect to the number of layers constrains severely the
number of layers used in the simulations. Typically we
simulate around 10 layers. This is comparable to the re-
cent work by Gu and Ziff studying ordinary percolation
on hyperbolic lattices [18]. Recent work on implement-
ing periodic boundary conditions in certain tilings may
ultimately be investigated [37]. However, the sets of hy-
perbolic tillings that can be used using the methods in
Ref. [37] have less than 30000 sites due to a lack of knowl-
edge of all possible normal subgroups of a given Fuchsian

group.



Once a tessellation is created, each of its sites are occu-
pied with probability p. For k-core percolation, we then
recursively remove any occupied site (excluding bound-
ary sites) that has less than k& occupied neighboring sites.
For force-balance percolation, we recursively remove any
occupied sites (excluding boundary sites) that are not
enclosed by a triangle of neighboring occupied sites, i.e.
those sites that are not locally mechanically stable. We
do this until all occupied sites obey the imposed con-
straint. We have numerically tested on around one mil-
lion runs, that the order in which we check the force-
balance constraint does not affect the final configuration,
i.e. that the model is abelian. It has been also argued
that the k-core model is abelian [38].

We then use the Hoshen-Kopelman algorithm to iden-
tify the clusters and their respective sizes. To determine
if a cluster is spanning, we break up the lattice into four
cardinal regions: NE, NW, SW, and SE. See Figure
2. We regard the cluster as percolating, or spanning,
when it connects either NE and SW sites or NW and
SE sites, as in Ref. [18]. We then measure the prob-
ability to span, or cross for an occupation probability
p and denote it R(p). We also measure a quantity de-
fined as S1/N, where Sy is the size of the largest cluster
and N the total number of sites. This quantity resem-
bles the order parameter and, therefore, determines the
continuity /discontinuity of the onset of the transition(s),
i.e. should it increase from zero continuously as the oc-
cupation probability p is increased, then the transition
is continuous. We also measure the number of times we
check the lattice to cull occupied sites not obeying their
respective constraints, i.e. the culling time. This culling
time tends to diverge near transition on Euclidean lat-
tices [29].

FIG. 2: {3, 7} tessellation on the Poincare disk with the four
boundary regions.

III. PROOF OF prp <1 FOR SOME
HYPERBOLIC TILLINGS

It has been established that there exists two critical
percolation probabilities, p; and p, for ordinary perco-
lation on hyperbolic tillings [20, 39, 40]. For the force-
balance model, however, it seems there is just one criti-
cal percolation probability, according to the results pre-
sented later, demonstrating the emergence of a percolat-
ing cluster. Let us call this probability, prp, the proba-
bility above which there is always a percolating cluster.
It is possible to prove that prp < 1 for some hyperbolic
tillings {P, @}. The proof follows two steps:

1. First establish the existence of trees on a tessel-
lation {P,Q} with a certain connectivity that de-
pends on the parity of Q. For @ even we demand
a connectivity z = 6 and for @ odd, z = 5.

2. We apply a well known result of k-core percolation
on trees, i.e. that the critical percolation is less
than one when k < z [27]. For our purposes, we
require k = 5 for tessellations of ) even and k = 4
for @ odd. Accordingly, we show that sites on a
percolating cluster for the k& = 5-core model on the
z = 6 trees, and @) even, satisfy the occupation
constraints of the force-balance percolation model.
Similarly, for the @ odd case, we study the k = 4-
core model on z = 5 trees.

Let us prove each of these items in due order. First, we
need to show the existence of trees of connectivity z = 6
and z = 5 for @ even and odd, respectively. Let us sup-
pose @ is even. It is easy to see that z = 6 trees cannot
be built when @ = 4,6 as there is not enough “space” to
build trees given the eventual overlaps. The case @ = 8
is more interesting. The tessellation {3,8} does not ad-
mit a tree construction due to overlaps, as illustrated in
Fig. 3 where red arrows shows some of those positions
at which the initial tree (green) eventually contains over-
laps. However, z = 6 trees can be built on the tessella-
tion {4, 8}. To see this, we choose a site which we call the
Oth-generation. The first generation are the neighbors of
such a site. The nth-generation will be formed by those
site neighbors of the (n — 1)th-generation that do not
belong to a kth-generation where k& < n. This is illus-
trated in Fig. 4. By construction, between two adjacent
1st-generation sites on the z = 6 tree there is one 2nd-
generation site which does not belong to the tree. Now
between the closest offspring of those 1st-generation sites
which are 2nd-generation sites belonging to the three,
there are six 3rd-generation sites not belonging to the
tree. By construction, such trees can be expanded with-
out overlapping so that they, indeed, remain trees.

For P > 4 we have more vertices in each layer, which
gives more space to build trees, and the same construc-
tion holds. Accordingly, we can build z = 6 trees on
the tessellation {P,8} when P > 3. Likewise, it can be
checked that for any P, Q) even and @ > 9, it is possible



to build a tree of connectivity z = 6. Analogously, trees
of connectivity z =5 can be built on tessellations {P, 7}
where P > 3, and for any tessellation { P, Q} where @ > 8
is odd.

In summary, those trees necessary for our proof can be
built on any tessellation {P, @} as long as @ > 8 and for
the tessellations {P, 7}, {P,8} as long as P > 3.

As for the second step in the proof, consider any site
on the tree built in step 1. A site of a { P, Q} tessellation
will be contained in a @)-gon as illustrated in Fig. 5. Now
let us take such @-gons in a Euclidean setting as illus-
trated in Fig. 6. One of the neighbors of central site is
isolated from others. Let us call it the north neighbour,
NN. Tt happens that any tree of connectivity z = 4 (Q
even case) containing site NN and imbedded in those
trees of connectivity z = 5, satisty the force-balance con-
straint as indicated in Fig. 7. In two-dimensions this

FIG. 3: One cannot embed a tree of connectivity z = 6 on
the {3, 8} tessellation due to the lack connections.
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FIG. 4: Tessellation {4,8} enables the construction of trees
of connectivity z =6

constraint is that every occupied site (particle) have at
least three neighoring occupied sites and at least three
of these neighboring sites enclose the occupied site in a
triangle. This triangle condition on the central site is
preserved in the hyperbolic geometry given the function
that relates those polygons in different geometries pre-
serves topology. A similar proof applies to trees of con-
nectivity z = 5 embedded in trees of connectivity z = 6
(Q even case).

. .

FIG. 5: Tree construction on tessellations {4,7} and {4, 8}:
Top: Tree of connectivity z = 5 on the {4, 7} tessellation.
Bottom: Tree of connectivity z = 6 on the {4, 8} tessellation.

The above analysis holds for any site so we can always
construct such a )-gon with the same characteristics for
any occupied site. Now let us call py. the critical perco-
lation probability for k& = 4-core percolation on trees of
connectivity z = 5 and ps. such probability for &k = 5-
core percolation on trees of connectivity z = 6. It follows
from the discussion above that prp < p4c for @ even,
and prp < ps. when @ is odd (search py. and ps.) at
least for those tessellations where we can make the tree
construction illustrated in Fig. 5. Since both py. and ps,
are less than unity for the trees enumerated, ppp < 1.



FIG. 6: Euclidean illustration of the central part of the trees
on hyperbolic tessellations: Left: Euclidean illustration of the
”central” part of the z = 5 tree on tessellation {4, 7}. Right:
Euclidean illustration of the ”central” part of the z = 6 tree
on tessellation {4, 8}.

IV. RESULTS

We work with tessellations {3,7}, {7,3}, and {4, 7},
where the first two tessellations are the most common
studied [18, 20]. We study k = 1,2, 3-core percolation
and force-balance percolation on such tessellations by
computing the crossing probability, R, the probability of
participating in the largest cluster, Prc, and the culling
time.

A. Crossing probability

Ordinary percolation exhibits three phases on the hy-
perbolic lattice [21]. Specifically, for p < p; there is no
percolating cluster, for p; < p < p, there are infinitely
many percolating clusters, and for p > p, the infinitely
many percolating clusters merge to form just one perco-
lating cluster. The existence of three phases is reflected
in the crossing probability, R(p). According to Ref. [18],
as the number of layers tends to infinity, R(p) tends to
a function that in the intermediate phase is a straight
line with finite slope in the infinite layer limit. If there
is just one phase boundary, as with ordinary percolation
on Euclidean lattices, then in the infinite system limit
R(p) jumps discontinously at the boundary from zero
to one through some value of R(p.), the Cardy crossing
value [41], at the transition. So there would be no finite
slope region in the infinite system limit.

Since k = 1-core percolation removes only isolated oc-
cupied sites, it is essentially ordinary percolation. We
should, therefore, observe this finite slope intermediate
region in the crossing probability as the number of layers
tends towards infinity. This finite slope region has indeed
been observed in Ref. [18] for & = 0-core, or ordinary,
percolation. Fig. 8 presents the crossing probability for
all four percolation models. To check for the existence of
the intermediate region in R(p) we extract its maximum
slope My near the inflection point. We then plot the in-
verse of this slope as a function of the 1/¢ and extrapolate

to the number of layers, ¢, going to infinity limit. The
results are illustrated in Fig. 9. The inverse of the slope,
1/My tends to similar values for k = 1-core and k = 2-
core models. For k = 1-core, it tends to 0.2404+0.004 and
0.223+0.010 for the k = 2-core model. Meanwhile, 1/M
tends to 0.131+0.007 for k = 3-core model.

The fact that the inverse of the slope tends to —0.016+
0.020 for the force-balance model, which is zero within a
standard deviation of the intercept when making the re-
spective linear regression, is an indication that the slope
tends to infinity at the transition. Then force-balance

SACASAS

FIG. 7: Tllustration of all the possible cases of occupation for
a k = 4-core cluster on a tree of connectivity z =5
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FIG. 8: Crossing probability on {3, 7} tessellation for the dif-
ferent percolation models: (a) k = 1-core, (b) k = 2-core (c)
= 3-core, (d) force balance.

model would then exhibit just two phases, one with no
percolating cluster and the other with one percolating
cluster as ordinary percolation on Euclidean lattices. To
make a more rigorous case for the discontinuity of the
crossing probability for the force-balance model, we ana-
lyze the tendency of the inverse of the slope 1/Mj against
1/¢ for points located on the intersection with the lines
R(p) = ¢,c € R. For ¢ =0.3,0.4,0.5,0.6,0.7, the inverse
of the slope tends to a value that is close to zero but neg-
ative. This confirms the argument that R(p) is discon-
tinuous for the force-balance model, and, consequently,

there should be just two phases for this model.
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FIG. 9: Inverse slope of the crossing probability at the inflec-
tion point, 1/My as a function of 1/ for the different perco-
lation models on the {3,7} lattice. For 1-core model 1/Mj
tends to 0.240+0.004, for 2-core to 0.223+0.010, for 3-core
to 0.131£0.007, and for force-balance (FB) to —0.016 £ 0.02
indicating M) is tending to oo as [ tends to co.

The suggestion of a finite slope regime of R(p) for all
three k-core percolation models suggests that there is an
intermediate phase for all these models. In other words,
all three models behave similarly to ordinary percolation.
Of course, we have empirically chosen a function to im-
plement the extrapolation. In Ref. [18], the maximum
slope M as a function of N=%7, where N is the number
of vertices in the tessellation, was used. We also tested
different slightly extrapolation functions and our results
remain unchanged in terms of the interpretation.

B. Order parameter

For ordinary percolation on Euclidean lattices the or-
der parameter, P, is a continuous function of p [42].
Since k = 1,2-core models are equivalent to uncon-
strained percolation in terms of the transition, they
should behave similarly. While the order parameter in
k = 3-core on the Bethe lattice jumps discontinuously at
the transition [27], on Euclidean lattices it does not. For
force-balance percolation on two- and three-dimensional
Euclidean lattices, the order parameter jumps discontin-
uously at the transition [29]. We present P (p) for
different layer numbers for the four different models on
the {3,7} tessellation in Fig. 10. Since any difference
between the curves is not clear by eye, we perform a
similar extrapolation to what was used for the study of
R(p). We measure the maximum slope of each curve
and plot the inverse of the maximum slope, 1/Sy with
respect to 1/l. We found that the k-core models have
very similar values for 1/Sy when [ tends to infinity, i.e.
0.113 £+ 0.002, 0.120 + 0.003 and 0.111 + 0.002 for the 1-
core, 2-core and 3-core models respectively. (seeFig. 11).



The k-core models may indeed be continuous phase tran-
sitions for the {3,7} tessellation. For the force-balance
model, the same extrapolation method yields a negative
value as shown in Fig. 11 but one that is close to zero.
In other words, the negative sign is due to the errors
in the measurement of 1/S5y. This result may indicate
that force-balance percolation belongs to a discontinu-
ous phase transition. This result is expected since it is
discontinuous on Euclidean lattices as well. To make
a more clear statement about the discontinuity of the
force-balance transition, we analyze the behavior of the
derivative for points on a line P, = ¢,c € (0,1). We
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FIG. 10: The fractional size of the largest cluster Pj. for the
different percolation models on the {3, 7} lattice: (a) k = 1-
core, (b) k = 2-core, (c) k = 3-core, (d) force balance.

present the extrapolation of the inverse of this derivative
1/S versus the inverse number of layers 1/1 for the values
c=0.3,04,0.5,0.6,0.7 in Fig. 12. We conclude that as
1/ is tending to zero for several values of the constant
¢, then P, is discontinuous implying that force-balance
model is discontinuous on the tessellation {3, 7}.

Note that it is interesting that 3-core model is exhibit-
ing a continuous transition given that Sausset et al. [35]
argue that the transition should be discontinuous. How-
ever, they do not study the tessellation {3,7} and the
criteria they used for a percolating cluster is one contain-
ing the central site and reaching the boundary, which is
different from the criteria we use as we demand the per-
colating cluster to connect the two opposite boundary
quarters sites. To better connect with this prior work, we
also study the case for which we demand the central site
to be occupied when determining the percolating cluster.
Our results with this added constraint reach the same
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FIG. 11: The inverse of the maximum slope of P, as a func-
tion of ¢ for the different models percolation on the {3,7}
lattice.
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conclusion as before, i.e. a continuous transition, with
1/Sp = 0.112 £ 0.007. We should note Sausset et al. [35]
did not employ any extrapolation method to more care-
fully check for the nature of the transition with regards
to the order parameter as we have done.

C. Culling time

The culling time is the number of sweeps through the
lattice to complete the culling/removal process for those
occupied sites not obeying the respective constraints. On
Euclidean lattices, the culling time for & = 3-core and
force-balance percolation increases near the percolation
transition due to an increasing lengthscale in the distance
over which the removal of one occupied site triggers the
removal of other occupied sites.
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FIG. 13: Culling time for the different constraint percolation
models for the {3, 7} lattice: (a) k = 2-core, (b) k = 3-core,
(c) force balance. Each data set was averaged over 50,000
samples.

In Fig. 13, we observe the culling time for tessellation
{3,7}, for k = 2,3-core and force-balance models. Note
that for k = 1-core it just takes one sweep of the lattice
to eliminate sites no satisfying the constraint so there is

no diverging lengthscale. According to Fig. 13, there is
a peak in the culling time 7T as a function of p. Note
that the position of the peak for the k-core models does
not move as the number of layers increase. However,
for force-balance model the peak is increasing with the
number of layers. We obtain the extrapolated pip =~
0.837 when scaling prp as [~'. We approximate each
curve to a gaussian function f(z) = Ae~(#=70)*/20% i
a region close to the peak. The tendency of o vs 1/1
is illustrated in Fig. 14. Therefore, the width o tends
to a finite value for the k—core models, 0.196 for 2-core
and 0.210 for 3-core, while it shrinks to zero for the force-
balance model. Furthermore, the height of the peak tends
to infinity for all these peaks. A peak that remains broad
in the infinite system limit may be indicative of the two
percolation thresholds in the ordinary percolation model
that appear to survive in the k = 2- and k = 3-core
models.
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FIG. 14: Behavior of the width o vs 1/l the 2-core, 3-core
and force balance models on the {3, 7} lattice.

D. Debate about p,

There exist three phases for ordinary percolation on
a hyperbolic lattice [21]. For p < p; there is no perco-
lating cluster, for p; < p < p, there are infinitely many
percolating clusters, and for p, < p, the infinite number
of percolating clusters join form one. There is no clear
consensus, however, about how to numerically calculate
pr and p, [43]. According to Ref. [20], p; can be mea-
sured as the probability above which there is a cluster
connecting boundary points to the center. But p, can be
measured in three different ways. The probability above
which the ratio between the second biggest cluster and
the biggest cluster, S2/S7, becomes negligible, or there
is a finite fraction of the boundary points connected to
the middle, or the probability at which the cluster size
distribution P(s) becomes power law. Furthermore, for
calculating p,, Ref. [20] determines a way of finding p,



by measuring the ratio Ss/.S; between the second largest
and largest clusters. The initial claim was that in the
infinite limit such a curve will be discontinuous at some
intersection point (see their Fig. 4). However, in a more
recent paper [43], the same authors state it could be the
case that the curve is not discontinuous at this point,
such as the curves for R(p). In fact, according to Fig. 15
this seems to be the case here for the k = 1-core model
(and for the other two k-core models as well). So we do
not rely on this method any further.
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FIG. 15: Ratio S2/S: for k = 1-core and for the tessellation
{3, 7}

According to Ref. [18], p; and p,, can be measured from
the crossing probability R(p), i.e. the probability of hav-
ing a cluster going from one side of the lattice to the
other. While this is the more straightforward measure,
it would be good to find other measurements as a con-
sistency check. It is important to note that there is a
relationship between p; and p, on a lattice and its val-
ues on the dual lattice that are denoted as p; and Py,
respectively. Such relationship is given by [40]

p+Pa=1, Pit+p.=1 (3)
And the dual lattice to {m,n} is {n,m} [18]. As the
measurement of p; is less controversial than the one for
po, we can use Eq. (3) to calculate p, by calculating p; on
the dual lattice. To estimate p; we search for the point
at which the crossing probability is greater or equal than
10~*, similar to the procedure followed in Ref. [18]. For
these calculations, the data was averaged over 100000
runs and has large fluctuations. We estimate p; for the
k-core models on the tessellation {3,7}. For k = 1-core,
pr = 0.20; for k = 2-core, p; = 0.24; for k = 3-core,
pi = 0.37. According to Eq. ( 3), for ordinary percola-
tion (k = l-core) on tessellation {7,3}, we should have
pu = 0.80. In order to estimate p,, numerically (for k = 1-
core model), we follow the procedure outlined in Ref. [18]
stating that p, is the value of p at which the ratio the
crossing probability R(p) becomes equal to one, for tessel-
lations {3,7} and {7,3}. Accordingly, the best estimate
for p, for the tessellation {3,7} is p, = 0.73 + 0.02 and

for the tessellation {7, 3}, p,, = 0.86 0.02 which roughly
satifies Eq. (3).

E. Cluster size distribution

Finally, we study the number of clusters of a given size
s normalized by the number of lattice sites, ng, for a given
p on tessellation {3,7} with nine layers. The spanning
cluster is not taken into account when computing ng. The
results for each model are presented in Fig. 16. It was
illustrated in Ref. [20] that the probability of finding a
cluster with a given size s, for ordinary percolation, shifts
from a truncated power law to a power law distribution
when p passes the upper critical probability p,,. However,
it was not registered in Ref. [20] any change in the qual-
itative behavior of the distribution when probability p
passed the lower critical probability p;. We see the same
qualitative behavior for all the models studied. Accord-
ing to the cluster size distribution for the three k-core
models, all have a similar value for p, that is somewhat
close to p = 0.7 since ns is broadest at that occupation
probability. Interestingly, the cluster size distribution for
the force balance model exhibits similar characteristics as
the k-core models.

V. DISCUSSION

We have studied four constraint percolation models on
mainly the {3, 7} hyperbolic tessellation. Our data sug-
gests that all three k-core models exhibit similar behav-
ior, thereby falling under the universality class of ordi-
nary percolation. This is not a surprise for k£ = 2-core
percolation, which has been shown to behave similarly
to ordinary percolation [44]. However, given the mixed
k = 3-core percolation transition on Bethe lattices and,
yet, the continuous phase transition (should p, < 1) on
Euclidean lattices for & = 3-core, this result is not obvi-
ous. In fact, earlier work [35] of k = 3-core percolation
on hyperbolic lattices argued that the transition behaves
discontinuously based on arguments and when looking at
numerical data for the onset of the order parameter. We
have employed a more detailed numerical analysis here
suggesting a continuous transition, which not contradict
mathematics at this point since no proof of a discontinu-
ity has yet to be put forth. So while our data suggest that
all three k-core models exhibit a continuous transition,
the transition for force-balance percolation is discontin-
uous, at least on the {3,7} tessellation. Force-balance
percolation is also discontinuous on Euclidean lattices so
the hyperbolic lattice does not change this property by
the changing of the underlying geometry. The severity
of the constraints (more severe than k-core) presumably
result in the model being less sensitive to the geometry.
We also have presented a proof that ppo < 1 for some
tessellations, which can be very useful in constraining the
interpretation of the data.
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Another interesting result is that the k-core models
exhibit two critical probabilities, p; and p,, meanwhile
the force-balance model seems to exhibit just one critical
probability. This comes from the fact that the force-
balance condition constrains the spatial occupation of
neighbors of an occupied site in such a way that the clus-
ter tends to expand in every direction. It does not allow
for the possibility of having several percolating clusters
that do not overlap.

The observation that the nature of the transition in
k = 3-core percolation does not change from Euclidean
lattices to hyperbolic lattices may indicate that (the ab-
sence of) loops are important in driving the transition
towards a mixed one since on the Bethe lattice there are
no loops. In other words, k& = 3-core percolation may
be very sensitive to loops. A 1/d expansion for k = 3-
core percolation demonstrated that the mixed nature of
the transiton remained to order 1/d® [45]. Of course, the
loops are controlled perturbatively in this 1/d expansion,
which is not the case for the hyperbolic tessellation. One
must think about the effects of loops on k = 3-core per-
colation to better understand the nature of its transition
in all geometries.
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