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2Instituto de F́ısica, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
3Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics,
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We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency
in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of
dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping
Ω, under the action of static disorder W and dephasing γ. The last site is coupled to an external
acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known
that dephasing can help transport in the localized regime, here we show that dephasing can enhance
energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous
results, where the optimal dephasing is independent of the chain length and proportional to W or
W 2/Ω. In the ballistic regime, the optimal dephasing decreases as 1/N or 1/

√
N respectively for

weak and moderate static disorder. When focusing on the excitation starting at the beginning of
the chain, dephasing can help excitation transfer only above a critical value of disorder W cr, which
strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short
chains.
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I. INTRODUCTION

The optimization of excitonic and charge transport is a central problem for building quantum devices with different
functions, including sensing, computing, and light-harvesting. Theoretically, the problem is challenging due to the
interplay of different environments. Under low light intensity, in many natural photosynthetic systems or in ultra-
precise photon sensors, the single-excitation approximation is usually valid. In this case the system is equivalent to
a quantum network where one excitation can hop from site to site [1–5]. For a realistic description of the quantum
transport problem, however, one has to consider not only the quantum coherent evolution, but also the coupling to
multiple environments. These include an external acceptor system (sink), where the excitation can be donated and
trapped, and the coupling with a phonon bath, which can induce different types of disorder: Static disorder (position
dependent but time independent) and noise (time-dependent disorder).

From the study of natural photosynthetic complexes [6–10] has emerged the idea that in the optimal transport
regime the energy scale of the coherent internal coupling is the same as the scale of the coupling to the external
environment. This leaves little room for perturbative simplifications, and the analysis of the interplay of internal and
external coupling must be carried out with care. Another important issue is related to finite-size effects. Indeed, many
relevant natural and artificial quantum networks are made of a few two-level systems. For instance, the FMO complex
in green sulphur bacteria, which is thought to have the role of a quantum wire, is made of eight bacterioclorophyll a
molecules [6]. The LHI and LHII [11] complexes in purple bacteria are made of 32 and 16–18 molecules, respectively.
So the infinite system size limit also cannot be used to simplify the problem of exciton transport.

In a recent paper by the same authors [12], exciton transport in different quantum networks was considered in the
semiclassical limit, focusing on the role of the coupling to the external acceptor system, which can induce coherent
effects such as supertransfer of the excitation even in the presence of large dephasing. Here we focus our attention
on the case of a linear chain of sites with nearest-neighbor coherent hopping of the excitation. Without invoking the
semiclassical limit (where dephasing is large with respect to the coherent nearest-neighbor coupling), we analyze here
the problem of optimal transport in the presence of dephasing, static disorder, and a coherent coupling to an external
acceptor system. We focus on the role of dephasing noise (time-dependent perturbations) in enhancing transport,
defined by the average transfer time. The interplay between dephasing and disorder was already studied in [13]. It
is well known that noise is not always detrimental to transport and in some situations may enhance efficiency [13–
15]. Specifically, noise-enhanced transport can occur whenever coherent effects, such as localization, subradiance, or
another kind of destructive interference, are acting to suppress transport.

Several works in the literature aim to understand the parameter regime in which transport efficiency is maximized.
Some general principles that might be used as a guide to understand how optimal transport can be achieved have been
proposed: Enhanced noise assisted transport [14, 15], the Goldilocks principle [16], and superradiance in transport [17,
18].

Specifically, transport in one-dimensional chains has been studied in depth recently in the absence of coupling to a
sink [1, 16, 19]. The results obtained for a one-dimensional chain of length N can be summarized as follows: In the
presence of static disorder there may be a nonzero optimal dephasing γopt for transport. If we call W the strength
of static disorder and Ω the coherent nearest-neighbor hopping, two main regimes have been identified previously. i)

For W � Ω, where the localization length ξ ≤ 1, we have γopt ∝ W , independent of Ω. ii) For Ω/
√
N � W � Ω,

where 1� ξ � N , we have nonlinear dependence on the disorder strength, γopt ∝W 2/Ω. Note that in both regimes
the optimal dephasing is independent of N . On the other hand, the role of the coupling to the acceptor systems and
the value of the critical disorder needed for dephasing to help transport have not been investigated fully.

In this paper and in the recent work [12] we consider simple paradigmatic models where exact analytical results
can be obtained and general guiding principles can be extracted. Despite the simplicity of our model, we explicitly
take into account the simultaneous action of two different types of noise (static and dynamical) and the coupling to
the sink. This makes the model highly non-trivial and complex enough to extract general features that can apply also
to more realistic systems.

Contrary to what one might expect, dephasing helps transport not only in the localized regime, when ξ < N , but
also in the deep ballistic regime, when ξ � N , due to a competition between the effects of static and dynamic disorder
on transport. This counterintuitive result can be explained considering that the average transfer time of the excitation
to the external sink does not depend only on how quickly the excitation spreads along the chain, but also on how
much time it spends on the last chain site. In the ballistic regime, the probability to be on the last site undergoes
large fluctuations in time, which can be smoothed by dephasing, leading to an enhanced transfer efficiency. Indeed,
for generic initial conditions, the excitation can be partially trapped even in the clean system, due to the structure of
the closed-system eigenstates, as discussed for example in Ref. [19]. In such situations, dephasing will aid transport
even in the absence of disorder.

Throughout, we consider the scenario where the excitation traverses the entire length of the chain, with the initial
excitation placed at one end, and the coupling to the absorber at the other. In this case, dephasing can help transport
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only above a critical minimal disorder W cr which depends on the coupling to the acceptor system. We also find that
in the deep ballistic regime the optimal dephasing γopt is not size-independent but decreases with the chain length
N , up to a length determined by N ≈ ξ, where the optimal dephasing becomes independent of N .

The paper is organized as follows: In Sec. II we define the transport model, including the effects of dephasing,
disorder, and coupling to the acceptor system. In Sec. III we obtain analytic and numerical results for the simplest
finite-length chains: N = 2 and N = 3. Then in Sec. IV we examine the behavior for general N and obtain two
separate delocalized regimes where the optimal dephasing displays N -dependent behavior. We summarize our results
in Sec. VI.

II. MODEL DESCRIPTION

We study the optimal dephasing for exciton energy transfer (EET) in linear chains in the presence of disorder. The
time evolution of the closed system can be expressed as

i~ρ̇(t) = [Hsys, ρ(t)] . (1)

The system Hamiltonian is usually expressed in the site basis as

Hsys =

N∑
i=1

~ωi |i〉 〈i|+
N∑
l,m

Jlm |l〉 〈m| , (2)

where we work in the single-exciton regime, with state |i〉 representing an excitation on site i only, ~ωi are the site
energies, and Jlm are the inter-site couplings. EET systems are open and connect to acceptor systems, which serve as
sinks. In this paper, we take site N to be connected to the sink. The effects of the coupling to a sink are conventionally
addressed by augmenting the system Hamiltonian with a non-Hermitian term:

−iW = −iΓtrap

2
|N〉 〈N | . (3)

This treatment of the sink and the limits of its validity have been analyzed in Ref. [20]; the non-Hermitian term can
be thought of as due to a coherent coupling of site N to a continuum of states (for instance to an infinite lead), where
the continuum has a large energy band width with respect to the energy band width of the system.

Consequently the time evolution of the reduced density matrix ρ of the system will be described as

i~ρ̇ = [Hsys, ρ]− i {W, ρ} . (4)

EET systems are subject to background noise, which results in dephasing. We use the Haken-Strobl-Reineker (HSR)
model [21] to describe the dephasing behavior of the system as

ρ̇ij = −γ(1− δij)ρij . (5)

Finally, the full system dynamics can be expressed as

ρ̇ij = − i
~

(Heff ρ− ρH†eff)ij − γ(1− δij)ρij , (6)

where Heff = Hsys − iW is the effective non-Hermitian Hamiltonian of the system.
The efficiency of EET can be measured by the total population trapped by the sink [15, 22]

η = Γtrap

∫ ∞
0

ρNN (t) dt , (7)

and the average transfer time to the sink [14]

τ = Γtrap

∫ ∞
0

t ρNN (t) dt/η . (8)

In this paper, we neglect the fluorescence effect of excitons so that η = 1, and the average transfer time τ reduces to

τ = Γtrap

∫ ∞
0

tρNN (t) dt . (9)
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FIG. 1. (Color online) A schematic of a disordered linear chain that is attached to a sink.

We note that if decay via fluorescence is explicitly included, we have η = 1/ (1 + Γflτ) for small fluorescence rate
Γfl [23], and thus minimizing the transfer time τ is equivalent to maximizing the efficiency η.

Finally, if the master equation (6) is expressed in terms of the Liouville superoperator L

ρ̇(t) = −Lρ(t) , (10)

we have

τ =
Γtrap

η
(L−2ρ(0))NN . (11)

In reality EET systems are often disordered. Here we consider Anderson-type disorder, with the site energies ωi
uniformly and independently distributed in the interval [−W/2,W/2], where W denotes the disorder strength. The
disorder-averaged transfer time is then calculated as

〈τ〉W =
1

Wn

∫ W/2

−W/2
. . .

∫ W/2

−W/2
τ(ω1, ω2, . . . , ωn) dω1 dω2 . . . dωn. (12)

For linear chains with uniform couplings, Jlm takes the form Jlm = δ|l−m|,1Ω, where Ω is the coupling constant.
Furthermore, in the following we choose the initial state to be ρ(0) = |1〉 〈1| and set ~ = 1 for simplicity.

III. OPTIMAL DEPHASING FOR TWO- AND THREE-SITE CHAINS

A. Explicit Solution and Optimal Dephasing for the 2-Site Model

For a two-site chain (N = 2), we have obtained in Ref. [12] a simple analytic form for τ by solving Eq. (11) exactly
with ρ(0) = |1〉 〈1|:

τ2 =
1

2Ω2

(
4Ω2

Γtrap
+ γ +

Γtrap

2
+

(ω1 − ω2)2

γ +
Γtrap

2

)
, (13)

where the subscript 2 here and in the following denotes the chain length. We now consider a disordered ensemble
where the site energies ω1 and ω2 are uniformly and independently chosen from the interval [−W/2,W/2]. (Although
the concept of disorder is normally applied to a large system, we will see that it is useful already in short chains,
and allows for a straightofrward generalization to chains of arbitrary length.) After integration over disorder using
Eq. (12), Eq. (13) becomes

〈τ2〉W =
1

2Ω2

(
4Ω2

Γtrap
+ γ +

Γtrap

2
+

W 2

6(γ +
Γtrap

2 )

)
. (14)

We see from Eq. (14) that the average transfer time behaves monotonically with static disorder strength W , i.e.,
increasing disorder always slows down transport. On the other hand, there is a complex interplay between static
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FIG. 2. (Color online) Plot of the average transfer time 〈τ3〉W as a function of dephasing rate γ for a 3-site chain. Here we fix
the inter-site coupling Ω = 1 while varying the coupling to the sink Γtrap and disorder strength W . The three dashed curves
are for Γtrap = 1, and the three dot-dashed curves are for Γtrap = 10; within each group from top to bottom we have W = 1.5,
1.1, and 0.7. Physically, the presence of a minimum for W > 1 indicates that appropriate dephasing can enhance the transport.

disorder W and dephasing γ, and this interplay depends in turn on the strength of the sink coupling Γtrap. In
particular, 〈τ2〉W has a minimum in γ when W > W cr

2 , where

W cr
2 =

√
6Γtrap/2 (15)

is the critical strength of disorder for a given coupling to the sink. Thus, dephasing can aid transport when disorder
is sufficiently strong, W > W cr

2 , and dephasing will always retard transport when W < W cr
2 . In the regime W > W cr

2 ,
the optimal rate of dephasing is given exactly by

γopt
2 =

W√
6
− Γtrap

2
=
W −W cr

2√
6

. (16)

B. The 3-site Chain – Symmetry between Large and Small Sink Coupling

For a chain of length N = 3, the exact transfer time τ3 may be written down explicitly for a given realization of the
disorder, for any dephasing rate and any coupling strength to the sink. The result, shown in Eq. (A1) in Appendix A,
is unwieldy to work with analytically except in limiting cases; however it is easy to perform numerically the disorder
integration given by Eq. (12). At first glance, the behavior is qualitatively similar to that of the N = 2 chain, as
illustrated in Fig. 2. At fixed Ω = 1 and weak disorder (small W ), the transfer time τ3 increases monotonically with
dephasing rate γ, but as disorder increases, a minimum in γ appears and grows. The critical disorder in this case is
seen numerically to be W cr

3 ≈ 1 for both Γtrap = 1 and Γtrap = 10.
In Fig. 3, for each value of the sink coupling Γtrap we calculate the ensemble-averaged transfer time 〈τ3〉W as a

function of dephasing γ and disorder W , and obtain the disorder value W cr
3 at which τ3 develops a minimum as a

function of γ. Looking more closely at Fig. 3, we find an important qualitative difference in the system’s behavior as
compared with the 2-site case. For the 2-site chain, the critical disorder is always proportional to the sink coupling
strength, W cr

2 =
√

6Γtrap/2, regardless of the value of Ω. Now for the 3-site chain, the critical disorder is again
proportional to the sink coupling Γtrap for small coupling, but for large coupling the critical disorder decreases with

the coupling strength. (More precisely, we have W cr
3 = Γtrap for Γtrap � Ω and W cr

3 = 6
√

2Ω2/Γtrap for Γtrap � Ω,
as will be obtained analytically below.)

The symmetry between large and small coupling to the sink is related to the superradiance transition in quantum
systems coupled to a sink, where for sufficiently large coupling a segregation of resonances into superradiant states
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FIG. 3. (Color online) Plot of critical disorder strength W cr
3 as a function of sink coupling Γtrap in a 3-site chain. The curve

separates two transport regimes. In the upper region of the phase diagram (light blue), dephasing of the right strength will
enhance transport while in the lower region (pink), dephasing always suppresses transport. The straight lines of slope +1 and
-1 indicate the scaling for small and large Γtrap, respectively. Here we fix units where Ω = 1.

(strongly coupled to the sink) and subradiant states (trapped away from the sink) occurs, with the result that escape
to the sink is suppressed [24, 25]. Transport to the sink in the clean quantum system is maximized at the superradiance
transition. In the case of the clean N−site chain (with no disorder or dephasing), the transfer time is given by

τ =
N

Γtrap
+

(N − 1)Γtrap

4Ω2
, (17)

see, e.g., Ref. [12], and thus transport to the sink is optimized at Γtrap = 2
√
N/(N − 1)Ω, or Γtrap =

√
6Ω for N = 3.

1. Analytics for Weakly Coupled Sink

We now obtain analytically the critical disorder for the 3-site chain. We break up the problem into two regimes,
starting with the regime of weak coupling to the sink: Γtrap � Ω. After expanding τ3 from Appendix A in powers of
Ω−1 assuming Ω is large compared to all other energy scales in the problem, and integrating the expanded expression
over disorder using Eq. (12), we obtain

〈τ3〉W =
3

Γtrap
+ Ω−2

(
3γ

2
+

Γtrap

2
− W 2

12 (2γ + Γtrap)
+

5W 2

12 (4γ + Γtrap)

)
+O

(
Ω−4

)
. (18)

Differentiating 〈τ3〉W with respect to γ, and neglecting O(Ω−4) terms, we find

∂ 〈τ3〉W
∂γ

≈ 1

12Ω2

[
18 +W 2

(
2

(2γ + Γtrap) 2
− 20

(4γ + Γtrap)
2

)]
. (19)

Now 2
(2γ+Γtrap)2 −

20
(4γ+Γtrap)2

is always negative for non-negative γ and Γtrap. Furthermore, the quantity in square

brackets in Eq. (19) increases monotonically from 18(1 − W 2/Γ2
trap) to 18 as γ increases from 0 to ∞. Thus for

W < Γtrap, Eq. (19) is always positive, and dephasing always retards transport. For W > Γtrap, on the other hand,
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Eq. (19) increases monotonically in γ from below 0 to above 0, i.e., the mean transfer time 〈τ3〉W exhibits a minimum
as a function of γ. Thus, the critical disorder strength for weak sink coupling is given by

W cr
3 = Γtrap . (20)

What about the optimal dephasing γopt
3 ? As a function of disorder strength W when W > W cr

3 , this is given in
general by the solution of a quartic equation. Nevertheless, three relatively simple regimes may be distinguished, the
first two of which fall within the range of validity of the large-Ω approximation, Eq. (18).

(i) For weak disorder only slightly above the critical value, 0 < W −W cr � W cr, we may expand Eq. (19) and

obtain γopt
3 ≈ 9

38 (W −W cr
3 ).

(ii) For moderate disorder, W cr � W � Ω, γopt will be large compared to W cr
3 = Γtrap, and thus we may take

γ � Γtrap in Eq. (19). We then have γopt
3 ≈W/2

√
6.

(iii) Finally, one may consider the behavior for strong disorder, W cr
3 � Ω�W . This is outside the range of validity

of the above derivation, since Ω is no longer the largest energy scale. In this parameter regime, to be discussed further
in Sec. IV B, the optimal dephasing rate converges to the N -independent form γopt ≈W/

√
6.

Interestingly, in each of the three ranges of the disorder strength W , the optimal dephasing rate γopt
3 grows linearly

with W , but the coefficient is different in each case. In Sec. IV B, we will see that each of the three regimes identified
here for N = 3 has a counterpart at large N , but each is associated with a different scaling with system size N .

2. Analytics for Strongly Coupled Sink

Now we consider the scenario of strong coupling to the sink, Γtrap � Ω. As far as the scaling analysis is concerned,
a strongly coupled sink can be thought as a weakly coupled sink with the effective coupling strength Γ′trap = Ω2/Γtrap.
So starting from the exact expression for τ3 in Appendix A, we may change variables from Γtrap to Γ′trap, and expand
τ3 assuming Ω is very large (compared to all ωi, γ, and Γ′trap). Integrating over disorder, we obtain

〈τ3〉′W =
1

2Γ′trap

+
18
(
γ + 2Γ′trap

)
+ W 2

γ+2Γ′
trap

Ω2
+O

(
1

Ω4

)
. (21)

Straightforward algebra now shows that for strong sink coupling the critical disorder is given by

W cr
3 = 6

√
2Γ′trap = 6

√
2Ω2/Γtrap , (22)

and the optimal dephasing rate above critical disorder is seen to be

γopt
3 = (W −W cr

3 )/3
√

2 . (23)

IV. OPTIMAL DEPHASING FOR LONG CHAINS

A. Critical Disorder Strength for Long Chains

We now consider how the results obtained above for 2- and 3-site chains may extend to chains of general length N .
To begin with, we generalize the results of Fig. 3 to N sites. Once again, without loss of generality we choose units
where hopping Ω = 1 and evaluate numerically, as a function of sink coupling Γtrap, the critical disorder W cr at which
the ensemble-averaged transfer time 〈τ(γ)〉W develops a minimum as a function of dephasing rate γ. For general N ,
Monte Carlo integration is used to evaluate the disorder average. The results, for selected values of N , are shown in
Fig. 4. We notice in Fig. 4 the same qualitative behavior observed earlier in Fig. 3 for the 3-site chain. Furthermore,
we see empirically that the behavior becomes N -independent for large N when the rescaled disorder strength N2W cr

is plotted as a function of Γtrap, indicating that the critical disorder scales as

W cr ∼ 1

N2
(24)

for all values of Γtrap. In particular, comparing with the results for N = 3, we have

W cr ∼ Γtrap

N2
(25)
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FIG. 4. (Color online) Plot of the rescaled critical disorder N2Wcr as a function of sink coupling Γtrap for various chain lengths
N . Here we fix Ω = 1.

for a weakly coupled sink, Γtrap � Ω, and

W cr ∼ Ω2

N2Γtrap
(26)

for a strongly coupled sink, Γtrap � Ω.
We notice that W cr approaches zero as the chain length N goes to infinity. This is consistent with the fact that for

an infinitely long chain, the system is localized at arbitrarily weak disorder, and any amount of dephasing can break
the localization, thus aiding transport.

Unfortunately, an analytic understanding of the empirical scaling behavior (24) is not presently available; the
analysis would require a non-perturbative treatment of the effect of the coupling Γtrap, since near critical disorder
Γtrap will be comparable to both disorder W and dephasing strength γ.

B. Optimal dephasing as a function of disorder

We now consider the optimal dephasing for long chains when W > W cr. Numerical results for three values of
Γtrap (one corresponding to weak coupling, another to strong coupling, and the third to a coupling right at the
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FIG. 5. (Color online) Optimal dephasing rate γopt is plotted as a function of W −W cr for chains of different length N , where
in each curve the minimum value of W is 1.4W cr and the critical disorder W cr is itself a function of N . Here we again fix
Ω = 1. Panels (a) and (b) show results for Γtrap = 1/16 and 64, providing examples respectively of the weak-coupling and
strong-coupling wings in Fig. 4. In each case, three distinct regimes may be observed for weak, moderate, and strong disorder,
which display different scaling behavior with N and are analyzed in Secs. IV B 1, IV B 2, and IV B 3, respectively. Panel (c)
shows results at the superradiance transition, Γtrap = 2; here the moderate disorder regime is absent.

superradiance transition), are shown in Fig. 5. We see that the optimal dephasing increases monotonically with the
disorder strength. However, several distinct parameter regimes can be identified, which are in direct correspondence
with the three regimes obtained for N = 3 in Sec. III B 1. Notably, each regime shows its own scaling behavior with
the chain length N , even though this scaling is not clearly visible in Fig. 5. We now proceed with an analysis of the
different regimes and their scaling behaviors.
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FIG. 6. (Color online) Optimal dephasing rate γopt is shown as a function of N with W = 2W cr for several values of
the sink coupling strength Γtrap. Here Ω = 1. The two black solid lines illustrate scaling proportional to 1/N3, implying
γopt ∼ (W −W cr)/N for W close to W cr.

1. Weak Disorder: W −W cr ∼W cr

We first consider W just slightly above the critical disorder, 0 < W−W cr ∼W cr. As seen in Fig. 5, here the optimal
disorder γopt grows linearly with W −W cr, just as it does for N = 2 and N = 3. To ascertain the N -dependence for
long chains, in Fig. 6 we study γopt as a function of N for W = 2W cr and several (large and small) values of the sink
coupling strength Γtrap. We observe the scaling γopt ∼ 1/N3 when other parameters are held fixed, which combined
with Eq. (24) implies

γopt ∼ W −W cr

N
. (27)
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FIG. 7. (Color online) Optimal dephasing γopt is shown as a function of chain length N in the moderate-disorder regime, for
several values of the sink coupling Γtrap and disorder strength W . Here Ω = 1. We observe good agreement with Eq. (30), as
shown by the solid lines.

2. Moderate Disorder: Γtrap/
√
N �W � Ω/

√
N

Here we consider the behavior where disorder (and dephasing) are strong compared to the sink coupling but still
weak compared to the hopping amplitude. Thus, we are interested in the regime Γtrap � W ∼ γ � Ω where any
required N dependence is temporarily omitted from the inequalities.

It is convenient to begin with a clean chain coupled to a sink in the presence of dephasing. Here the transfer time
may be obtained exactly as

τ =
N

Γtrap
+
N(N − 1)γ + (N − 1)Γtrap

4Ω2
, (28)

to be compared with Eq. (17) for the special case γ = 0. Now we consider expanding in both disorder strength W and
sink coupling Γtrap assuming that Γtrap is small compared to Ω (i.e., we work in a regime analogous to that considered
in Sec. III B 1 for N = 3; an analogous treatment for Γtrap � Ω may be considered as in Sec. III B 2). Beginning with
Eq. (28) for W = 0 and comparing with the results (14) and (18) for N = 2 and 3 respectively, we conjecture that
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for large N the expansion takes the form

〈τ〉W =
N

Γtrap
+

1

Ω2

[(
N(N − 1)

4
γ + a(N)

W 2

γ

)
+ Γtrap

(
N − 1

4
− b(N)

W 2

γ2

)
+O

(
Γ2

trap

)]
+

1

Ω4

[
c(N)W 2γ + d(N)

W 4

γ
+O(Γtrap)

]
+O

(
1

Ω6

)
. (29)

Numerically, we find a(N) = a0N , b(N) = b0, c(N) = c0N
3, and d(N) = d0N

2 for large N . In particular, a0 ≈ 0.042.

For sufficiently large Ω and small Γtrap we may restrict our attention to the term
(
N(N−1)

4 γ + a0N
W 2

γ

)
/Ω2 only,

which implies that the optimal dephasing in this regime should behave as

γopt ≈
2
√
a0W√
N

≈ 0.41
W√
N
. (30)

This predicted behavior with system size N for moderate disorder strength is confirmed in Fig. 7. We observe in
Fig. 7 that while Eq. (30) was obtained in the context of Γtrap � Ω, the same scaling behavior, γopt ∼ 1/

√
N , holds

also for Γtrap � Ω where the effective coupling to the sink Ω2/Γtrap is small.
Now to understand the range of validity of Eq. (30), we need to take a closer look at the two expansions in Eq. (29).

On the one hand, our approximation breaks down for small disorder and dephasing when the terms proportional to
Γtrap become comparable to the Γtrap-independent terms we have been considering. This occurs when γopt ∼ Γtrap/N ,

or equivalently W ∼ Γtrap/
√
N . On the other hand, the approximation also breaks down for larger disorder (and

dephasing), when the 1/Ω4 contribution becomes comparable to that of the 1/Ω2 terms in the expansion. This occurs

when W ∼ Ω/
√
N , which not coincidentally corresponds to the localization border where the localization length near

the middle of the energy band, ξ ≈ 100 Ω2/W 2 [26], becomes comparable to the chain length N .
Thus the moderate-disorder regime in which the scaling of the optimal dephasing rate is given by Eq. (30) extends

over the range Γtrap/
√
N � W � Ω/

√
N . We note that in the moderate-disorder regime as well as in the weak-

disorder regime, the eigenstates are delocalized and wave packet motion is ballistic. Nevertheless, in both regimes we
have shown that dephasing will aid transport.

3. Strong disorder: W � Ω/
√
N

Finally, in the strong disorder regime, defined by W � Ω/
√
N , the quantum eigenstates are localized, and the

dynamics is diffusive. This regime has previously been studied in the absence of coupling to a sink in Refs. [1, 16, 19].

More precisely, this regime comprises two sub-regimes: For Ω/
√
N � W � Ω, one has 1� ξ � N , and the optimal

dephasing rate is given by γopt ∼ Ω/ξ ∼ W 2/Ω. Upon further increase of the disorder, we reach W � Ω, implying
a localization length ξ ∼ 1, and the optimal dephasing is then simply proportional to the disorder: γopt ∼ W .
Throughout the strong-disorder regime, the optimal dephasing is controlled by motion on the scale of a localization
length, and as a consequence γopt is N -independent.

Specifically, for W � Ω, the Leegwater classical-like approximation applies [27], and the transfer time is given
by [12]

〈τL〉W =
N

Γtrap
+
N (N − 1)

4Ω2

[
γ +

Γtrap

N
+
W 2

6γ

(
1− 2Γtrap

N(2γ + Γtrap)

)]
. (31)

The optimal dephasing in this regime is

γopt ≈ W√
6
. (32)

In Fig. 8 we examine explicitly the crossover between the moderate-disorder regime, where motion is ballistic and
γopt scales with N in accordance with Eq. (30), and the strong-disorder regime where localization obtains and γopt

becomes N -independent.

V. DISCUSSION

An interesting feature of our analysis is the fact that in a finite chain, dephasing can help transport even in the
deep ballistic regime (ξ � N), where the spreading of the excitation is very fast and not only in the localized regime
(ξ � N), as already discussed in many publications.



13

.
10-2 10-1 100 101

<
=>

W

102

103

104

N=10
N=30
N=50
N=100

N
101 102

.
op

t

0.1

0.2

0.3

0.4
!

trap
=64

!
trap

=1/16

(b)

(a)

FIG. 8. (Color online) (a) The disorder-averaged transfer time 〈τ〉W is shown as a function of dephasing rate γ for chains of
several lengths N . Here Ω = 1, W = 2, and Γtrap = 1/16. In each case, the vertical line indicates the optimal dephasing rate
γopt. (b) The optimal dephasing γopt is shown as a function of chain length N in the crossover between the moderate-disorder
and strong-disorder regimes. Here Ω = 1, W = 2, and two values of the sink coupling Γtrap are presented, corresponding to the
weakly and strongly coupled sink scenarios. The solid lines represent Eq. (30) in the moderate-disorder regime (which displays

N−1/2 scaling) and the N -independent behavior expected for strong disorder.

Understanding how dephasing can help transport in the localized regime is not difficult. Here transport is suppressed
in the absence of dephasing, and the excitation spreads only up to a length ξ, whereas nonzero dephasing frees the
excitation leading to a diffusive spreading at large times. Thus, in this regime the spreading of the excitation is much
faster in the presence of dephasing than without it.

In the ballistic regime, on the other hand, dephasing can even slow down the spreading of the excitation (indeed
when dephasing is sufficiently large, it induces a diffusive spreading in a long chain which is much slower than the
ballistic transport associated with zero dephasing). Nevertheless the efficiency of the energy transfer depends not only
on the rate of excitation spreading, but also on the probability to be on the last site, which is coupled to the sink.
In the clean case coherences induce large fluctuations in this probability as shown in Fig. 9(a), in contrast with the
case of nonzero dephasing where the fluctuations are smoothed so that that on average the excitation spends more
time on the last site, thus increasing the transfer efficiency. This enhancement due to dephasing can happen even
if the rate of excitation spreading is the same without or with dephasing, as seen in the initial linear growth of the
spreading σ(t) in Fig. 9(b). Of course, too high a rate of dephasing for a given chain length and a given strength of
static disorder will suppress transport, turning ballistic spreading into diffusive. Nevertheless for any finite size chain,
there is always a finite optimal dephasing even in the ballistic regime.

Finally we would like to stress that in this paper we have focused on the case of the excitation starting from the
first site. Here we found that dephasing can help only above a critical static disorder. On the other hand, starting
from other initial conditions, dephasing can help energy transfer even in the absence of static disorder. For instance
for a three-site chain with W = 0 (the clean case), when the excitation starts from the middle site, the transfer time
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FIG. 9. (Color online) (a) Probability to be at site N as a function of time, for an excitation initially at site 1. Here
Ω = 1, W = 2, N = 10, and Γtrap = 1/16 as in Fig. 8. The data refer to a single disorder realization without dephasing
(solid black curve) and at the optimal dephasing, γ ≈ 0.25 (red dashed curve). (b) Excitation spreading σ(t) for the same
parameters as in panel (a). Here an average is performed over 100 disorder realizations. Note that the spreading is defined as:
σ2(t) =

∑
n ρn,n(t)n2 − (

∑
n ρn,nn)2.

is analytically given by

τ =
3

Γtrap
+

1

2γ + Γtrap
+

2γ + Γtrap

2Ω2
, (33)

which gives an optimal dephasing γopt = (
√

2Ω− Γtrap)/2 even in the absence of any static disorder. More generally,
when the excitation starts in the middle of a clean chain of length N , for N odd, in the limit of weak coupling Γtrap

(Γtrap � Ω, γ) we observe that

τ =
N

Γtrap
+

1

2γ
+

(3N2 − 4N + 1)γ

16Ω2
, (34)

and the optimal dephasing is therefore given by

γopt =

√
8Ω√

3N2 − 4N + 1
+O(Γtrap) , (35)

which falls off as Ω/N for long chains. A more detailed investigation of the role of noise in the absence of static
disorder and the dependence on initial conditions will be done elsewhere. For the moment we only comment that
Eqs. (33) and (34) confirm the key result, which is that even in the ballistic regime dephasing can help energy transfer,
in a finite-size system.
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VI. CONCLUSIONS

We have systematically studied the effect of dephasing on transport in disordered chains of arbitrary length coupled
to a sink. Specifically, we have considered a linear chain of N sites with nearest-neighbor coupling Ω, in the presence
of static disorder of strength W and dephasing of strength γ, and where the last site is coherently coupled to an
external environment with sink coupling strength Γtrap and the system is initialized in the first site. For this model,
which has been extensively studied in the literature, our analysis allowed us to estimate the critical static disorder
above which dephasing can assist transport. Specifically we have seen that W cr varies linearly or inversely with the
coupling Γtrap when Γtrap is small or large, respectively.

An essential point of our analysis is the estimate of the optimal dephasing rate in the ballistic regime (and not only
in the localized regime as has been done in previous works).

Different regimes have been obtained for the behavior of the optimal dephasing rate γopt. For W close to W cr, we
have γopt ∼ (W−W cr)/N , whereas for Γtrap/

√
N �W � Ω/

√
N , the optimal dephasing becomes independent of the

coupling to the sink and scales as γopt ∼ W/
√
N . In both the weak- and moderate-disorder regimes, dephasing aids

transport even though eigenstates are delocalized and motion is ballistic. This can be explained by the fact that the
transfer efficiency is not only determined by the velocity of excitation spreading but also by the time the excitation
spends in the site coupled to the sink. Since in the ballistic case the probability to be in the last site experiences large
fluctuations, dephasing can help transport by stabilizing the excitation on the exit site and increasing its probability
to escape. Finally, for sufficiently strong disorder, W � Ω/

√
N , the quantum states become localized and the optimal

dephasing rate becomes N -independent, as has been seen in previous works.
Our main result is that dephasing can help transport even in the ballistic regime in finite systems. Even if our

system is too simple to model realistic systems, such as natural light-harvesting complexes, we think that this main
result will remain valid in more realistic situations and can help in the design of efficient quantum wires.
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Appendix A: Analytical Expression for Transfer Time τ3 in a 3-site Chain

For a 3-site chain with arbitrary on-site energies ωi, inter-site hopping Ω, dephasing rate γ, and site 3 coupled to
the acceptor system with coupling Γtrap, we may solve Eq. (11) exactly using Wolfram Mathematica to obtain the
transfer time

τ3 =
X0 + Ω2X2 + Ω4X4

Z
, (A1)

where

X0 = Γtrap

[
4
(
γ2 + (ω1 − ω3)2

)
+ 4γΓtrap + Γ2

trap

]
(A2)

×
[
2γ
(
3γ2 + ω2

1 − 2ω1ω2 + 3ω2
2 − 4ω2ω3 + 2ω2

3

)
+ Γtrap

(
5γ2 + (ω1 − ω2)2

)
+ γΓ2

trap

]
,

X2 = 48γ2
(
γ2 + (ω1 − ω3)2

)
+ 8γΓtrap

(
15γ2 + (ω1 − ω3)(5ω1 − ω2 − 4ω3)

)
(A3)

+ 8Γ2
trap

(
11γ2 + (ω1 − ω3)2

)
+ 24γΓ3

trap + 2Γ4
trap ,

X4 = 12 (2γ + Γtrap) (4γ + Γtrap) , (A4)

Z = 2Ω2Γtrap (2γ + Γtrap)
[
2Ω2 (4γ + Γtrap) + γ (2γ + Γtrap)

2
+ 4γ(ω1 − ω3)2

]
. (A5)

[1] J. M. Moix, M. Khasin, and J. Cao, New J. Phys. 15, 085010 (2013).
[2] K. D. B. Higgins, S. C. Benjamin, T. M. Stace, G. J. Milburn, B. W. Lovett, and E. M. Gauger, Nature Communications

5, 4705 (2014).
[3] M. Sarovar and K. B. Whaley, New J. Phys. 15, 013030 (2013).



16

[4] J. Grad, G. Hernandez, and S. Mukamel, Phys. Rev. A 37, 3835 (1988).
[5] F. C. Spano and S. Mukamel, J. Chem. Phys. 91, 683 (1989).
[6] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming,

Nature 446, 782 (2007).
[7] G. Panitchayangkoon, D. Hayes, Kelly A. Fransted, Justin R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S.

Engel, Proc. Nat. Acad. Sci. USA 107, 12766 (2010).
[8] M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nat. Phys. 6, 462 (2010).
[9] H. Hossein-Nejad and G. D. Scholes, New J. Phys. 12, 065045 (2010).

[10] J. Strumpfer, M. Sener, and K. Schulten, J. Phys. Chem. Lett. 3, 536 (2012).
[11] X. Hu, T. Ritz, A. Damjanovic, and K. Schulten, J. Phys. Chem. B 101, 3854 (1997); X. Hu, A. Damjanovic, T. Ritz, and

K. Schulten, Proc. Natl. Acad. Sci. USA 95, 5935 (1998).
[12] Y. Zhang, G. L. Celardo, F. Borgonovi, and L. Kaplan, Phys. Rev. E 95, 022122 (2017).
[13] D. E. Logan and P. G. Wolynes, J. Chem. Phys. 87, 7199 (1987); D. A. Evensky, R. T. Scalettar, and P. G. Wolynes, J.

Phys. Chem. 94, 1149 (1990).
[14] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009); P. Rebentrost, M.

Mohseni, and A. Aspuru-Guzik, J. Phys. Chem. B 113, 9942 (2009).
[15] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
[16] S. Lloyd, M. Mohseni, A. Shabani, and H. Rabitz, arXiv:1111.4982.
[17] G. L. Celardo, F. Borgonovi, M. Merkli, V. I. Tsifrinovich, and G. P. Berman, J. Phys. Chem. C 116, 22105 (2012); D.

Ferrari, G. L. Celardo, G.P. Berman, R. T. Sayre, and F. Borgonovi, J. Phys. Chem. C 118, 20 (2013).
[18] G. L. Celardo, Giulio G. Giusteri, and Fausto Borgonovi, Phys. Rev. B 90, 075113 (2014); G. L. Celardo, Paolo Poli, Luca

Lussardi, and Fausto Borgonovi, Phys. Rev. B 90, 085142 (2014).
[19] J. Wu, R. J. Silbey, and J. Cao, Phys. Rev. Lett. 110, 200402 (2013).
[20] G.G. Giusteri, F. Mattiotti, and G. L. Celardo, Phys. Rev. B 91, 094301 (2015).
[21] H. Haken and G. Strobl, Z. Physik 262, 135 (1973).
[22] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131, 105106 (2009).
[23] J. Cao and R. J. Silbey, J. Phys. Chem. A 113, 13825 (2009).
[24] V. V. Sokolov and V. G. Zelevinsky, Nucl. Phys. A504, 562 (1989); Phys. Lett. B 202, 10 (1988); I. Rotter, Rep. Prog.

Phys. 54, 635 (1991); V. V. Sokolov and V. G. Zelevinsky, Ann. Phys. (N.Y.) 216, 323 (1992).
[25] G. L. Celardo and L. Kaplan, Phys. Rev. B 79, 155108 (2009); G. L. Celardo, A. M. Smith, S. Sorathia, V. G. Zelevinsky,

R. A. Sen’kov, and L. Kaplan, Phys. Rev. B 82, 165437 (2010).
[26] F. M. Izrailev, S. Ruffo, and L. Tessieri, J. Phys. A 31, 5263 (1998).
[27] J. A. Leegwater, J. Phys. Chem. 100, 14403 (1996).


