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We analyze the statistics of the shortest and fastest paths on the road network between randomly
sampled end points. We find that, to a good approximation, the optimal paths can be described as
directed polymers in a disordered medium, which belong to the KPZ universality class of interface
roughening. Comparing the scaling behavior of our data with simulations of directed polymers and
previous theoretical results, we are able to point out the few characteristics of the road network that
are relevant to the large-scale statistics of optimal paths. Indeed, we show that the local structure is
akin to a disordered environment with power-law distribution which become less important at large
scales where long-ranged correlations in the network control the scaling behavior of the optimal
paths.

Complex networks of nodes and links can be used to
model a wide array of systems. Examples range from bi-
ological networks such as those formed by neurons and
synapses in the brain or chemical reactions inside a cell,
to social or transportation networks and the World Wide
Web. Their topology in the abstract space of edges
and vertices has been much studied, allowing to iden-
tify widespread properties such as ’small-world’ e�ects,
scale-free connectivity and a high degree of clustering,
which can be captured by simple physical models [1–5].
Comparatively, less is understood about the spatial orga-
nization of complex networks embedded in a Euclidean
space, a very active subject of research (see Ref.[6] for a
review). The e�ect of geometry becomes especially rele-
vant when the network is strongly constrained by the en-
vironment or when the “cost” to maintain edges increases
significantly with their length (e.g. rivers [7], railways [8]
or vascular networks [9]). The spatial structure of streets
is another example that has been particularly studied to
gain insight into the structure of cities and their devel-
opment [10–12].

Much information about the geometry of a network can
be obtained by studying the shortest paths between the
nodes of the network. In many cases, it is also a problem
of practical importance to characterize the paths that op-
timize a given cost function. For example, in transporta-
tion networks, one would like to understand the proper-
ties of the paths that minimize the travel time, the dis-
tance or the monetary cost to travel between two points.
An obvious application is in the development of e�cient
GPS routing algorithms which could use prior informa-
tion on optimal paths to perform better [13]. The short-
est paths between two generating nodes on the power grid
are also important to predict the overloading of electric
lines [14]. Understanding the properties of these optimal
paths appears challenging since they are expected to de-
pend strongly on the geometry of the network which can
be shaped by various factors, from natural obstacles to
historical development or di�erences in policy.

The theory of directed polymers [15] tackles a related
problem. It is concerned with the statistics of a chain
stretched between two points that minimizes its energy

FIG. 1. The location of the three regions considered. For
simplicity and e�ciency of our algorithm, they are chosen to
be large rectangular areas (in latitude-longitude coordinates)
without sea or ocean.

in a random environment modeled by a fluctuating po-
tential. The optimal configuration is then found as a
trade-o� between the line tension of the chain and the
energy imparted by the random environment. A wealth
of theoretical results is available for directed polymers
which belong to the Kardar-Parisi-Zhang (KPZ) [16] uni-
versality class describing the roughening of growing in-
terfaces, maybe the most studied class of systems in non-
equilibrium statistical physics.

In this Letter, we study the statistics of optimal (short-
est and fastest) paths on the road network in light of
known results for directed polymers in a random medium
(DPRM). Gathering large data sets of millions of paths
on three continents, we compute the probability distribu-
tion of path length and travel time as a function of the
distance between the end points. By comparison with a
DPRM model, we show that most details of the structure
of the road network are not relevant to the statistics on
larger scales. The local environment can be modeled by a
power-law distributed noise with, remarkably, a universal
decay exponent. Furthermore, we show that long-range
correlations in the environment, on the scale of hundreds
of kilometers, a�ect the scaling exponents and are thus
relevant to the statistics of optimal paths. The transverse
wandering of the paths is also found to be consistent with
our modeling as a directed polymer.

Let us first introduce more precisely the 2-dimensional
DPRM problem and summarize the results relevant to
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FIG. 2. Shortest (left) and fastest (right) paths from a cen-
ter point (near Munich, Germany) to 104 randomly chosen
points at a distance of 300 km. The arrow points to the most
prominent overhang in the paths.

our study. A directed polymer is a chain pinned at its end
points that is su�ciently stretched to prevent overhangs
and thus can be described by a scalar height function
h(x), with x a coordinate along the axis going between
the end points and h the distance to the axis. The energy
of a configuration of the chain is given by

E[h(x)] =
⁄ d
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“

2

3
dh

dx

42
+ V (x, h)

D
dx (1)

where d is the distance between the end points, “ is re-
lated to the line tension of the chain and V is a ran-
dom potential modeling a disordered environment. The
free energy of such configurations follows the KPZ equa-
tion [16] that gives rise to scale invariance. (Because of
this mapping, x is traditionally denoted t as a time di-
rection but we stick here to the spacial notation to avoid
confusion with travel times.) In the zero-temperature
limit that is relevant to our problem, the free energy
is simply the energy of the optimal path E[hú]. Two
exponents govern the scaling of the energy fluctuations+
(E ≠ ÈEÍ)2,

≥ d

2— (where the brackets denote an aver-
age over realizations of the disorder V ) and the transverse
wandering of the optimal chains, Èhú(x)2Í ≥ x

2’ [17].
In 2d, if V has only short-ranged correlations, the ex-
ponents — = 1/3 and ’ = 2/3 are known exactly [18].
More recently, it has been shown that the full distribu-
tion of E is actually universal, converging at large d to
Tracy-Widom (TW) distributions of random matrix the-
ory [19, 20]. On the contrary, long-range correlated disor-
der leads to larger scaling exponents and di�erent energy
distributions [21–25].

In light of these theoretical results, we now analyze the
statistics of two types of optimal paths (the shortest and
the fastest) on the road network. We compute the paths
using the Open Source Routing Machine (OSRM) [26]
operating on OpenStreetMap data, a collaborative e�ort
to provide an open-source map of the world. The fastest
paths are determined using the default configuration of
OSRM which takes into account speed limitations for cars
and road types but no information on tra�c. We gather
six data sets for the two types of optimal paths in the
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FIG. 3. Average length of the optimal paths ÈLÍ and length
of overhangs ÈLhÍ as a function of the distance d between the
end points. All lengths are measured in km. Left: Shortest
paths. Right: Fastest paths. 106 points for each curve. Lines
are guides to the eye.

three regions indicated in Fig. 1, sampling the end points
of the paths uniformly on the network.

In Fig. 2, we show examples of optimal paths drawn
from an arbitrary center point (near Munich, Germany)
to uniformly sampled points at a 300 km distance. Both
sets of optimal paths display a fractal branching pattern
strongly resembling what is observed in directed poly-
mer models [17]. However, these routes are not perfectly
directed. This is especially visible near the end points
where the local structure of the road network may im-
pose overhangs (the most prominent is indicated by a
red arrow in Fig. 2). Nevertheless, overhangs are mostly
avoided by the optimal paths on the rest of the trajectory,
as quantified in Fig. 3 where we plot the average length
of the paths ÈLÍ(d) and the part ÈLhÍ(d) corresponding
to overhangs (see Supplementary Material [27] for a pre-
cise definition of overhangs). The average path length
ÈLÍ is found to increase linearly with d at large distances
while ÈLhÍ increases slower. Overhangs thus become less
relevant at larger distances for which we expect a better
comparison between road paths and directed polymers.
In the following, we divide accordingly our study between
short paths that are strongly constrained by the network,
and longer paths which result from optimization.

We first look in Fig. 4 at the distribution of the length
L of the shortest paths (resp. the travel time T on
the fastest paths) between points at a short distance
d = 1 km. We are interested in L and T as the quanti-
ties that are minimized and thus, in our interpretation,
akin to the energy of a directed chain. The distributions
display clear power-law tails at large L and T over more
than three orders of magnitude. The tails correspond to
situations where the path has to go around an obstacle
to reach a nearby point, e.g. reach the next bridge to
cross a river. They thus characterize the overhangs de-
scribed previously. Most remarkably, the decay exponent
P (L) ≥ L

≠– (and P (T ) ≥ T

≠–) seems to be universal
across continents with – ¥ 3 (the best fit coe�cients
for the six curves are all found within [2.83; 3.10]). This
appears surprising since we expect the paths at small d

to reflect the local structure of the road network which
is a priori very di�erent in the three regions considered.
Although we lack an explanation for the value of the ex-
ponent, it can be compared to exponents derived for the
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FIG. 4. Optimal paths between points at a distance d = 1 km.
Top: Probability distribution of the length L of the shortest
paths. Bottom: Probability distribution of the travel time
T of the fastest paths. N = 5 ◊ 105 paths for each curve.
Insets: Scaled plots with the best fit exponent – indicated
in the legend.

same distribution in di�erent environments. The short-
est path between nearby points on the backbone of a
percolation cluster has been numerically found to ex-
hibit the same – = 3 [28] at small distances, while for
self-avoiding random walks, the probability of forming a
loop of length ¸ in a 2d chain scales as ¸

≠– with (exact)
exponent – = 2.68 [29]. The latter superficially resem-
bles the configuration of a road between nearby points
that loops around to avoid intervening obstacles, while
not intersecting other roads arriving/departing the two
points.

Because of the fat tails in the distributions of Fig. 4,
the variance of L and T is not defined. We thus cannot
estimate the exponent — characterizing energy fluctua-
tions by simply looking at the scaling of ÈL2Íc(d) and
ÈT 2Íc(d), and need to look instead at the full probability
distributions P (L|d) and P (T |d) for increasing distance d

between the end points. To compare these distributions,
we superimpose their maxima and rescale their width by
a factor d

— where — is adjusted so that the distributions
converge at large d. The results are shown in Fig. 5 (top)
for the shortest paths in Europe and in the Supplemen-
tary Material [27] for the five other data sets, which show
similar behavior. We find that the exponent — can be
adjusted such that the left tail of the distribution con-
verges rapidly to a limit distribution well-fitted by the
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FIG. 5. Top: Probability distribution of the length L of the
shortest paths in Europe rescaled with — = 0.66. 5 ◊ 105

paths for each curve. Bottom: Probability distribution of
the energy for the DPRM model with power-law noise rescaled
with — = 1/3. 107 paths for each curve. Lattice of size 107 in
the transverse direction with periodic boundary conditions.
The insets show the same data with a logarithmic y-axis. Pm

denotes the maximum of the distribution, found at value L =
Lm or E = Em.

Tracy-Widom (TW) distribution expected for directed
polymers. On the contrary, the right tail converges slower
and remains heavy at the largest d attainable (larger d,
comparable to the total size of the region, show strong
finite-size e�ects). It is thus not clear if the right tail also
converges to TW behavior or to a di�erent distribution,
as was observed numerically for a directed polymer model
with long-ranged correlations in the environment [25].

For comparison, we simulated a well-established
DPRM model on a square lattice with random indepen-
dent energies on each site [17, 18, 30]. The paths are
directed in the diagonal of the lattice, parametrized by
d. As before, the distance (in number of sites) from the
diagonal is denoted by h. The energy of the optimal path
is computed recursively as

E(d, h) = min {E(d ≠ 1, h), E(d ≠ 1, h ≠ 1)} + ÷(d, h).
(2)

After d iterations, E(d, h) is then the energy of the op-
timal path between the point (d, h) and the line d = 0.
As opposed to previous studies that considered Gaussian
noise, we draw the noise ÷(d, h) in a power-law distribu-
tion P (÷) = 2÷

≠3 with ÷ œ [1; Œ[ to match qualitatively



4

the short-scale distributions in Fig. 4. We then analyze
the results as in the experimental case: We shift the en-
ergy distributions P (E|d) to superimpose their maxima
and rescale their width by d

— (Fig. 5, bottom). We ob-
serve that, as with Gaussian noise [30], the distribution
converges to a TW distribution with the KPZ exponent
— = 1/3. Indeed, only a fat tail in the noise at negative

energy, P (÷) ≥ ÷

≠a as ÷ æ ≠Œ is expected to change
the scaling exponents [31, 32]. Interestingly, the con-
vergence when increasing d happens in a similar manner
in the model and the experimental data, with the right
tails converging much slower. This also lends credit to
our measure of — as the exponent rescaling the left tail
of the distributions.

One salient di�erence remains between the paths on
the road and the directed polymer model: The mea-
sured — exponents are found between 0.58 and 0.9 (with
an error estimated around 15%) and are thus much
larger than — = 1/3 in the KPZ universality class.
We now argue that this can be explained by the pres-
ence of long-range correlations in the road network. To
show this, we first discretize the full map of each region
in squares of size 100m ◊ 100m and assign the value
fl(r) = 1 if a road is found inside the square and 0
otherwise. We then compute the correlation function
C(r) = Èfl(r)fl(r + x)Í ≠ Èfl(x)Í2 where the average is
taken over x and orientations of r. As shown in Fig. 6,
C(r) decreases slowly (slower than C(r) ≥ r

≠0.5), re-
maining non-negligible on the scale of hundreds of kilo-
meters. These long-range correlations reflect the fact
that the road network is shaped by many factors act-
ing at every scale, from di�erent administrative divisions
to natural obstacles. They were also shown to be impor-
tant in modeling the development of cities [33], obviously
related to that of the road network.

For DPRM, such a slow decay of correlations was
proven to be relevant to the large scale behavior, both
in numerical simulations [23, 25, 34] and analytic calcu-
lations [21, 24, 35, 36]. For Gaussian noise with isotropic
correlations decaying as a power-law with exponents be-
tween ≠0.5 and ≠0.2 (as measured for the road density
correlations in Fig. 6), — was measured between 0.5 and
0.7 [23]. Given experimental uncertainties, these values
are in relatively good agreement with our measurements
for the road network. Long-range correlations are thus
likely to be at the origin of the large exponents observed.

Finally, we look at the wandering of the optimal paths
in the transverse direction. The routing algorithm re-
turns a list of points along each path (in average every
50m) that we use to construct the function h(x), the dis-
tance to the end-to-end axis parametrized by x. We do
so by discretizing x in bins of size dx = 100m and aver-
aging points falling in the same bin. This discards any
overhang and thus produces a directed path approximat-
ing the real path. The leading behavior is expected to
be scale invariant �h(x) =


Èh2(x)Í ≥ x

’ . However,
because of overhangs near the end points h(0) ”= 0 so
that �h(0) ”= 0 inducing large corrections to the puta-
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FIG. 6. Auto-correlation function of the road density as de-
fined in the text. The oscillations in the curve for the US
are not an artifact. The peaks are located every mile (with
sub-peaks at half-miles) and correspond to large regions (up
to 60 miles) of grid-like road network.
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FIG. 7. Transverse wandering for the shortest paths as a
function of the coordinate x on the axis between the end
points. Average over 5 ◊ 105 paths between points at dis-
tance d = 1000km.

tive scaling. Thus, as a first approximation, we estimate
the ’ exponent by fitting �h(x) = a + bx

’ with free pa-
rameters a, b and ’. The resulting functions �h(x) ≠ a

show scaling behavior over two orders of magnitude with
exponents ’ œ [0.69; 0.72] (see Fig. 7). Once again these
values are larger than the KPZ exponent ’ = 2/3, in qual-
itative agreement with the presence of long-range corre-
lations that are expected to increase the value of ’. For
comparison, isotropic long-range correlations with decay
exponent in the range of Fig. 6 give ’ œ [0.75; 0.85] [23]
while correlations only in the transverse direction yield
’ œ [0.67; 0.72] [25].

To conclude, we have shown that optimal paths on the
road network can be modeled as directed polymers in
a random medium. In doing so, we replaced the com-
plex road structure by an homogeneous noise featuring
only the relevant properties to account for the observed
statistics of optimal paths. We find two important char-
acteristics. At short distances, the structure of the net-
work induces a scale-free distribution of path length with
a universal decay exponent, a remarkable experimental



5

fact that remains to be explained. This is accounted for
by a power-law distributed noise in our DPRM model.
At larger scales, the local structure becomes less rele-
vant. The scaling of the path length/travel time and the
transverse wandering of optimal paths are then governed
by long-range correlations that we show to be present in
the network. Although these long-range correlations are
non-universal, they show similar behaviors in the di�er-
ent regions of the world considered in this paper, leading
to similar distributions at large scales. Directed poly-
mers and associated theoretical results thus provide use-
ful tools to understand the statistics of optimal paths on

a complex network. It would be interesting in the future
to see if this approach can be extended to other trans-
portation networks or di�erent environments, for exam-
ple to the study of shortest paths on a critical percolation
cluster [37] which have important practical applications.
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