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The nested sampling algorithm has been shown to be a general method for calculating the pressure-
temperature-composition phase diagrams of materials. While the previous implementation used sin-
gle particle Monte Carlo moves, these are inefficient for condensed systems with general interactions
where single particle moves cannot be evaluated faster than the energy of the whole system. Here
we enhance the method by using all-particle moves: either Galilean Monte Carlo or a novel Total
Enthalpy Hamiltonian Monte Carlo algorithm. We show that these algorithms enable the determi-
nation of phase transition temperatures with equivalent accuracy to the previous method at 1/N
of the cost for an N -particle system with general interactions, or at equal cost when single particle
moves can be done in 1/N of the cost of a full N -particle energy evaluation. We demonstrate this
speedup for the freezing and condensation transitions of the Lennard-Jones system and show the
utility of the algorithms by calculating the order-disorder phase transition of a binary Lennard-Jones
model alloy, the eutectic of copper-gold, the density anomaly of water and the condensation and
solidification of bead-spring polymers. The nested sampling method with all three algorithms is
implemented in the pymatnest software.

I. INTRODUCTION

The ability to predict the behavior of materials un-
der a variety of conditions is important in both academic
and industrial settings. In principle, statistical mechan-
ics enables the prediction of the properties of materi-
als in thermodynamic equilibrium from the microscopic
interaction of atoms. Computer simulation is the tool
for using numerical statistical mechanics in practice, and
a wide variety of models and approximations are used
for atomic interactions, all the way from the electronic
Schrödinger equation to simple hard spheres. The equi-
librium pressure-temperature phase diagram for a given
composition is one of the most fundamental properties
of a material, and forms the basis for making, changing,
designing, or in general, just thinking about the material.

The common approach is to use different computa-
tional methods for resolving each of the transitions be-
tween the phases, or for comparing the stability of par-
ticular combinations of phases. This requires the prior
knowledge of a list of proposed phases or crystal struc-
tures at each set of thermodynamic parameters. In a
previous paper [1] we introduced a nested sampling (NS)
algorithm [2, 3] that enables the automated calculation
of complete pressure-temperature-composition phase di-
agrams. The nested sampling algorithm constitutes a
single method for resolving all phase transitions auto-
matically in the sense that no prior knowledge of the
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phases is required.

The algorithm in [1] used Gibbs sampling, i.e. single
particle Monte Carlo (SP-MC) moves, to explore config-
uration space. For some interactions, which we term sep-
arable, the energy change of an N -particle system due to
the displacement of a single particle can be calculated in
1/N times the cost of evaluating the energy of the whole
system. Thus, for separable interactions, the cost of a N -
particle sweep is equal to the cost of a single full-system
energy/force evaluation. For these cases Gibbs sampling
is efficient. However, interactions in general are not sep-
arable, and if a single-particle move is just as costly as a
full-system evaluation, a sweep that moves every particle
costs N times more than a single full-system energy/-
force calculation. All-particle MC moves can be used in
principle, but it is well known that making such moves
in random directions leads to very slow exploration in
condensed phases (liquids, solids), because maintaining
a finite MC acceptance rate requires that the displace-
ment of each atom becomes smaller as the system size
increases [4].

Here we replace Gibbs sampling by either one of two al-
gorithms that use efficient all-particle moves inspired by
the Hamiltonian Monte Carlo (HMC) method [5]. The
purpose of this paper is to show how these algorithms
can be utilized efficiently in the case of nested sampling.
One is a novel Total-Enthalpy HMC (TE-HMC), which
takes advantage of standard molecular dynamics (MD)
implemented in many simulation packages. The other
is Galilean Monte Carlo (GMC) [6, 7], which is not as
widely available, but does not suffer from the breakdown
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of ergodicity that the TE-HMC algorithm may experi-
ence for systems with a large number of particles. We
compare the efficiency of these two methods with that of
Gibbs sampling, and find that they require comparable
numbers of whole-system energy/force evaluations, lead-
ing to a factor of 1/N reduction in computational time
for general inter-particle interactions.

The GMC and TE-HMC algorithms use inter-particle
force information to move all particles coherently along
“soft” degrees of freedom, and therefore explore faster
than simple diffusion, at least over short time scales. Ef-
fectively, short trajectories are all-particle MC move pro-
posals with large step lengths that still lead to reasonable
MC acceptance probabilities. Over the time scale of an
entire Markov chain Monte Carlo (MCMC) walk, the mo-
tion is still diffusive, but the short time coherence helps
GMC and TE-HMC explore configuration space much
faster than randomly oriented all-particle moves. Using
GMC or TE-HMC enables the simulation of a wide range
of phase transitions in atomistic and particle systems
with NS, including chemical ordering in binary Lennard-
Jones (LJ), the eutectic of copper-gold alloys, freezing
of water, and the transitions of a coarse-grained bead-
spring polymer model. Parallel implementations of both
algorithms are available in the pymatnest python soft-
ware package [8], using the LAMMPS package [9] for the
dynamics.

II. THE NESTED SAMPLING METHOD

The nested sampling algorithm with constant pres-
sure and flexible boundary conditions (i.e. with variable
periodic cell shape and volume) calculates the cumula-

tive density of states, χ(H̃), at fixed pressure P , where

H̃ = U + PV is the configurational enthalpy, U(r) is
the potential energy function and V is the volume of
the system. From the cumulative density of states, one
can calculate the partition function and heat capacity as
explicit functions of temperature. Nested sampling also
returns a series of atomic configurations, from which one
may compute ensemble averages of observables and free
energy landscapes [1].

The key idea of nested sampling is that it constructs a

series of decreasing enthalpy levels {H̃sup
i }, each of which

bounds from above a volume of configuration space χi,
with the property that χi is approximately a constant
factor smaller than the volume χi−1 of the level above.
The constant pressure partition function, and its approx-
imation in nested sampling, are then given by

∆ (N,P, β) =
βP

N !

(
2πm

βh2

)3N/2 ∫ ∞

−∞
dH̃

∂χ

∂H̃
e−βH̃ (1)

≈ βP

N !

(
2πm

βh2

)3N/2∑

i

(χi−1 − χi) e−βH̃
sup
i .

(2)

Here N is the number of particles of mass m, h is Planck’s

constant and ∂χ/∂H̃ is the density of enthalpy states.
To calculate the absolute value of the partition func-

tion (2), we must possess the absolute values of the con-
figuration space volumes {χi}. The volumes {χi} are
specified in NS as a decreasing geometric progression,
starting from χ0, which is the total (finite) volume of the
configuration space. The configuration space must there-
fore be compact. In order to ensure that we are sampling
from a compact configuration space, the simulation cell
volume V is restricted to be less than a maximum value
V0, chosen to be sufficiently large as to correspond to an
almost ideal gas. The total configuration space volume is
therefore χ0 = V N+1

0 /(N + 1). Restricting the sampling
to V < V0 allows a good approximation of the partition
function provided kBT � PV0 [1].

The simulation cell is periodic, and is represented by h,
a 3×3 matrix of lattice vectors that relates the Cartesian
positions of the particles r to the fractional coordinates s
by r = hs. The volume of the simulation cell is V = deth
and h0 = hV −1/3 is the image of the unit cell normalized
to unit volume. The NS algorithm maintains a pool of
K configurations drawn from

Prob
(
s,h0, V |V0, H̃

sup, d0

)
∝ V Nδ (deth0 − 1)

×Θ
(
H̃sup − H̃

)
Θ (V0 − V )

×
3N∏

i=1

Θ(si)Θ(1− si) Θ

(
d0 −min

j 6=k

[
1

hj0 × hk0

])
,

(3)

where Θ is the Heaviside step function, hi0 are columns

of h0, and H̃sup is a maximum configurational enthalpy.
Thus, fractional particle coordinates s are uniformly dis-

tributed on (0, 1)3N , H̃ is restricted to be smaller than

H̃sup, and V is restricted to be smaller than V0. The last
term in equation (3) restricts the simulation cell from be-
coming too thin (controlled by the parameter d0), thus
avoiding unphysical correlations between interacting pe-
riodic images [1]. For simple fluids of 64 atoms, d0 should
be set no smaller than 0.65, while simulations with larger
numbers of atoms can tolerate smaller values of d0 [1]
(see appendix E). The probability distribution (3) cor-
responds to a uniform distribution over the Cartesian
particle coordinates r, subject to the constraints above.

The simulation is initialized by drawing K configura-

tions from distribution (3), with H̃sup = ∞. After ini-
tialization, the NS algorithm performs the following loop,
starting with i = 1.

1. From the set ofK configurations, record theKr ≥ 1
samples with the highest configurational enthalpy,

{H̃}i. Use the lowest enthalpy from that set,

min{H̃}i, as the new enthalpy limit: H̃sup ←
min{H̃}i. The volume of configuration space with

enthalpy equal to or less than H̃sup is χi ≈ χ0[(K−
Kr + 1)/(K + 1)]i.
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2. Remove the Kr samples with enthalpies {H̃}i from
the pool of samples and generate Kr new config-
urations from the distribution (3), using the up-

dated value of H̃sup. This is achieved by first choos-
ing Kr random configurations from the pool of re-
maining samples, creating clones of those configura-
tions, and evolving the cloned configurations using
a MCMC algorithm that converges to the distribu-
tion (3).

3. Set i← i+1, and return to step 1 unless a stopping
criterion is met (see appendix A).

The required values of K and the MCMC walk-length,
L, depend on the system being studied. This behavior is
described in references [1–3, 10]. In addition, increasing
Kr allows for greater parallelization of the NS algorithm,
however, increasing Kr−1

K also leads to greater error in
the estimates of {χi}, so care should be taken not to
make Kr−1

K too large (see Appendix B).

Thermodynamic expectation values and free energy
landscapes can be computed using the samples recorded
during step 1 of the NS algorithm [1]. Representative
configurations can be sampled at any temperature sim-
ply by choosing configurations at random, according to
their thermalized probabilities

pi (β) =
(χi−1 − χi) e−βH̃i

∑
i (χi−1 − χi) e−βH̃i

. (4)

Examining a small number of configurations chosen in
this way is often sufficient to understand which phase
occurs at each temperature. This method was used to
choose the atomic configurations shown in section IV.

III. MARKOV CHAIN MONTE CARLO
ALGORITHMS

To decorrelate the cloned configurations in step 2 of the
NS algorithm we use a MCMC algorithm that converges
to the distribution (3) by applying two kinds of steps:
cell steps, including changes to volume and shape, and
particle steps, including continuous motion in space and
(for multicomponent systems) coordinate swaps between
particles of different types.

The cell steps include volume steps that
ensure Prob(V ) ∝ V N , and shearing and
stretching steps that lead to Prob(h0) ∝
δ (deth0 − 1) Θ

(
d0 −mini6=j

[
1

hi
0×h

j
0

])
, as required

by the target distribution [1]. The following subsections
introduce the algorithms for moving the configuration in
the space of the atomic coordinates.

A. Galilean Monte Carlo

In GMC [6, 7] one defines an infinite square-well po-

tential function H̃GMC:

H̃GMC (s, V,h0) =

{
0 : H̃ < H̃sup,

∞ : H̃ ≥ H̃sup,
(5)

which is equal to the logarithm of the desired probability

distribution: uniform over the allowed region, H̃ < H̃sup,
and zero elsewhere. Note that we have omitted the con-
straints on V and h0 from (5) since we use GMC to
explore only the atomic coordinates. Having defined

H̃GMC, one samples the fractional atomic coordinates
s uniformly by performing standard Hamiltonian Monte

Carlo sampling [5] on the function H̃GMC. We follow the
GMC approach proposed by Betancourt [7], which uses a
fixed number of force evaluations and therefore helps the
load balance when parallelizing the algorithm (see ap-
pendix B). Our implementation, expressed for practical
convenience of implementation in Cartesian coordinates
r rather than fractional coordinates s, is as follows.

At the start of each atomic GMC trajectory, save the
initial atomic coordinates r0. Generate a velocity v cho-
sen uniformly from the surface of a 3N -dimensional hy-
persphere of radius 1. Repeat the following loop L times:

1. Propagate the atomic coordinates r in the direc-
tion of v for one step of length dt. The atomic
coordinates are now r∗.

2. If H̃ ≥ H̃sup, attempt to redirect the trajectory
back into the allowed region by reflecting velocities
from the current position, by v ← v − 2(v · n̂)n̂,

where n̂ = −∇rH̃/|∇rH̃|. Following velocity re-
flection, propagation continues from r∗.

Finally, if at the end of the trajectory H̃ ≥ H̃sup, reject
the trajectory and return to the initial atomic coordi-
nates r0. Note that the reflection in step 2 does not occur

at the exact boundary H̃ = H̃sup, and this is essential
to maintain detailed balance. The acceptance rate of the
GMC step is controlled by adjusting dt. There are sim-
ilarities between GMC and the “hit and run” algorithm
for sampling convex volumes [11], and it remains to be
seen whether the clear advantages over Gibbs sampling
have common underlying reasons [12].

B. Total enthalpy Hamiltonian Monte Carlo

One disadvantage of GMC is that when the boundary

of the allowed region of configuration space H̃ < H̃sup

is complicated, attempts to reflect the sampler back into
the allowed region fail frequently, and reflection further
into the disallowed region often leads to rejection of the
entire trajectory, thus overall driving down the optimal
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step size. Hamiltonian (constant energy) molecular dy-
namics, on the other hand, can generate nearly constant
total energy trajectories using comparatively large step
sizes, and use the exchange of energy between poten-
tial and kinetic degrees of freedom to smooth the “reflec-
tions” from high potential energy regions. In TE-HMC
we take advantage of this behavior by using short MD
trajectories to evolve the atomic coordinates.

Hamiltonian dynamics couples the evolution of the
atomic momenta and coordinates, and in TE-HMC we
explicitly sample the total phase space of the atoms
(s, V,h0,p), where p denotes the Cartesian momenta.
In contrast, in SP-MC and GMC one samples only the
atomic configuration space (s, V,h0).

In step 1 of each NS iteration the Kr samples with

highest total enthalpy H = (H̃ + Ek), where Ek(p)
is the kinetic energy, are identified as the next set of
recorded samples. Next, the total enthalpy limit is up-
dated Hsup ← min{H}i, and in step 2 Kr new samples
are generated from the joint probability distribution

Prob
(
s,h0, V,p|V0, H

sup, d0, E
0
k

)
∝ V Nδ (deth0 − 1)

×Θ (Hsup −H) Θ (V0 − V ) Θ
(
E0
k − Ek (p)

)

×
3N∏

i=1

Θ(si)Θ(1− si)Θ

(
d0 −min

j 6=k

[
1

hj0 × hk0

])
.

(6)
Distribution (6) invokes the same constraints on V , h0

as distribution (3), but restricts H < Hsup and specifies
that the momenta are uniformly distributed in the region

Ek(p) < E0
k. (7)

Using both maximum volume and kinetic energy values
V0 and E0

k ensures that the phase space we sample is com-
pact, the necessity of which is explained in section II. In
particular, V0 and E0

k enforce compactness of the sam-
pled configuration and momentum spaces respectively.

We initialize exactly as described in Sec. II, except that
we now assign each sample momenta chosen uniformly at
random from the region (7). This is achieved using algo-
rithm 2 given in appendix C. We choose E0

k = 3
2PV0 as

for an ideal gas, so that, again, we obtain a good approx-
imation of the partition function provided kBT � PV0.
Probability distribution (6) corresponds to a uniform dis-
tribution over the phase space coordinates of the system
(s,p), subject to the above constraints. (Recall that,
in contrast, probability distribution (3) in Sec. II corre-
sponds to a uniform distribution over the particle coor-
dinates s alone, subject to similar constraints).

Since in TE-HMC we explicitly sample both coordi-
nates and momenta, the nested sampling approximation
to the partition function becomes

∆ (N,P, β) ≈ βP

N !h3N

∑

i

(Γi−1 − Γi) e
−βHi , (8)

where Hi is the total enthalpy of the ith nested sampling
level, and Γi is volume of phase space with total enthalpy
less than or equal to Hi at pressure P .

In order to ensure the sampler spends approximately
an equal amount of computer time exploring each degree
of freedom, we set all the masses to be equal: mi =
m ∀ i. We then recover the correct partition function (8)
by multiplication

∆ (N,P, β) ≈

(
N∏

i=1

mi

m

) 3
2

∆NS (N,P, β) , (9)

where ∆NS is equal to the right hand side of (8), cal-
culated with equal particle masses. For equal parti-
cle masses, we find Γ0 in equation (8) to be given by

Γ0 =
V N+1

0

N+1

2(2πmE0
k)

3N
2

3NΓ( 3N
2 )

, where Γ
(

3N
2

)
is the gamma

function evaluated at 3N
2 .

In TE-HMC, the atomic coordinates r and momenta
p are evolved according to the following Hamiltonian
Monte Carlo sequence. The move begins with the ini-
tial Cartesian phase space coordinates (r(0),p(0)), which
are in the allowed region, H < Hsup.

1. Randomize the momenta, either partially or com-
pletely, to pick new momenta satisfying Ek(p) <

min[E0
k, H

sup − H̃], as in Eq. (6). This momen-
tum randomization takes us to the coordinates
(r(0),p(1)).

2. Starting from (r(0),p(1)), integrate Newton’s equa-
tions of motion for the coordinates (r,p) over a
fixed number of time steps. At the end of this tra-
jectory the phase space coordinates are (r(1),p(2)).

3. Reverse the momenta p(3) = −p(2); the trajec-
tory and this reversal taken together, (r(0),p(1))→
(r(1),p(3)), are a reversible MC proposal, which en-
sures that the move satisfies detailed balance.

4. Calculate the new total enthalpy Htrial =
H(r(1), V,h0,p

(3)). If Htrial < Hsup and
Ek(p(3)) < E0

k then accept the new coordinates

(r(1),p(3)), otherwise return to the starting coordi-
nates (r(0),p(0)). The coordinates are now (r∗,p∗).

5. Reverse the momenta again. The final, resulting
coordinates are (r∗,−p∗).

A great advantage of the TE-HMC algorithm is that
numerical integration of Newton’s equations of motion
approximately conserves the total enthalpy along the tra-
jectory such that the value only fluctuates by a small
amount. Consequently, the trial coordinates (r(1),p(3))
nearly always satisfy Htrial < Hsup. Thus if partial mo-
mentum randomization is used, better preserving the di-
rection of motion of the particles, one obtains excellent
continuation between successive short TE-HMC trajec-
tories. Pseudocode for the TE-HMC move introduced
above is given in appendix C. In particular, Alg. 3 in-
troduces the parameter γ, which controls the extent to
which the direction of motion of the particles is random-
ized when using partial momentum randomization.
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IV. RESULTS

A. Parameters and implementation

Here we present tests of the performance of the con-
stant pressure NS sampling method with the differ-
ent particle motion algorithms. The single-particle MC
moves (SP-MC) are grouped into sweeps over the sys-
tem moving each particle in random order. When the
potential is separable, for example the LJ model in the
examples below, the cost of an entire N -particle sweep
is equal to a single full-system energy/force evaluation.
When discussing walk lengths below we therefore con-
sider an N -particle sweep equivalent to a single energy/-
force evaluation in other moves (GMC or TE-HMC for
particle positions, as well as cell moves). For interactions
of more general form that are not separable, the sweep
would be N times slower than an energy/force evalua-
tion.

Step sizes for all types of MCMC moves are automat-
ically adjusted during the NS iteration process using pi-
lot walks (which are not included in the NS configura-
tion evolution) so as to reach acceptance rates of 0.5-0.95
for TE-HMC MD trajectories, and 0.25-0.75 for all other
moves (cell steps, single particle SP-MC steps, GMC tra-
jectories). The essential NS parameters for all systems
presented here are listed in Table I, and input files are
provided in the supplemental materials (SM) [13]. Each
particle step consisted of 8 N -particle energy/force evalu-
ations: 8 all-particle sweeps for SP-MC, or a single 8 step
trajectory for GMC and TE-HMC. For multicomponent
systems 8 swap steps were done in addition [1]. For TE-
HMC partial randomization of the velocity direction was
done as in Alg. 3 with γ = 0.3, except for the polymer
system which used γ = 0.1.

B. Efficiency of the SP-MC, GMC, and TE-HMC
algorithms

As a basic test of the effectiveness of the three atomic
motion algorithms, SP-MC, GMC, and TE-HMC, we ap-
ply the NS method to a periodic Lennard-Jones system
with interactions truncated and shifted to zero at a cutoff
distance of 3 σ (see appendix D 1). We choose a pressure
above the triple point but below the critical point, where
this system has two phase transitions: condensation from
the gas to the liquid, and freezing from the liquid to
the crystalline solid. Fig. 1 compares the performance of
the SP-MC, GMC and TE-HMC algorithms for resolving
the heat capacity peaks associated with these transitions.
The cost of each GMC timestep is similar to that in TE-
HMC, and from Fig. 1 we see that the convergence of
all three methods are similar for the condensation tran-
sition. However, TE-HMC is significantly more efficient
than GMC for accurately resolving the freezing transi-
tion.

From Fig. 1 we can see that, for equivalent accuracy,

the number of all-particle sweeps required by the SP-
MC algorithm is similar to the number of timesteps re-
quired by the TE-HMC and GMC algorithms. For sep-
arable potentials such as LJ, an all-particle sweep takes
roughly the same time as the full energy/force evalua-
tion used in a timestep of GMC or TE-HMC. Therefore,
for a non-separable potential, GMC and TE-HMC are
N -times faster than the SP-MC algorithm.

The transition temperatures for the shorter, undercon-
verged walks are systematically lower than the fully con-
verged value. This underestimation is unsurprising: if
too few steps are taken at each iteration, then the sam-
pler requires more iterations to find the low tempera-
ture phase. Since subsequent NS iterations correspond
to lower entropies and lower temperatures, finding the
structure at a later iteration corresponds to an underesti-
mated transition temperature. The RMS scatter in peak
positions shown in Fig. 1 does not go to zero for any of
the methods, even with the longest walks used (L = 2560
energy/force evaluations): for infinite walk lengths, the
accuracy is limited by the number of walkers, K, and the
number removed at each iteration, Kr.

C. Example applications

In this section we demonstrate the utility of NS by
applying it to study four diverse systems: the order-
disorder transition of a binary LJ alloy, the eutectic of
a copper-gold alloy, the density anomaly of water which
forms open crystal structures, and the phase behavior
of a bead-spring polymer model. In all four cases we
use TE-HMC to explore the position degrees of freedom
since it is most efficient for this range of system sizes,
as discussed below in Sec. IV D. All simulations with
the exception of the binary LJ were carried out with the
LAMMPS package [9].

1. Order disorder transition

In addition to the condensation, freezing, and marten-
sitic transitions that have previously been simulated us-
ing NS [1], multicomponent solids also show transitions
related to chemical ordering. Here we use NS to simu-
late the order-disorder transition of a model binary LJ
alloy. The potential energy function used, which favors
the mixing of atoms, is given in appendix D 2.

Fig. 2 shows the heat capacity curve of this system.
The condensation, freezing and order-disorder transitions
can be seen as three separate peaks. Chemical order-
ing of the alloy can be observed in Figs. 3 and 4 which
respectively show ensemble averaged radial distribution
functions (RDFs) and typical configurations of the alloy
at temperatures corresponding to the ordered and disor-
dered solids, as well as the liquid. Both the RDFs (Fig. 3)
and the representative atomic configurations (Fig. 4)
show that that at T = 0.95, the system is a liquid, while



6

TABLE I. Parameters for NS runs: pressure P , number of particles N , number of configurations K, number of configurations
removed per iteration Kr, walk length (all-particle energy/force calls) L, step ratios (particle : cell volume : cell shear : cell
stretch [: swap]), minimum temperature Tmin, and number of NS iterations niter. Each particle step consisted of 8 N -particle
energy/force evaluations: 8 all-particle sweeps for SP-MC, or a single 8 step trajectory for GMC and TE-HMC.

P N K Kr L step ratios Tmin niter/106

mono LJ walk length 3.162× 10−2 ε/σ3 64 2304 1 80-2560 1:16:8:8 0.43 ε 2

binary LJ order-disorder 3.162× 10−2 ε/σ3 64 4608 2 1536 1:16:8:8:8 0.043 ε 3

Cu, Au 0.1 GPa 64 2304 1 768 1:16:8:8:8 600 K 2

CuxAu1−x x = [0.25, 0.5, 0.75] ” ” 4608 2 ” ” ” ”

mW water 1.6 MPa 64 1920 1 3168 6:16:8:8 150 K 2

single chain polymer const. V 15 2304 1 5120 - 0.01 ε 1

multichain polymer cluster const. V 8× 15 4608 1 5120 - 0.3 ε 8

multichain polymer 2.3× 10−3 ε/σ3 8× 15 4608 1 5120 2:8:8:8 1.2 ε 3

at T = 0.34 the system is a chemically-disordered close-
packed crystal, and at T = 0.17 the crystal is chemically
ordered.

2. Copper-gold eutectic

A eutectic, where the melting point of a multicompo-
nent alloy is reduced at intermediate compositions due to
entropic effects, is an important example of the interplay
between energy and entropy affecting a phase transition.
We used NS to compute the heat capacity of CuxAu1−x
at a pressure of 0.1 GPa with interactions described by a
simple Finnis-Sinclair type embedded atom model (FS-
EAM) inter-particle potential [14–16] (see appendix D 3).
In Fig. 5 we show the heat capacity Cp(T ) for a number
of composition values x at a temperature range near the
melting point, and in Fig. 6 we compare the resulting
computed melting points to experimental results from
Ref. [17].

We find that the FS-EAM potential gives a melting
temperature Tm ≈ 1300 K for pure Cu and Tm ≈ 1240 K
for pure Au. The computed melting temperature is lower
at all intermediate compositions, with a minimum value
in the range 1175-1190 K between 25% and 50% Cu; the
computed melting temperatures at these two composi-
tions are equal to within the error bars of the calcula-
tion. While this FS-EAM potential underestimates the
experimental melting points of the two endpoints, more
severely so for Au (by 8%), nested sampling shows that
it reproduces the qualitative features of a eutectic.

3. Density anomaly of water

The mW potential [18] is a coarse-grained model of
water, designed to mimic its hydrogen bonded structure
through a non-bonding angular term, which biases the
model towards tetrahedral coordination. Despite only
having short range interactions and a single particle rep-
resenting a water molecule, it reproduces the energetics,

anomalies, liquid and hexagonal ice structure of water
remarkably well. In order to demonstrate that NS is
capable of finding not just close-packed but also open
structures, we simulated water using the mW potential.
The computed heat capacity and density curves from
four calculations are shown in Fig. 7. As expected, the
particles were observed to form a hexagonal ice struc-
ture, also shown in Fig. 7. By averaging the results
from these calculations, we calculated the freezing tem-
perature to be 274.3 ± 1.0 K, the density of ice to be
0.9792 ± 0.0005 g/cm

3
, and the density of the liquid at

298 K to be 0.9966 ± 0.0004 g/cm
3
. All these results

are in excellent agreement with values previously calcu-
lated for the mW water model: 274.6 K, 0.978 g/cm

3
and

0.997 g/cm
3
, respectively [18, 19]. We found the maxi-

mum density of water to be 0.9992 ± 0.0002 g/cm
3

at a
temperature 8.1± 0.3 K above the freezing temperature.

4. Molecular solids

Molecular materials are another system where nested
sampling can be used to efficiently sample the configu-
ration space. Both single-molecule systems and multi-
molecule systems, such as aggregating proteins or poly-
mer melts, are of interest. In previous studies Wang-
Landau sampling was used to map the phase behavior of
single polymer chains with different lengths [20, 21] and
bending stiffnesses [22, 23]. Here we present results for
a bead-spring polymer model (see appendix D 4) with a
harmonic bond and cosine angle potential parameterized
by stiffnesses kb and ka, respectively, and a non-bonded
LJ interaction with energy ε. This model has been used
to study crystallization in polymers [24], and is similar to
the model used in a previous Wang-Landau study [20].

Fig. 8 shows heat capacity curves calculated for
three different systems: (i) a single, fully flexible
(ka = 0) bead-spring polymer chain of 15 beads in
a constant-volume periodic box with monomer density

2.5 × 10−5σ−3 ≈
(

1
40σ

)3
; (ii) 8 fully flexible 15-bead
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FIG. 1. Heat Capacity curves Cp(T ), peak positions, and
peak scatter calculated using NS for 64 LJ particles at pres-
sure Pσ3/ε = 3.162× 10−2. Panel (a): Example Cp(T ) curve
for 10 independent runs with SP-MC moves and L = 1280
energy evaluations. Panels (b) – (e): Convergence of the con-
densation ((b), (c)) and freezing ((d), (e)) transition peak
temperatures as a function of walk length. For each transi-
tion, the upper panel ((b), (d)) shows the mean peak position
(error bars indicate ± one standard deviation from 10 inde-
pendent runs), and the lower panel ((c), (e)) shows the root
mean squared scatter in transition temperature values.
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FIG. 2. Heat capacity as a function of temperature for a
LJ binary alloy at equal composition for five independent NS
runs. The three peaks correspond to condensation, freezing,
and chemical ordering, from high T to low T .
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FIG. 3. Ensemble averaged radial distribution functions from
NS phase diagram of binary LJ at equal composition. Panel
(a) is above the melting point, (b) is between the freezing
and chemical ordering transitions, and (c) is below the chem-
ical ordering transition. Liquid (a) shows a low first neighbor
peak and minimal other structure. Disordered solid (b) shows
distinct peaks and some chemical ordering at first neighbors
only. Ordered solid (c) shows stronger chemical ordering, at
least out to third neighbors. These RDFs were calculated
using a weighted sum of the RDFs of all configurations out-
put by NS. The RDF for each configuration was weighted by
its Boltzmann weight (Γi−1 − Γi) e

−βHi , as in the partition
function Eq. (8).

chains in a constant-volume periodic box with monomer

density 2 × 10−3σ−3 ≈
(

1
8σ

)3
; (iii) 8 15-bead chains

with angle stiffness ka = 10ε at fixed pressure P =
2.3 × 10−3ε/σ3, and flexible periodic boundary condi-
tions. The low monomer densities of the constant-volume
systems do not allow for a single chain to interact with
itself through the periodic boundary at the temperatures
of interest. Snapshots of configurations for each system
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FIG. 4. Visualizations of typical configurations for the liquid
phase (T = 0.95, (a)), chemically disordered solid (T = 0.34,
(b)), and chemically ordered solid (T = 0.17, (c)).

type are also shown, illustrating the observed phase tran-
sitions.

The single chain shows a broad transition below T =
0.5 ε, from an extended state to a collapsed, ordered
state, in agreement with previous results [20]. For short,
unentangled polymer chains nested sampling leads to
slightly lower relative error in the peak height when com-
pared to previous results at approximately half the com-
putational cost [20, 23]. The constant-volume multichain
system has two transitions: first, chain aggregation oc-
curs at T = 1.4 ε, and second, at T = 0.4 ε the monomers
order, forming a solid cluster with high-symmetry. This
is reminiscent of the N = 100 single-chain transition ob-
served previously [20]. The multichain periodic system
has two transitions, the first at T = 2.05 ε from a polymer
gas to a melt, and the second at T = 1.45 ε from a melt
to a crystalline solid, in agreement with MD simulations
of polymer crystal nucleation [24].

D. System size dependence of enthalpy distribution

As mentioned in Sec. III A, nested sampling using
GMC creates a series of probability distributions (3) that
correspond to uniform distributions in the Cartesian par-

ticle coordinates, r, such that H̃(r) < H̃sup. In this case

Prob(H̃) is proportional to the density of states for H̃,
which is strictly unimodal. In contrast, TE-HMC works
by performing nested sampling in total phase space, and
samples from a series of probability distributions (6) that
correspond to uniform distributions in the phase space
coordinates (r,p), with H(r,p) < Hsup. In TE-HMC,
the marginal distribution for r is not a uniform distribu-
tion, and for larger system sizes a bimodality is observed

in the probability distribution for H̃ at phase transitions.

Fig. 9 compares the observed probability distributions

for H̃ in the region of the freezing transition (for the
same pressure as the system presented in Sec. IV B) with
the TE-HMC and GMC algorithms, for simulations of 64
particles (as used in the earlier subsection) and also for

256 particles. Using TE-HMC for 64 particles Prob(H̃) is
unimodal and broadens slightly at the freezing transition,
but never becomes bimodal. For the larger 256 particle
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FIG. 5. Heat capacity as a function of temperature Cp(T ) of
CuxAu1−x for a range of compositions, from pure Au x = 0
(panel (a)) to pure Cu x = 1 (panel (e)) in 25% intervals,
showing variation of melting point peak. Each curve corre-
sponds to an independent NS calculation.
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FIG. 6. Melting point as a function of composition in binary
FS-EAM CuxAu1−x [14–16], calculated using the TE-HMC
NS algorithm. Experimental values taken from [17]. Eutectic
suppression of the melting point is observed at intermediate
compositions.
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FIG. 7. Heat capacity Cp (in arb. units) and density curves
for 64 mW water particles at a pressure of 1.6 MPa, calculated
using the TE-HMC NS algorithm. The inset shows a visual-
ization of the hexagonal ice structure found by NS. Dashed
lines in the inset represent the hydrogen-bond network.

system, Prob(H̃) becomes bimodal, which can be clearly
seen in the middle curve (yellow).

In order to obtain an accurate estimate of the inte-
grated density of states, Γ(H), TE-HMC must draw a
sample from the uniform distribution in (r,p), Eq. (6),
at each iteration. NS approaches each transition from

above, and if Prob(H̃) is bimodal, initially all K config-

urations will be in the mode at higher H̃. To draw a

proper sample from Prob(H̃) at the phase transition, the
MCMC walk must be long enough that the configuration
can feasibly pass back and forth between the two modes,

traversing the intermediate range of H̃, several times. For

larger N , as Prob(H̃) gets smaller in the region between
the modes, transitions between the two modes will be-
come less frequent and much longer MCMC trajectories
will be required at iterations close to the phase transition.

We observed in Sec. IV B that, for simulations of 64
particles, TE-HMC is significantly more efficient than
GMC for accurately resolving the freezing transition.

However, as a result of the bimodality in Prob(H̃), GMC
may become more efficient than TE-HMC for larger sys-
tem sizes. In the future, it would be desirable to develop
algorithms which, like TE-HMC, use atomic forces at ev-
ery step to expedite configuration space exploration, yet

avoid this bimodality in Prob(H̃) at larger system sizes.

V. CONCLUSIONS

In this paper we have proposed efficient all-particle
moves using inter-particle forces and dynamics for con-
stant pressure nested sampling. The TE-HMC, GMC
and SP-MC algorithms reach the same accuracy using
approximately the same number of full system energy

(a) 

(b)

(c)

FIG. 8. Heat capacity per coarse-grained bead Cp/N or Cv/N
curves for a single bead-spring polymer chain of 15 beads

with monomer density 2.5 × 10−5σ−3 ≈
(

1
40σ

)3
(panel (a)),

8 15-bead chains in a periodic box with monomer density

2 × 10−3σ−3 ≈
(

1
8σ

)3
(panel (b)), and 8 15-bead chains in a

periodic box with cell moves and P = 2.3× 10−3ε/σ3 (panel
(c)). Both constant-volume systems use fully flexible (ka =
0) models, while the constant pressure system (bottom) has
ka = 10ε. Snapshots show example polymer conformations
corresponding to the different phases.

evaluations (TE-HMC and GMC) or full SP-MC sweeps.
For separable potentials, where a single particle move can
be computed in 1/N the cost of a full system energy eval-
uation, this makes the three methods equally efficient;
for non-separable potentials, where such efficient single
atom moves are not possible, the TE-HMC and GMC
algorithms are N times faster.

The TE-HMC algorithm uses constant energy molec-
ular dynamics, implemented in many software packages,
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FIG. 9. Distribution of configurational enthalpy (excluding
kinetic energy contribution for TE-HMC) for a 64 atom sys-
tem (left column (a), (c)) and 256 atom system (right column
(b), (d)) of monatomic LJ, for a range of NS iterations that
spans the highest weight configurations for the freezing tran-
sition at T ∼ 0.65 ε. Top row ((a), (b)) shows GMC results
and bottom row ((c), (d)) shows TE-HMC. Colors indicat-
ing iteration, from earliest (highest energy) to latest (lowest
energy) are red, yellow, and blue.

but requires extending the NS method to sample posi-
tions and momenta, and leads to increasingly bimodal
configurational enthalpy distributions as the system size
increases. This bimodality is likely to make equilibra-
tion and sampling difficult for sufficiently large systems,
although this has not been a practical problem for the
64-120 particle systems we have considered here. The
GMC algorithm, although somewhat less efficient in this
size range, maintains the unimodal configurational en-
thalpy distribution of the previous Gibbs-sampling-based
approach, and is therefore not expected to suffer from a
breakdown in ergodicity for larger systems.

We have implemented the constant pressure NS
method using these algorithms in the pymatnest soft-
ware [8], that includes a parallel algorithm and a link to
the LAMMPS package which itself has many inter-particle
potentials available. Using this implementation we have
shown that the constant pressure NS method with these
algorithms can be used to simulate a wide range of sys-
tems with different interaction potentials and types of
phase transitions: order-disorder transitions in binary
LJ, eutectic composition dependence of the melting point
in Cu-Au, freezing of water which has a density anomaly
and an open crystal structure, and condensation and so-
lidification of a bead-spring polymer model.
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Appendix A: NS stopping criteria: temperature
estimates

The simplest criteria for stopping the NS iteration are
to use a fixed number of iterations (i.e. fixed reduction in
entropy) or a fixed potential energy minimum (e.g. close
to the ground state). A more physically appealing crite-
rion takes advantage of the approximate correspondence
between the downward scan in enthalpy and decreasing
temperature. The estimate we use to terminate the out-
ermost NS iteration loop is based on the expressions for
thermodynamic quantities, such as the partition function
(or enthalpy or heat capacity, which are its derivatives).
We find that the range of iterations that contribute with
significant weight to the ensemble average at each tem-
perature is sharply peaked. When the contribution of
the current iteration to the partition function at a spec-
ified temperature Tmin is a factor of e10 lower than the
maximum contribution of any previous iteration, we as-
sume that no later iteration will contribute significantly,
and therefore consider the calculation to be converged
for all T ≥ Tmin. We use this stopping criterion in all
simulations reported here. Note that a monotonic rela-
tionship between iteration and temperature is not always
satisfied; near phase transitions the dependence is more
complicated, and setting Tmin too near a phase transition
will lead to unpredictable behavior.

The convergence criterion described above is efficient
enough to evaluate at each iteration for a single choice
of Tmin, but too computationally expensive to use as an
estimate of the “current temperature” during NS itera-
tions, because it would need to be evaluated for many
values of T to find the lowest. We therefore use an in-
dependent estimate of the temperature to monitor the
progress of the NS iterations. This estimate is based on

the rate of decrease of H̃sup (or Hsup) as a function of
iteration number. The iteration number i is linearly re-
lated to the logarithm of configuration space volume (i.e.
microcanonical entropy S), and that rate of decrease is

therefore related to ∂H̃/∂S. The current temperature
during the NS simulation can be estimated from the fi-
nite difference expression

T ≈

(
kB

D logα

H̃sup(i−D)− H̃sup(i)

)−1

(A1)

where D is an interval over which the finite difference
is taken (1000 iterations here), and kB is Boltzmann’s
constant. We use this expression to monitor the progress
of the NS iterations, but not to terminate.
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Appendix B: Parallelization

The pymatnest software [8], in which these algorithms
are implemented, combines two separate forms of par-
allelization which were previously reported separately.
In [1], during step 2 of the NS algorithm, rather than
decorrellating a single cloned configuration alone using
a MCMC walk comprising L energy evaluations, the au-
thors evolve np configurations (including the cloned con-
figuration) in parallel using np processes through L/np
MC moves each. Each configuration is evolved for an
average of np iterations before being recorded and re-
moved. Thus the user specifies the average number of
energy evaluations used to decorrellate a cloned configu-
ration from its starting coordinates. In [25, 26], on the
other hand, the authors evolve each cloned configuration
for exactly L steps, but they parallelize over np processes
by removing Kr = np > 1 configurations at each NS iter-
ation, resulting in Kr cloned configurations that can be
walked in parallel.

In pymatnest, we combine the two formulations by
allowing for Kr > 1 and evolving the Kr cloned con-
figuration in parallel, but also for the number of paral-
lel tasks np > Kr, reducing the walk length required at
each iteration. To optimize load balance, each of the Kr

cloned configurations that must be evolved is assigned
to a different parallel task, and all remaining parallel
tasks (which would otherwise be idle if np > Kr) walk
Ke = np−Kr additional randomly chosen configurations.

From the probabilities for a configuration to be re-
moved or walked at each NS iteration it is possible to
calculate the distribution of the number of walks each
configuration has experienced, and from that the mean
number of times a configuration will be walked before
it is removed 〈nwalks〉. The general expression for the
length of the walk that must be done at each iteration to
achieve an expected total walk length 〈L〉, for arbitrary
K, Kr, and Ke is

L′ = 〈L〉/〈nwalks〉 = 〈L〉 Kr

Kr +Ke
= 〈L〉Kr

np
. (B1)

For each MCMC walk in pymatnest, different move
types are randomly chosen from the list of possible moves
with predetermined ratios until at least L′ energy evalu-
ations have been performed.

To maintain load balance the shortest walk must be
a few times longer than the longest possible single step,
for example, a single SP-MC sweep or an MD/GMC tra-
jectory. Therefore the maximum parallelization, np, that
can be achieved depends only on the total walk length,
L, and number of configurations removed at each itera-
tion, Kr, and not on the number of configurations, K.
For typical runs we show here, Kr = 1, L ≈ 500− 1000,
and the length of each MD trajectory is 8. To keep rea-
sonable parallel efficiency we find that L′ must be larger
than about 20, so the maximum np ≈ 25− 50.

1. Qualitative behavior of parallelized NS

The computational cost and accuracy of NS depend on
these parameters in a complex way. The total computa-
tional work is proportional to K and 〈L〉, and is inde-
pendent of Kr and np. If K is increased at fixed Kr, the
fraction of configuration space that remains after each
iteration α = (K + 1 − Kr)/(K + 1) comes closer to
1.0, and the number of NS iterations required increases
approximately linearly with K. If instead K and Kr

are increased proportionately, α and therefore the num-
ber of iterations remain roughly constant, but the work
at each iteration (to walk Kr cloned configurations) in-
creases proportionately. It is not clear a priori how the
necessary value of 〈L〉 changes with K: there is some ev-
idence that once K is large enough, increasing it further
reduces the distance each cloned configuration must be
walked to decorrelate it sufficiently, but this relationship
requires further investigation.

The accuracy of the configuration space volume es-
timates computed by NS also depends on K and Kr.
The value of α determines the resolution in configura-
tion space volume, but larger values of K (at constant
α) reduce the noise in the estimate (for the same reason
that the 500th sample out of 999 is a less noisy estima-
tor of the median than the 2nd sample out of 3). The
value of 〈L〉 also affects the error, because insufficiently
walked configurations have a correlation to the configu-
ration they were cloned from, which leads to a deviation
from the uniform distribution.

Since the useful parallelism is limited by the minimum
value of L′, which is clearly independent of K, only in-
creasing 〈L〉 or Kr can increase it. The former is useful
only up to the point where the configurations are suffi-
ciently decorrelated, as our convergence plots in Sec. IV B
show. Increasing the latter at constant K decreases the
resolution in configuration space volume (by decreasing
α), and therefore leads to increased error. Increasing Kr

while also increasing K proportionately maintains the
resolution and actually reduces the noise in the config-
uration space volumes, but also increases the computa-
tional work, but not necessarily the time to solution if np
can also be increased proportionately.

2. Quantitative behavior of parallelized NS

In this section we limit the discussion to the original
constant pressure, flexible periodic boundary conditions
nested sampling algorithm as implemented by SP-MC
and GMC. The same discussion can be extended exactly

to TE-HMC by a change of symbols: H for H̃ and Γ for
χ (see Sec. III), so long as one takes care not to confuse
the phase space volume Γ and the gamma function in
Sec. B 2 a. In the next two subsections we separately
discuss the effect of the two approaches to parallelization:
first varyingKr while assuming our MCMC draws perfect
samples from the probability distribution (3) (or (6));
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second varying Ke at fixed 〈L〉 and Kr.

a. Kr > 1 and Ke = 0

In this subsection, we assume that our MCMC walk
yields perfect samples from the distribution (3) (or (6)).

In step 1 of the NS algorithm (see sec. II) H̃sup is updated
to the lowest of the Kr highest enthalpies in our sample
set, and the configuration space volume contained by the

updated H̃sup is χi ≈ χ0[(K −Kr + 1)/(K + 1)]i, where
i is the NS iteration number. For Kr > 1 it is also possi-
ble to give analytic estimates of the configuration space
volumes contained by the Kr − 1 higher enthalpy values

between H̃sup
i−1 and H̃sup

i [26]. Thus one may consider the
configurational entropy contained at fractional numbers
of NS enthalpy levels.

After a number of enthalpy levels

n∆ =

(
K∑

i=K−Kr+1

1

i

)−1

(B2)

the expectation of the logarithm of the configuration

space enclosed by H̃ decreases by 1:

〈logχi − logχi+n∆
〉 = −1. (B3)

If we assume that it is possible to draw perfect random
samples from (3) (or (6)), then it can be shown that, after
the same number of enthalpy levels n∆, the variance of
∆ logχ = logχi − logχi+n∆

is given by

Var(∆ logχ) =
d(K−Kr+1)Γ(z)

dz(K−Kr+1)

∣∣∣∣∣
z=1

− d(K+1)Γ(z)

dz(K+1)

∣∣∣∣∣
z=1
(B4)

where Γ(z) is the gamma function. The standard devia-

tion, [Var(∆ logχ)]
1
2 , represents the rate at which uncer-

tainty in logχ accumulates during a nested sampling cal-
culation. For a serial calculation (Kr = 1 and Ke = 0),

[Var(∆ logχ)]
1
2 = 1√

K
.

Fig. 10 shows how the ratio of [Var(∆ logχ)]
1
2 for par-

allel and serial NS,R = [Var(∆ logχ)]
1
2÷ 1√

K
, depends on

Kr

K . R represents the relative rate at which uncertainty in
logχ accumulates during parallel and serial calculations.
One can see that logR converges for K > 102, and for
Kr

K
<∼ 0.25, [Var(∆ logχ)]

1
2 ∼ exp

(
0.28Kr−1

K

)
1√
K

. For

larger Kr−1
K , R increases more rapidly.

b. Ke > 0 and Kr = 1

Parallelizing with Kr = 1 by using additional tasks to
walk Ke > 0 extra configurations (in addition to those
that were cloned) changes the walk length L from a deter-
ministic parameter of the NS method to a stochastic one.
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Kr−1
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1
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K = 101

K = 102

K = 104
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K

FIG. 10. Ratio of the rates, R, at which uncertainty in logχ
accumulates for runs parallelized by removing and walking
Kr > 1 as compared to serial run with Kr = 1, as a function
of scaled number of configurations removed Kr−1

K
, for several

values of K. Dashed line indicates linear trend for Kr − 1�
K.

It is possible to derive the variance of the walk length

Var(L) = 〈L〉2 Ke

Ke +Kr
(B5)

While unlike the case of Kr > 1 there are no analytic
results for the error due to the variability of L, several
observations can be made. One is that the square root
of the variance (except for the serial case of Ke = 0) is
almost as large as L itself. Another is that the scaling
of Var(L) with the number of extra parallel tasks Ke is
polynomial, unlike the exponential scaling of the error R
with extra tasks for Kr > 1. It is unclear, however, how
this variability in walk length will affect the error in the
results, although the empirical observation is that this
effect does not appear to be strong. Nevertheless, the
serial case of Kr = 1 and Ke = 0 results in the lowest
uncertainty in estimates of configuration or phase space
volumes.

Appendix C: TE-HMC Monte Carlo step

The TE-HMC Monte Carlo step is given in Algo-
rithm 1. This algorithm makes use of subroutines for
complete and partial momentum randomization given in
Algorithms 2 and 3 respectively.

We set all particle masses to be equal, as described
in Sec. 2, which helps ensure the sampler spends an ap-
proximately equal amount of computer time exploring
each degree of freedom.
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function te_hmc(s,p, V,h0,M, dt)
! Nested sampl ing TE−HMC step

Emax
k = min

[
E0
k, H

sup − H̃ (s, V,h0)
]

if ( complete_momentum_rand ):

p = complete_rand_p(Emax
k )

else:

p = partial_rand_p(Emax
k )

! NVE MD f o r M s t e p s with time s t ep dt
! S t a r t s from (s,p) , ends at (s′,p′)
(s′,p′) = MD_traj(s, p, V , h0, M , dt)

p′ ← −p′ ! r e v e r s e momenta : e n s u r e s
! d e t a i l e d ba lance

if (H (s′, V,h0; p′) < Hsup AND Ek(p′) < E0
k):

(s,p)← (s′,p′) ! Accept p ropo sa l (s′,p′)

p← −p ! r e v e r s e momenta

return (s,p)
end function

Algorithm 1. Total enthalpy Hamiltonian Monte Carlo step
for nested sampling. Repeated application converges to uni-
form sampling of phase space in the region H < Hsup,
Ek(p) < E0

k .

function complete_rand_p(Emax
k ,m)

! Random v e c t o r p with Ek(p) < Emax
k .

! Generate random un i t v e c t o r p̂
p̂i = granf() : i = 1, 3N

p̂ = p̂/|p̂|

! Choose random |p| with Ek(p) < Emax
k

a = uranf()**(1/(3N))

p = a (2mEmax
k )

1
2 p̂

return p
end function

Algorithm 2. Full momentum randomization from the uni-
form distribution inside the hyper-sphere Ek(p) < Emax

k . We
set all particle masses to be equal, as described in Sec. III B.
uranf() is a random number uniform in [0,1]. granf() is a
Gaussian distributed random number, Normal(0, 1).

function partial_rand_p(p)
! P a r t i a l randomizat ion o f momentum p .

! Choose random |p| with Ek(p) < Emax
k

a = uranf()**(1/(3N) )

p = a (2mEmax
k )

1
2 p/|p|

! i n d i c e s {1, 2, . . . , 3N} i n a random order
rand_indices = random_order (1,3N)

do i = 1, floor (3N/2) ! l oop over p a i r s
! p i ck random ang l e from [−γ, γ]
θ = urand(−γ, γ)

! p a i r o f components o f p v e c t o r
j = rand indices(2i− 1)
k = rand indices(2, i)

! 2D r o t a t i o n o f p components j , k
u = cos θ pj + sin θ pk
v = − sin θ pj + cos θpk
pj = u
pk = v

end do

return p
end function

Algorithm 3. Partial momentum randomization for TE-HMC
nested sampling. Converges to the uniform distribution inside
the hyper-sphere Ek(p) < Emax

k . We set all particle masses
to be equal, as described in Sec. III B. uranf(a, b) is a random
number uniform in [a,b]. Note, for odd numbers of atoms N ,
we do not rotate p component rand indices(3N). However,
since rand indices(3N) is chosen at random, the subroutine
partial rand p satisfies detailed balance.

Appendix D: Potential energy functions

1. Lennard-Jones potential

The Lennard-Jones potential used in the paper is the
“truncated and shifted” potential, given by

U (r) =





4ε
∑
i<j

[(
σ
rij

)12

−
(
σ
rij

)6

− c
]

: rij < rc

0 : rij ≥ rc

c =

(
σ

rc

)12

−
(
σ

rc

)6

.

(D1)

Here, rij is the radial distance between particles i and j,
while two atoms at dynamical equilibrium have a com-
bined energy −ε and are separated by a distance 2

1
6σ.

This potential goes continuously to zero at a radius rc.
Calculations were performed using ε = 1, σ = 1, rc = 3.
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2. Binary Lennard-Jones alloy potential

The potential used to simulate the binary Lennard
Jones alloy is given by

U (r) =





4
∑
i<j εij

[(
σ
rij

)12

−
(
σ
rij

)6
]

: rij < rc

0 : rij ≥ rc
(D2)

Calculations were performed using εAA = 1, εAA = 1,
εBB = 1.5, σ = 1, rc = 3. In this potential, all atoms
have equal atomic radii, but interactions between differ-
ent atomic species (A and B) are 1.5 times stronger than
A–A interactions or B–B interactions.

3. CuAu EAM

We used a Finnis-Sinclair type embedded atom model
(EAM) for the CuxAu1−x binary alloy. The potential pa-
rameters are from the method in Ref. [14], based on the
pure element parameters of Ref. [16], with inter-species
parameters that are optimized to fit the formation ener-
gies of a few crystal structures at selected compositions of
the binary alloy. The full parameter set for LAMMPS [9]
is available for download from Ref. [15].

4. Bead-Spring Polymer Models

The bead-spring models used to study long molecule
chains are based on those used by Nguyen et al. to study
polymer crystallization [24]. The energy of a bond be-
tween two monomers along the backbone of a polymer
chain

Ub(`) =
kb
2

(`− a)2 (D3)

is harmonic in the distance from the characteristic dis-
tance a. The bond stiffness kb = 600ε/σ2. The energy of
an angle θ formed by three consecutive monomers along
the polymer backbone is given by a cosine potential,

Ua(θ) = ka(1− cos(θ)), (D4)

where the angular stiffness ka penalizes angular devia-
tions away from a straight backbone θ = 180o and is set
either to ka = 0 for a fully-flexible chain or to ka = 10ε.
The nonbonded interaction between two monomers a dis-
tance r from one another is

Un(r) = 4ε

[(σ
r

)12

−
(σ
r

)6

−
(
σ

rc

)12

+

(
σ

rc

)6
]

: r < rc.

(D5)
The monomer diameter σ = 2−1/6a, so that the bond
distance and diameter are commensurate. The cutoff is
set to rc = 3σ. As the name suggests, nonbonded in-
teractions apply only to monomers that are not bonded
together.

Appendix E: Minimum cell depth d0

Figure 11 shows the heat capacity of a periodic system
of 64 Lennard-Jones particles at fixed pressure. This
calculation used a potential similar to that given in
appendix D 1. In particular, we set the radial cutoff
rc = 3σ, and c = 0 in equation (D1). We also incorpo-
rated the standard long range correction to the energies
to account for interactions beyond the cutoff [27]. The
system was simulated using SP-MC nested sampling [1].
In each calculation we constrained the cell depth to be
greater than some minimum value, d0 (see Eq. (3)). A
clear transition to a quasi-2D system is observed when
reducing d0. The location of the condensation transition
is independent of d0 for d0 ≥ 0.35, and the location of
the freezing transition for d0 ≥ 0.65.

At low values of d0 the simulation cell becomes very
thin in at least one dimension and the system’s behavior
is dominated by unphysical correlations introduced by
the periodic boundary conditions. The effect of unphys-
ical correlations is reduced at lower densities, and also
by increasing d0 which constrains the simulation cell to
more cube-like cell shapes. A larger value of d0 is thus
required at higher densities to sufficiently reduce the un-
physical correlations. At the same time, setting d0 too
close to 1 excludes crystal structures that require a non-
cubic simulation cell. Quoting from [1], ‘The window of
independence from d0 grows wider as the number of par-
ticles is increased. For larger numbers of atoms, there
are more ways to arrange those atoms into a given crys-
tal structure, including in simulation cells that are closer
to a cube. Similarly, unphysical correlations are intro-
duced when the absolute number of atoms between faces
of the cell becomes too small, and therefore larger simu-
lations can tolerate “thinner” simulation cells h0.’ It is
clear from Figure 11 that by imposing a suitable mini-
mum cell height we can remove the unphysical behavior
from the fully flexible cell formulation.

0.5 1 1.5 2

T ∗
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100
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B
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FIG. 11. Convergence of the heat capacity Cp(T ) with re-
spect to minimum cell depth, d0, for a periodic system of 64
Lennard-Jones particles at pressure log10 P

∗ = −1.194. The
peak at high temperature corresponds to condensation, while
the peak at lower temperature corresponds to freezing. The
legend on the right shows the value of d0 used in each calcu-
lation.
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