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Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of
steps on the surface of a model metal system. The fluctuation spectrum, characterized by the
wavenumber (k) dependence of the mean squared capillary-wave amplitudes and associated relax-
ation times, is calculated for 〈110〉 and 〈112〉 steps on the {111} surface of elemental copper near the
melting temperature of the classical potential model considered. Step stiffnesses are derived from
the MD results, yielding values from the largest system sizes of (37 ± 1) meV/ Å for the different
line orientations, implying that the stiffness is isotropic within the statistical precision of the calcu-
lations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over
the range of wavenumbers investigated, displaying a k dependence consistent with kinetics governed
by step-edge mediated diffusion. The values for step stiffness derived from these simulations are
compared to step free energies for the same system and temperature obtained in a recent MD-
based thermodynamic-integration (TI) study [Phys. Rev. B 95, 155444 (2017)]. Results from the
capillary-fluctuation analysis and TI calculations yield statistically-significant differences that are
discussed within the framework of statistical-mechanical theories for configurational contributions
to step free energies.

I. INTRODUCTION

Capillary fluctuations are a ubiquitous phenomenon
at fluid interfaces, line defects, and crystalline interfaces
that are atomically rough [1–7]. These equilibrium fluc-
tuations, which lead to variations in the line length of a
linear defect, or area of a rough interface at finite tem-
perature, have been widely studied by advanced experi-
mental characterization techniques and computer simu-
lations, as they provide insights into the thermodynamic
and kinetic properties of the interfaces on which they
form. While a detailed overview of such studies is beyond
the scope of the present manuscript, we refer the reader
to comprehensive reviews and representative experimen-
tal and computational studies [8–13] in the context of
steps at faceted crystalline interfaces, which provide the
focus of the present work. The properties of such steps
play a critical role in governing the kinetics of crystal
growth from melt, solution, or vapor phases, due to their
influence on the thermodynamics of island nucleation and
the kinetics of interface migration (e.g., Ref. [14]).

Over the last decade analyses of capillary fluctua-
tions in molecular-scale computer simulations, based on
molecular dynamics (MD) or Monte-Carlo (MC) meth-
ods, have been employed extensively within the so-
called capillary-fluctuation method (CFM) approach to
computing interfacial free energies and their associated
crystalline anisotropies for crystal-melt interfaces, grain
boundaries and solid-solid heterophase interfaces (e.g.,
Refs. [2, 3, 15–20]). Recently, the CFM approach has
been employed also for steps at faceted crystal-melt
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interfaces [21], to derive temperature-dependent step
stiffnesses that are relevant in the context of model-
ing solidification rates and associated crystal growth
morphologies. For crystal-melt interfaces, liquid sur-
faces, and fluid-fluid interfaces, detailed comparisons
of CFM results with those obtained using alternative
thermodynamic-integration and nucleation based MD
methods have been undertaken to understand the range
of applicability and associated accuracies of these alter-
native approaches (e.g., Refs. [22–28]). At the present
time we are unaware of such comparisons for the appli-
cations of the CFM for step properties.

In the present work we consider the application of the
CFM approach for studying thermodynamic and kinetic
properties of steps on crystalline surfaces, focusing on
Cu(111) as a representative model metal system. The
results of equilibrium MD simulations near the melting
temperature of the potential model considered are ana-
lyzed to compute step fluctuation spectra, characterized
by the wavenumber (k) dependence of the mean-square

amplitudes 〈|A(k)|2〉, as well as the fluctuation relaxation

times τ(k). From the dependence of 〈|A(k)|2〉 on k we
derive step stiffnesses for 〈110〉 and 〈112〉 step orienta-
tions, obtaining values that are isotropic (independent of
orientation) within the statistical precision of the simu-
lations. Further, we obtain values of fluctuation lifetimes
that are consistent with the k−4 scaling associated with
dynamics that are governed by step-edge diffusion.

The focus on the Cu (111) system in the present study
enables a comparison of CFM results with step free ener-
gies obtained in a recent study published by the authors
[29] using an alternative thermodynamic-integration (TI)
approach. The values of the step stiffnesses derived by
the CFM are lower by approximately 25% compared with
the step free energies calculated by the TI approach for
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〈110〉 oriented steps at the same temperature. The dis-
crepancy is discussed within the framework of statistical-
mechanical theories of the configurational contributions
to step free energies (e.g., [30, 31]) associated with cap-
illary fluctuations.

The remainder of this paper is organized as follows. In
Sec. II we present a brief derivation of the main results
from capillary-wave theory that are used in the remainder
of the paper; although similar derivations appear already
in many places in the literature, the overview is included
to emphasize key concepts and equations required for the
analysis and interpretation of the present MD results. In
Sec. III we describe the details of the MD simulations
of step capillary fluctuations and in Sec. IV we present
the simulation results. In Sec. V a discussion is presented
focusing on the comparison of the present CFM results to
step free energies obtained previously by thermodynamic
integration [29]. Finally, the results and conclusions are
summarized in Sec. VI.

II. CAPILLARY-WAVE MODEL

In this section we summarize the main equations re-
quired for CFM analysis of surface step fluctuations. We
describe how the capillary-wave Hamiltonian results from
the coarse-graining of the atomic partition function, and
also highlight several nuances of the CFM that will be
discussed in the context of the analysis of the MD simu-
lation results in Sec. III.

A. Step effective Hamiltonian

Following the notation from Ref. [29], the excess free
energy of a step can be defined thermodynamically
through the relation:

[F ]AN ≡ F st − F t = γstL, (1)

where γst is the step free energy per unit length and L
is the system dimension along the average step direction,
as illustrated in Fig. 1. F st and F t are the absolute free
energies of systems with the same surface area (A), num-
ber of atoms (N), and temperature (T ). These systems
can be considered to be identical except that the sys-
tem corresponding to F t has a flat surface, while the one
corresponding to F st contains a surface step of length
L. The free energy of the system with a flat surface
can also be written as F t = −kBT lnQt + 3NkBT ln Λ,
where kB is the Boltzmann constant, Qt is the config-
urational part of the system’s partition function, and
Λ = (h2/2πmkBT )1/2 is the thermal de Broglie wave-
length. Similarly, the free energy of the system with a
step is F st = −kBT lnQst + 3NkBT ln Λ. Hence, we can
rewrite the step free energy in Eq. (1) as follows:

[F ]AN = −kBT lnQ, (2)

x

d

h

y(x)

L

FIG. 1. System dimensions and orientation: d is the step-step
separation distance, L is the step length, and h is the bulk
depth. The step average direction is along x̂ and the step line
profile is given by the curve y(x).

where Q ≡ Qst/Qt is the ratio of the configurational
partition functions.

In order to clarify the physical meaning of Q consider
the potential energy of the system with a step: U st(x),
where x is the 3N -dimensional vector with the atomic
coordinates. We can perform a canonical transformation
on the atomic coordinates and separate the variables de-
scribing the step configuration from all other variables.
With this transformation the potential energy can be
written as U st = U st(R, r), where R are the step degrees
of freedom and r represents all other degrees of freedom
(i.e., bulk and surface degrees of freedom). With this set
of generalized coordinates the configurational partition
function of the system with the step can be written as

Qst =

∫
dR exp

[
− βUcg(R)

]
, (3)

where

Ucg(R) = −kBT ln

{∫
dr exp

[
− βU st(R, r)

]}
, (4)

is a coarse-grained potential energy which involves only
the step degrees of freedom. Notice that, for convenience,
we have performed the canonical transformation in such
a way as to render R and r dimensionless quantities.
Equation (4) implies that Ucg(R) is the portion of the
free energy associated with the bulk and surface config-
urational degrees of freedom r. Alternatively, Eq. (3)
suggests that Ucg(R) can also be seen as the potential
that generates the step dynamics on that system. Be-
cause of this last interpretation Ucg(R) is also known as
the potential of mean force [32], i.e., it is the potential
acting on the step that arises from the mean contribu-
tion of the bulk and surface degrees of freedom. In the
limit of adiabatic decoupling between the step and the
rest of the system Ucg(R) becomes an effective potential
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on which the step degrees of freedom (R) can be assumed
to evolve in time independently from the other degrees
of freedom (r).

The step free energy can be written as a function
of the coarse-grained potential energy Ucg(R). First
we substitute Eq. (3) in the equation for Q and use
Qt = exp [−β(F t − 3NkBT ln Λ)]:

Q =
Qst

Qt
=

∫
dR exp

[
− βH(R)

]
,

where we have defined the step effective Hamiltonian
H(R) ≡ Ucg(R) − (F t − 3NkBT ln Λ). Now the step
free energy can be obtained from Eqs. (1) and (2):

γstL = −kBT ln

{∫
dR exp

[
− βH(R)

]}
. (5)

Notice that Eq. (5) does not involve any approximation,
we have only separated and interpreted specific parts of
the partition function Q. Hence, the calculation of the
step free energy γst using Eq. (5) still involves an integral
over the phase space of all particles.

B. Capillary-wave model for steps

It is now possible to introduce a model for the step
effective Hamiltonian, H(R), that simplifies the calcu-
lation of Eq. (5) but still includes all relevant physical
properties that govern the step dynamics. A reasonable
model that forms the basis for capillary-wave theory (e.g.,
Ref. [30]), is to assume that a fluctuation of the step line
that causes a change δ` in step length has an energetic
cost of σδ`, where σ is the step energy per unit length.
With this physical picture the step effective Hamiltonian
takes the form:

H [y(x)] =

∫
y

σ(θ) d` =

∫ L

0

σ(θ)
√

1 + y′(x)2 dx, (6)

where θ(x) = tan−1(y/x) is the step orientation with
respect to the average step-line direction and the integral
is over the curve y(x) describing the step line profile, as
illustrated in Fig. 1. Notice that H is a functional of the
step configuration y(x) [33].

Notice that σ(θ) defined in Eq. (6) is different from
the step stress tensor τ st as defined in, for example,
Refs. [29, 34]. The step stress tensor couples mechan-
ically to the system strain and gives origin to a elas-
tic deformation energy which can be directly measured
in atomistic simulations [29]. The physical interpreta-
tion of σ(θ) is more complicated, as discussed in detail
in Ref. [30]. For example, σ(θ) reflects the energy per
unit physical length of the step, while τ st and γst are
defined per unit length of the average step direction, in-
dicated as L in Fig. 1 and Eq. (1). For our purpose in
this paper we will refer to σ(θ) as the step tension in the
line-fluctuation model given by Eq. (6).

To compute from Eq. (6) the equilibrium spectrum for
the capillary fluctuations, and the resulting free energy,
the traditional approach [18, 30, 33] is to make use of
the small slope approximation where θ(x) ≈ y′(x) and
the terms inside the integral in Eq. (6) can be expanded
in powers of y′(x). Collecting the terms with the same
power and keeping only terms O(y′2) the step effective
Hamiltonian can be written as

H[y(x)] = σL+
1

2
σ̃

∫ L

0

y′(x)2 dx, (7)

where σ ≡ σ(0) is the step tension of the state with a
straight step in this model, and σ̃ ≡ σ(0) + σθθ(0) is the
step stiffness, where σθθ(0) denotes the second deriva-
tive of the step tension with respect to the orientation of
the step normal. The term σL in Eq. (7) is the energy
of a straight step, while the second term is the energy
penalty in having any curvature along the step line, i.e.,
the energy cost of step fluctuations.

The next step is to discretize the integral in Eq. (7)
into a Riemann sum, resulting in a Hamiltonian that
is quadratic in y(xn), with xn = n∆x where n =
0, 1, . . . ,M − 1 and ∆x = L/M . In what follows we fol-
low a similar approach based on a Fourier representation
of the step profile. This formulation, while equivalent,
leads to expressions more aligned with the CFM analysis
of computer simulation results.

The step line profile y(x) shown in Fig. 1 can be de-
composed in normal modes as:

y(x) =

(M−1)/2∑
n=−(M−1)/2

An exp (iknx) , (8)

where the wavevectors kn are given by kn = n(2π/L)
with n = 0,±1,±2, ...,±(M −1)/2 (assuming M is odd).
Using Eq. (8) we can compute the integral in Eq. (7) and
obtain:

H({An}) = σL+ σ̃L

(M−1)/2∑
n=1

k2n |An|2 , (9)

where we have made use of the fact that A∗n = A−n
since y(x) is real. In this system of coordinates the am-
plitudes An of the normal modes are the step degrees
of freedom since they define the step configuration y(x)
through Eq. (8). The step effective Hamiltonian given by
Eq. (9) is quadratic in all its degrees of freedom and thus
many properties of the system can be obtained exactly.

It is clear from Eq. (9) that the properties of this sys-
tem depend on how the step is coarse-grained, i.e., how
closely spaced (∆x = L/M) are the M points describing
the step line. This is a reflection of the number of degrees
of freedom attributed to the step effective Hamiltonian
[30, 31], Eq. (6), as discussed in Sec. II A; ∆x determines
the largest wavevector considered in the effective Hamil-
tonian of Eq. (9): kmax ≡ π/∆x. An extensive review of
the consequences and interpretations of this dependency
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on ∆x and, consequently, on the capillary-wave wave-
lengths considered, is given in Ref. [30]. We return to
this point in Sec. V when comparing the results of the
CFM analysis to the values of the step free energy derived
in Ref. [29].

Notice that the term σL in Eq. (9) is a simple shift
in energy, thus the dynamics of the step is completely
parametrized by the step stiffness σ̃. In the next section
we review how σ̃ can be derived from atomistic simula-
tions.

C. Step fluctuation spectrum

According to the equipartition theorem each quadratic
degree of freedom in the Hamiltonian of a system at con-
stant temperature T contributes kBT/2 to the system’s
average energy. We can apply this theorem to Eq. (9)
since each mode amplitude An appears quadratically in
the Hamiltonian. Notice that the real and imaginary
parts of An are independent and, thus, each part con-
tributes with kBT/2 to the total energy. Hence

σ̃Lk2n

〈
|An|2

〉
= kBT,

where 〈. . .〉 indicates a canonical ensemble equilibrium
average. This equation can be used to compute the step
stiffness, σ̃, if we rewrite it as〈

|An|2
〉

=

(
kBT

σ̃L

)
1

k2n
. (10)

The normal-mode amplitudes can be obtained from
atomistic simulations and used to adjust a curve of
〈|An|2〉 vs k−2n , from which σ̃ can be extracted.

When using Eq. (10) to compute σ̃ it is necessary to
define the step profile, shown as y(x) in Fig. 1. Hence,
the value of σ̃ obtained can be sensitive to how y(x) is
determined, particularly if one relies on normal modes
with wavelengths comparable to the atomic spacing. The
physical origin of this arises because the distinction be-
tween interface and bulk degrees of freedom is not clear
for atomistic systems [30], i.e., the definition of the inter-
face position from the atomic configuration is ambiguous.
In Sec. III C we study the inherent ambiguity in defining
the step configuration in atomic-scale simulations and
discuss how y(x) can be determined in such a way as to
minimally affect the value of σ̃ obtained from Eq. (10).

III. METHODOLOGY OF ATOMISTIC
SIMULATIONS

A. Molecular dynamics simulations and system
geometry

Molecular dynamics simulations of surface steps
were performed using the LAMMPS [35] (Large-scale

Atomic/Molecular Massively Parallel Simulator) soft-
ware. The interatomic interactions were described by the
embedded-atom method [36] for a system of pure copper
[37] and the Langevin thermostat [38] was used to sam-
ple the particles’ phase space according to the canonical
ensemble distribution. The thermostat relaxation time
was τL ≡ m/γ = 2 ps, where γ is the friction parameter
and m the atomic mass. The timestep (∆t) for the inte-
gration of the equations of motion was chosen based on
the phonon spectrum of the system; we used ∆t = 2 fs
which is approximately 1/60th of the oscillation period
of the highest-frequency normal mode of this system.

The geometry of the simulation box is illustrated in
Fig. 1. Periodic boundary conditions were used for the
directions parallel to the surface (x̂ and ŷ) while free
boundaries were used along ẑ to create the system sur-
face. We kept the box length along the x̂ and ŷ directions
fixed while the system fluctuates freely along ẑ (normal
to the surface) in order to guarantee mechanical equilib-
rium with the vacuum. A non-orthogonal simulation box
[39] was employed in such a way as to have only one step
on the system surface.

We have chosen the (111) surface of face-centered cubic
copper as a representative metal surface to study steps.
The surface properties of the interatomic potential em-
ployed have been studied extensively previously [29, 40].
Of relevance for this study is the fact that the {111} sur-
faces have been found to be faceted at all temperatures
up to the melting point of this model (Tm = 1327 K). In
order to study effects of anisotropy we will consider steps
of two different orientations (Fig. 2), with step line direc-
tions along [110] and [211]. The [110] direction presents
two distinct steps, [110]A and [110]B, which have differ-
ent nearest-neighbor configurations on the layer immedi-
ately below the step, as illustrated in Fig. 2. The temper-
ature for all simulations was T = 1300 K; it was chosen
to be close to the melting point so that the step fluctu-
ation timescales were compatible with the short physical
times accessible to the MD simulations. In Sec. III D
we present an analysis of the step fluctuation relaxation
times to assess which modes are adequately sampled.

B. System dimensions

Surface steps deform the crystalline lattice around
them creating an elastic field that can interact with other
elastic fields present in the crystal. The total energy of
an isolated step will be referred to as the self-energy (U0).
Because of the periodic boundary conditions applied in
the simulations the step can interact with its periodic
images, as well as with the surface at the bottom of the
simulation box (Fig. 1). The effects of these interactions
can be made negligibly small by choosing system dimen-
sions such that the interaction energy is much smaller
than U0.

The step-step interaction energy decreases with the
distance d between the steps as [10] Eint ∝ d−2 and can
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a) b) c)

FIG. 2. Step orientations on the (111) surface of face-centered
cubic copper. The blue (dark gray) atoms on the right are in
the first layer and the red ones (light gray) on the left are in
the second layer. The orientations are (a) [110]A (b) [110]B
and (c) [211]. The difference between the [110] A and B steps
are the nearest neighbors on the layer immediately below the
step.

TABLE I. Simulation box size used for each step orientation.
d is the step-step distance, h the bulk depth, L the step length,
and U0 is the step self-energy. The box geometry is illustrated
in Fig. 1.

d (Å) h (Å) L (Å) U0 (meV/Å)

[110]A 60.5 42.8 104.8 103.1

[110]B 66.6 42.8 104.8 104.1

[211] 62.9 42.8 108.9 120.5

be attractive or repulsive depending on the orientation of
the steps. To determine the magnitude of this interaction
we followed the approach from Ref. [39] and computed
the step-step interaction energy for different step separa-
tions. We have chosen the step-step separation distance
for our simulations as the minimum distance such that
Eint/U0 ≤ 10−4. In practice this resulted in distances

d ≈ 60 Å as shown in Table I.
The bulk depth (h in Fig. 1 and Table I) was deter-

mined by considering the step elastic-field decay along ẑ,
the direction normal to the surface. The step elastic en-
ergy (Ebulk

step ) decays with the bulk depth proportionally
to exp(−h/ξ) where ξ is a characteristic length which
depends on the step orientation and length. After we
verified this relationship we used it to impose the same
energy tolerance used for the step-step interaction, i.e.,
Ebulk

step /U0 ≤ 10−4. The selected bulk depth values are
shown in Table I. In all simulations presented here the
last 6 layers of (111) planes at the bottom of the sim-
ulation box were frozen at their equilibrium position to
guarantee that no bending of the structure would occur.
The frozen layers were added beyond the values of bulk
of depth h shown in Table I.

In order to determine the simulation system dimension
corresponding to the step length L it is necessary to con-
sider the assumptions of the CFM, as presented in Sec. II.
This model is not valid for the description of the step at
scales smaller than its coarse-graining scale (∆x), thus we
need L� ∆x. However, it would be computationally un-

feasible to have a step that is excessively large since the
relaxation time of normal modes with long wavelength
can be very long on MD time scales due the long-range
atomic diffusion necessary to change the configuration
of these modes. Therefore, it is necessary to study the
normal-mode relaxation times before determining what
is a satisfactory step length. The details of the analy-
sis of these relaxation times is presented in Sec. III D,
and based on the results we have chosen L ≈ 100 Å as
shown in Table I. This step length is equivalent to the
largest relaxation time of the normal mode (with largest
wavelength) being τmax ≈ 1 ns.

C. Step profile determination

Given any interface between two distinct phases there
is no unambiguous approach to determine the inter-
face position from the microscopic atomistic structure of
the system [30, 41]. Therefore, there is no algorithm
that uniquely defines the step position, i.e., the one-
dimensional interface separating two surface terraces.
Here we compare two different algorithms [25, 26, 41–43]
that determine the step profile from the atomic configu-
rations captured in MD simulations.

Based on the dimensions for d and h presented in
Table I we have constructed a system with a [110]A

step with step-step distance d = 60.5 Å, bulk depth
h = 42.8 Å, and step length L = 403.6 Å. This sys-
tem was equilibrated for 10 ns and, afterwards, the step
configuration was captured every 0.2 ps for 100 ns. All
results presented in this section were obtained from this
simulation. From the MD snapshots the atoms belong-
ing to the top surface layer could be readily identified
by counting the number of (111) planes and selecting all
atoms with height above some threshold height based on
the interplanar separation. One snapshot of the result of
this selection is shown in Fig. 3(a); from snapshots like
this one we want to define the step line profile, being
careful to not select any adatom belonging to the surface
and also to not accidentally exclude atoms belonging to
the step.

The first algorithm used will be referred to as a “grid
algorithm”. In this algorithm the direction along the step
length, x̂, is divided in equally spaced bins or delimiting
strips, as illustrated in Fig. 3(b). We further divide each
of these strips along ŷ, creating rectangular cells, and
calculate the density of atoms in each cell. The step
height is chosen as the average value of the height of the
first bin with zero density and the bin immediately before
it. The parameters chosen for the dimension of each bin
was 4.5 Å parallel to the step line and 6.7 Å perpendicular
to the step line.

The second algorithm used is referred to as the “clus-
ter algorithm”, illustrated in Fig. 4. Once again we start
with the atomic configuration of the first layer, then de-
termine all atomic clusters on this layer. Two atoms
are considered to belong to the same cluster if there is
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FIG. 3. Illustration of the grid algorithm for step profile
determination. (a) We select the atoms belonging the first
surface layer by selecting all atoms with height above some
threshold based on the number of atomic layers in the system.
(b) Then we define a grid along the x̂ direction and divided
each of these stripes in equally spaced bins along the ŷ di-
rection. (c) The step height is defined as the average height
between the first cell with zero density along a stripe and the
cell immediately below it.

a path between them through a sequence of neighbor
atoms, where we consider two atoms to be neighbors if
the distance between them is equal or smaller than some
maximum radius rmax. The step atoms are then defined
as the largest cluster of atoms, as shown in Fig. 4(b).
From the configuration of the atoms belonging to the
step the surface can be readily divided into strips along
the x̂ direction and the atom with the highest value of
y(x) within that strip is selected to be the step height at
that point. The cluster algorithm has the advantage of
having only one adjustable parameter, namely the maxi-
mum nearest-neighbor distance rmax, which can be easily
estimated by considerations of the crystal lattice geom-
etry. We have taken rmax = 1.2rn, where rn is the dis-
tance between nearest neighbors in the lattice, and the
discretization length along the step line was 2.7 Å.

We have optimized both algorithms with respect to
the parameters involved to obtain step profiles that best
adjust to the real atomic configurations. Then we per-
formed the Fourier transform of the height profiles and
calculated the power spectrum (i.e., |An|2 vs kn). The
comparison of the algorithms is shown in Fig. 5 along
with a straight line of slope −2. The agreement of the
power spectrum with the k−2n behavior predicted by the
CFM in Eq. (10) is observed, this is an indication that
the theory is adequate to describe the step fluctuations
at the wavelengths probed in the MD simulations. From
Fig. 5 we also see that the long-wavelength modes (small
kn) are insensitive to the choice of coarse graining algo-
rithm, as observed before in this type of analysis [42, 43].
At intermediate values of kn the cluster algorithm is ob-
served to follow the CFM prediction, Eq. (10), to higher
wavenumbers than the grid algorithm. Hence, the clus-
ter algorithm is preferred for capturing the step profile
details and this algorithm has been used for analyses of
step fluctuations in the remainder of this paper. We also
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(Å

)

0 50 100 150 200 250 300 350 400

x (Å)
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FIG. 4. Illustration of the cluster algorithm for step profile
determination. (a) We determine the atoms belonging the
first surface layer by selecting all atoms with height above
some threshold based on the number of atomic layers in the
system. (b) Then we find the largest cluster of atoms in that
layer (light gray atoms), where we consider two atoms to be
neighbors if the distance between them is smaller than some
distance rmax. (c) The system is divided in bins along the x̂
direction and the step height in each bin is determined as the
atom with the highest value of y(x) inside that bin.
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FIG. 5. Comparison of the power spectrum of the Fourier
transform of the step line profile obtained using different al-
gorithms to determine the step profile. The cluster algorithm
has shown to result in a power spectrum which better fol-
lows the k−2

n behavior expected from the capillary-wave model
(CFM).

see that for large kn both algorithms deviate from the
k−2n behavior. This happens because when the normal-
mode wavelength becomes comparable to the interatomic
distance the atomic vibrations start to interfere with the
step oscillations. The CFM was proposed to describe the
long-wavelength capillary waves but it does not account
for the discrete nature of the atomic configuration and
degrees of freedom, thus it is no surprise that when these
effects start to become significant (large kn) our results
start to deviate from the CFM. We further discuss the
validity of the CFM to describe surface steps in Sec. IV.
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FIG. 6. Typical autocorrelation functions obtained for the
normal modes’ amplitudes (normal mode index increases in
the clockwise direction or from the upper right to the bottom
left). The normal modes relaxation times (τn) are obtained
by fitting Cn(t) curves to Eq. (11).

D. Step normal mode relaxation times

Each normal mode in Eq. (10) has a different relaxation
time since mass transport is required for changes in the
step configuration. Short wavelength modes can change
their configuration quickly since they only require short-
range diffusion to modify their amplitudes, while modes
with small kn have long relaxation times that limit the
statistics for their sampling in the MD simulations. Thus,
these relaxation times ultimately place a limit on the
wavelengths that can be probed in the simulations.

The relaxation time of the normal modes are analyzed
from the simulation data employing a time autocorrela-
tion function of the amplitudes, i.e., if fn(t) = |An(t)|2
then the autocorrelation function Cn(t) is

Cn(t) =
〈fn(t)fn(0)〉
〈fn(0)2〉 = exp(−t/τn), (11)

where τn is the relaxation time of the normal mode of
wavevector kn. Representative plots of Cn(t) for selected
normal modes are shown in Fig. 6, and from such data we
can estimate the relaxation time of each mode, as shown
in Fig. 7. The data used to obtain Figs. 6 and 7 was
extracted from the simulation performed in Sec. III C for
a [110]A step.

Notice in Fig. 7 that the MD simulations resulted in
τn ∝ k−4n . This result indicates that the step capillary
fluctuations are predominantly governed by atomic diffu-
sion [12] along the step line, as opposed, for example, to
diffusion of adatoms on the terrace, which would lead [17]
to τn ∝ k−3n , or adatom attachment/detachment to/from
the step edge that would be consistent with τn ∝ k−2n .

From the relaxation times obtained in Fig. 7 the step
length appropriate for the MD simulation cells is deter-
mined as follows. We have limited the maximum relax-

10−1 100

kn (Å−1)

10−4

10−3

10−2

10−1

100

101

102

τ n
(n

s)

∝ k−4

FIG. 7. Relaxation time of each normal mode of the step line
profile. τn is obtained by fitting Cn(t) curves to Eq. (11).
The horizontal line corresponds to τn = 1 ns and the vertical
line marks the wavevector value at which the adjusted curve
(black solid line) intercepts the τn = 1 ns relaxation time, i.e.,
the vertical line is at kn = kmin.

ation time to be τmax = 1 ns, with this limitation the
shortest wavevector we can sample is kmin ≈ 0.11 Å−1

and the shortest step to contain this wavevector has a
length of L ≈ 57 Å. Because we are making conservative
choices for the step length of all other orientations, and
to increase the number of points used in the fitting of
Eq. (10), we have chosen to use step lengths of approx-

imately 100 Å. The dimensions for the simulation cells
used to obtain the results presented below are listed in
Table I.

IV. RESULTS

Plotted in Fig. 8 are the results of the MD calcu-
lated fluctuation amplitudes 〈|An|2〉 vs kn, obtained as
described in Sec. III C with the cluster algorithm used
to characterize the instantaneous step profile. Using the
normal modes with wavevectors kmin < kn < kmax, where
kmin = 0.110 Å−1 and kmax = 0.335 Å−1 (shown as dot-

ted lines in Fig. 8), we have verified the 〈|An|2〉 ∝ k−2n
behavior predicted by Eq. (10) by adjusting a general
power law to these points, as shown in the inset of Fig. 8.

As explained in Sec. III D the kmin value was deter-
mined based on the largest relaxation time that can be
adequately sampled in the MD simulations we performed.
It is clear in Fig. 8 that as kn decreases below kmin the
error bars become larger due to the reduced sampling
statistics, associated with the longer relaxation times and
the total simulation time of 100 ns.

The value of kmax was chosen by comparing the MD
results in Fig. 8 to a curve with slope k−2n and visually
deciding at which point the data started to diverge from
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FIG. 8. Power spectrum plot of the Fourier transform of the
step line profile. Long wavevectors were discarded since they
deviate from the 〈|An|2〉 ∝ k−2

n behavior due to the presence
of atomic vibrations not accounted for the CFM, as presented
in Sec. II. Short wavevectors were discarded because their
relaxation time was long enough to be comparable to the total
simulation time, hence they cannot be adequately sampled in
a MD simulation. The dashed lines delimit the wavelengths
used for adjusting the black solid curve to Eq. (10). The inset
highlights the agreement of the normal modes considered with
the CFM predictions.

this behavior, kmax was selected as the average of the kn
value of that point and the one immediately before it. Al-
though the choice of kmax is not unique (e.g., it depends
on the method used to characterize the step profile), it is
not completely arbitrary either and reasonable estimates
can be made by inspection of the MD results, as shown
in Fig. 8. Specifically, it is clear from Fig. 8 that at large
enough kn the MD data deviates from the k−2n behavior
predicted by the CFM, and the point where this discrep-
ancy becomes statistically significant provides the basis
for a reasonable estimate of an lower bound for kmax.
Hence, an important criteria is to adjust the k−2n curve
in such a way that the data for small kn lies accurately on
the k−2n curve. With that reference, the only arbitrari-
ness comes from deciding where the data starts to deviate
from the curve location imposed from the small kn points
data. Here the cutoff kmax = 0.335 Å−1 corresponds to a
wavelength of λ ≈ 7.2a, where a is the atomic distance
along the step line for steps along 〈110〉 directions. This
result implies that it is necessary to average over approx-
imately 7 atoms to eliminate noise due to atomic vibra-
tions and correlated atomic displacements, to correctly
capture the expected capillary wave behavior, consistent
with the coarse-graining over atomic degrees of freedom
necessary to define the step effective Hamiltonian H de-
scribed in Sec. II.

According to Eq. (9) the step effective Hamiltonian de-
pends on two parameters: the step tension of a straight
step (σ) and the step stiffness (σ̃). For each step ori-

TABLE II. Step stiffness for different step orientations and
convergence with box size. d is the step-step separation dis-
tance, h is the bulk depth, L is the step length, and U0 is the
step self energy. The dimensions used are with respect to the
box sizes presented in Table I. The box geometry is illustrated
in Fig. 1.

Step stiffness σ̃a (meV/ Å)

(d, h, L)b (d, 2h, L) (2d, 1.7h, L) U0

[110]A 37 36 37 103.13

[110]B 38 39 37 104.08

[211] 36 36 37 120.53

a All columns have error bar ±1 meV/ Å, except for the U0

column where the error bar is ±0.02 meV/ Å.
b The dimensions are given relative to the values shown in Table I

entation listed in Table I we have run a 100 ns simula-
tion preceded by a 5 ns equilibration period and applied
Eq. (10) to obtain the step stiffness. The result is shown
in the first column of Table II. We have employed three
different box sizes to test for size convergence: one with
twice as much bulk depth and another with twice as much
step-step distance (increasing the bulk depth to account
for the deeper penetration of the step elastic field). Also
listed in Table II are the step energies U0 at T = 0 K.

The zero-temperature values U0 are observed to show
a significant anisotropy between the 〈110〉 and 〈211〉 ori-
entations: a difference of ≈ 14% characterizes these val-
ues in Table II. By contrast, at 1300 K the MD results
yield stiffness values that are isotropic within the statis-
tical precision of the MD data. These results imply that
σ̃ ≈ σ, i.e., that the contribution of σθθ to the stiffness
is negligible. The observed decrease in anisotropy of the
step tension is interpreted to reflect the fact that when
the step fluctuation amplitudes become large on the scale
of the atomic dimensions the effects of the lattice are av-
eraged out.

V. DISCUSSION

In this section the present CFM results are compared
with values of the step free energy for the same system
obtained by thermodynamic-integration methods previ-
ously [29]. In Fig. 9 we plot the results from the previous
TI calculations, where the solid black line gives the tem-
perature dependence of the step free energy up to the
melting point for a 〈110〉 step orientation and the red
circles are independent results obtained from TI calcu-
lations usinng the Frenkel-Ladd method. Also plotted
in Fig. 9 with the diamond symbol is the step tension
σ, which is assumed isotropic based on the MD results
presented in the previous section, and thus equal to the
step stiffness. It can be seen that the value of σ ob-
tained from the CFM analysis of the present MD data
is lower than the step free energy obtained in Ref. [29]



9

0 200 400 600 800 1000 1200 1400
T (K)

0

20

40

60

80

100
γ

st
(T

)
(m

eV
/Å
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FIG. 9. Comparison of the step free energy obtained from
thermodynamic integration simulations (Ref. [29]) with the
predictions of the capillary-wave model.

by approximately 25%: at T = 1300K the TI results
yield γst = (50.4 ± 0.4) meV/ Å, while the CFM yields

σ = (37 ± 1) meV/ Å. We discuss this discrepancy in
what follows in the context of statistical-mechanical the-
ories of capillary fluctuations (e.g., Refs. [18, 30, 31, 44]).

We begin by noting the differences in the way the two
quantities are defined. In the TI (thermodynamic) for-
malism, which is Gibbsian in spirit, step free energy is
defined as an excess free energy per unit length of the sys-
tem (simulation block in this case). This thermodynamic
formalism does not rely on or characterize the physical
length of the fluctuating step. The configurational free
energy contributions associated with these fluctuations
are naturally included in the TI method. By contrast, in
the capillary-wave theory the step tension σ, introduced
in Eq. (6), is defined as a free energy per unit physi-
cal length of the fluctuating step. These considerations
alone suggest that the step free energy obtained by the
TI method and the step tension defined in the CFM are
inherently different. Moreover, in the TI and CFM sim-
ulations the average physical length of the step is larger
than that of the system dimension along the step by ap-
proximately 30 to 35% for the system sizes considered
in Ref. [29]. In the TI formalism one could in princi-
ple introduce the total excess step free energy per unit
of average physical length, which in this case would be
approximately 23% smaller that the value of γst given
above.

To formalize the difference between the step stiffness
and the step free energy, we note that in the literature,
starting with the work of Buff, Lovett, and Stillinger [18],
there is a distinction drawn between σ, often referred to
as the “bare” stiffness, and γst, the step free energy. In
these theories, the latter differs from the former due to
the configurational free energy contributions associated

with the step fluctuations. Formally, this difference can
be derived by the use of Eq. (9) in Eq. (5) do derive an ex-
pression for the configurational free energy that depends
on the number of modes (coarse-graining length), as well
as a length scale that is used in Eq. (5) to make the par-
tition function dimensionless. These issues are discussed
at length by Kayser [31], who derives an expression for
the configurational contribution to γst that depends on
system size and geometry. Importantly, this contribu-
tion can be shown to be always negative, and thus lowers
the magnitude of the step free energy (γst) relative to
the bare stiffness (σ). We note that, as shown in Fig. 9,
we find the opposite trend, such that this cannot be the
explanation for our finding that σ derived from CFM
analysis of the MD data is lower than γst derived from
thermodynamic integration.

To further consider the origins for this difference, we
note that one possibility is that the TI results in Ref. [29]
could suffer from hysteresis effects associated with sharp
changes in the excess quantities as the step configuration
evolves from being straight at low temperatures to rough
at higher temperatures. We have investigated these is-
sues in detail in our previous work and concluded that for
the system sizes and time scales considered in Ref. [29]
the excess quantities behave smoothly and no evidence
of artifacts that would bias the TI integration was found.

We consider then an alternative explanation for the
discrepancy between the TI derived value of γst and
CFM derived value of σ shown in Fig. 9. Specifically,
as discussed by Gelfand and Fisher [30] and also noted
by Kayser [31], the theoretical analysis of Abraham [44]
for one-dimensional line interfaces in the 2D Ising model
shows that the stiffness that governs the growth the
mean-square width of the step with system size is exactly
equal to the interfacial free energy. This result suggests
a limitation to the classical capillary-fluctuation theory
where the two quantities σ and γst are distinct. This
limitation is discussed by Kayser who argues that the
stiffness that governs step fluctuations should depend on
the wavenumber k of the fluctuation, i.e., Kayser argues
that large-wavelength fluctuations “see a ‘renormalized’
surface tension” that differs from the bare stiffness due
to the configurational degrees of freedom associated with
the smaller wavelength fluctuations. In this picture, it
could be possible that the stiffness governing step fluc-
tuations for the lowest wavenumbers considered in our
simulations, which dominate our fitting of the MD data
to extract the stiffness values, could be lower than the
value of γst obtained from TI in Ref. [29] which consid-
ered considerably smaller step lengths. These considera-
tions suggest an interesting direction for future work that
would involve detailed analysis of the size dependence of
both TI and CFM results in the calculation of step free
energies.
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VI. SUMMARY AND CONCLUSIONS

Molecular dynamics simulations have been employed in
a study of capillary fluctuations of 〈110〉A, 〈110〉B, and
〈211〉 steps on the (111) surface of face-centered cubic
copper at a homologous temperature of 0.98. The simu-
lation results were analyzed within the framework of the
statistical-mechanical theory of capillary waves. Specif-
ically, the mean-square fluctuation amplitudes 〈|A(k)|2〉
derived from the simulation data were found to follow
the inverse square dependence on wavenumber (k−2) pre-
dicted from capillary fluctuation theory over a range kmin

to kmax. This range is bounded by values kmin, below
which the fluctuation relaxation times were too long to
be adequately sampled in an MD simulation of 100 ns,
and kmax, above which the atomic-scale wavelengths of
the fluctuations lead to deviations from from the theo-
retical k−2 scaling. Over this range of wavenumbers, the
fluctuation relaxation times were observed to display a
dependence on wavenumber consistent with a k−4 scal-
ing, corresponding to kinetics limited by step-edge diffu-
sion. We notice that although there are no theoretical
restrictions to the application of the CFM to tempera-
tures much lower than Tm, it is possible to find a limit
due to computational resources because lower tempera-
tures will require longer simulation times to sample the
step fluctuations adequately.

From the measured fluctuation amplitudes we derive
step stiffness values (σ̃) for each of the step orientations
considered, obtaining values for the largest system sizes
of (37± 1) meV/ Å that are isotropic within the statisti-
cal precision of the simulation results. The values of σ̃
derived by this CFM approach are compared to recent re-
sults for the step free energy (γst) obtained for the same

system using an alternative thermodynamic-integration
approach [29]. The TI values of γst and CFM values of
σ̃ show discrepancies at the level of 25%.

We discuss that the level of discrepancy can be consid-
ered within statistical-mechanical theories for step free
energies (e.g., [30]) that draw a distinction between val-
ues for the “bare” stiffness σ and the step free energy γst

that arises from configurational free energy contributions
to the latter. The theoretical considerations developed in
this previous literature, discussed in the context of the
present results, point to an opportunity to use the CFM
analysis framework described in this paper and the TI
formalism in Ref. [29] to derive more detailed insights into
the connection between the (possibly k-dependent) val-
ues of σ that govern fluctuations at intermediate length
scales and the step free energy.
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