
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum Monte Carlo with variable spins: Fixed-phase and
fixed-node approximations

Cody A. Melton and Lubos Mitas
Phys. Rev. E 96, 043305 — Published 10 October 2017

DOI: 10.1103/PhysRevE.96.043305

http://dx.doi.org/10.1103/PhysRevE.96.043305


Quantum Monte Carlo with variable spins: fixed-phase and fixed-node approximations

Cody A. Melton and Lubos Mitas
Department of Physics, North Carolina State University,

Raleigh, North Carolina 27695-8202, USA

(Dated: September 24, 2017)

We study several aspects of the recently introduced fixed-phase spinor diffusion Monte Carlo
(FPSODMC) method, in particular, its relation to the fixed-node method and its potential use
as a general approach for electronic structure calculations. We illustrate constructions of spinor-
based wave functions with the full space-spin symmetry without assigning up or down spin labels
to particular electrons, effectively “complexifying” even ordinary real-valued wave functions for
Hamiltonians without spin terms. Interestingly, with proper choice of the simulation parameters
and spin variables, such fixed-phase calculations enable one to reach also the fixed-node limit.
The fixed-phase approximation has several desirable properties when compared to the fixed-node
approximation. The fixed-phase solution provides a straightforward interpretation as the lowest
bosonic state in a given effective potential generated by the many-body approximate phase, whereas
nodal boundary conditions are defined through less intuitive and complicated hypersurfaces with
one dimension less than the original configuration space. In addition, the divergences of the local
energy and drift at real wave function nodes are smoothed out to lower dimensionality when the
wave function is complexified, thus decreasing the variation of sampled quantities and eliminating
artificial nodal domain issues that can occur in the fixed-node formalism. We illustrate some of
these properties on calculations of selected first-row systems that recover the fixed-node results with
quantitatively similar levels of the corresponding biases. At the same time, the fixed-phase approach
opens new possibilities for more general trial wave functions with further opportunities for increasing
accuracy in practical calculations.

I. INTRODUCTION

Recently, we introduced a projector quantum Monte
Carlo (QMC) method for calculating quantum systems
with both spatial and spin degrees of freedom [1]. The
approach is based on an overcomplete representation for
spin variables such that the sampling is similar to the spa-
tial variables. Given our choice of spin representation,
the method involves the fixed-phase [2] approximation,
hence its acronym fixed-phase spin-orbit/spinor diffusion
Monte Carlo (FPSODMC). This approach enabled us to
carry out QMC calculations of atoms and molecules with
spin-orbit interactions in the spinor formalism including
cases where high accuracy was needed for both spin-orbit
and electron correlation effects. In a subsequent work
we studied simple cases of fixed-phase vs. fixed-node [3]
approximations in order to compare the corresponding
biases in these two related possibilities [4, 5]. We con-
structed simple cases where both fixed-phase and fixed-
node conditions were equivalent or very similar and we
found comparable biases in the total energies using the
two approximations.

In this work we explore this direction further by in-
vestigating a unification and smooth transition between
the fixed-node and fixed-phase methods. While the FP-
SODMC method was originally used to study spin-orbit
interactions in various systems, the spin-orbit interaction
itself was introduced via a relativistic effective core po-
tential. Here we study another aspect of the method, in
particular, how the complex spin representation we in-
troduced can be used in the absence of the spin-orbit in-
teractions. As we show below, this provides a framework

for using complex wave functions under the fixed-phase
approximation in cases that would normally be described
by real-valued wave functions used within the fixed-node
approximation. It has been known for some time that the
fixed-node approximation is a special case of the fixed-
phase approximation. Here we make this relationship ex-
plicit through a straightforward construction of trial wave
functions that in a particular limit recover the fixed-node
counterparts. In addition, we explicitly show how one can
obtain the fixed-node result as a limit of the fixed-phase
calculation. We use this property for QMC fixed-phase
calculations of several systems and we directly compare
the fixed-phase biases to the corresponding fixed-node
biases. Another aspect of the proposed method is that
it provides a general framework for complexifying trial
wave functions. Given the success of complexification
schemes, such as in quantum field theories, this avenue
could prove to be a new tool for improving the accuracy
of QMC calculations. Finally, we elaborate on the ad-
vantages and also point out some of the current limits of
the fixed-phase approach.

II. FIXED-PHASE SPINOR DIFFUSION
MONTE CARLO

Let us briefly outline the key notions of the FPSODMC
approach: fixed-phase approximation, continuous spin
representation and the corresponding importance sam-
pling approach.
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A. Fixed-Phase Approximation and the Upper
Bound Property

For complex wave functions we present a brief sketch
of the fixed-phase method (FPDMC) [2] and its relation
to the fixed-node flavor of DMC.

Let us consider the Born-Oppenheimer Hamiltonian
H = −(1/2)∇2 + V (R), where ∇ = (∇1,∇2, . . . ,∇N )
and V denotes the electron-ion and electron-electron
Coulomb interactions. We denote spatial configurations
as R = (r1, r2, . . . , rN ) ∈ RdN , where N is the num-
ber of particles and d is dimensionality (here we as-
sume d = 3). We assume a complex wave function
Ψ(R, τ) = ρ(R, τ)eiΦ(R,τ) and substitute it into the
imaginary-time Schrödinger equation. For the amplitude
ρ(R, τ) and phase Φ(R, τ) we obtain

−∂ρ(R, τ)

∂τ
=

[
Tkin + V (R) +

1

2
|∇Φ(R, τ)|2

]
ρ(R, τ)

(1)

−∂Φ(R, τ)

∂τ
=

[
Tkin −

∇ρ(R, τ) · ∇
ρ(R, τ)

]
Φ(R, τ) (2)

where Tkin = −(1/2)∇2. The fixed-phase approximation
is given by imposing the phase to be equal to the phase of
trial or variational wave function ΨT (R) = ρT (R)eiΦT (R)

that is independent of τ

Φ(R, τ) = ΦT (R). (3)

The fixed-phase approximation is variational since the
repulsive potential Vph = 1

2 |∇ΦT |2 can only raise the
energy for an approximate phase [2]. This is easy to see
from the energy expectation with ρ exp(iΦT ) that must
be an upper bound to the exact energy for an arbitrary
symmetric ρ ≥ 0. The amplitude ρ that minimizes the
energy expectation value for the given phase ΦT is ob-
tained by solving the first equation. The accuracy of
this method clearly depends on the accuracy of the trial
phase and the convergence towards the exact eigenvalue
scales with the square of the difference between the exact
and approximate trial function. In the present work the
second equation is not considered any further.

B. Fixed-node as a special case of the fixed-phase
in general

The fixed-phase approximation is a generalization of
the more familiar fixed-node approximation, which can
be demonstrated in several ways. Let us present perhaps
the simplest such construction [4], where we add a com-
plex amplitude to a real-valued ΨT (R) as follows. We
denote the nodes of ΨT as the set of configurations

Γ =
{
R ∈ RdN |ΨT (R) = 0

}
. (4)

Now we add to ΨT another function (for simplicity, a
non-negative bosonic ground state of H)

Ψ̃T = ΨT + iεΨB (5)

Taking the limit ε→ 0 leads to [4]

Vph(R) = V∞δ(R−RΓ) (6)

where RΓ ∈ Γ and V∞ diverges as ∝ 1/ε, therefore Vph
enforces any wave function to vanish at the node Γ, i.e.,
it is equivalent to the fixed-node boundary condition.

C. Spin Representation

Let us denote one-particle spinors as

χ(r, s) = αϕ↑(r)χ↑(s) + βϕ↓(r)χ↓(s) (7)

where s is the coordinate of the spin projection along
the z−axis. Note that the spinor lives in the full SU(2)
Hilbert space since α, β are complex and |α|2 + |β|2 = 1
as usual. In its minimal representation the spin vari-
ables (“coordinates”) are discrete s = ±1/2 so that for
Sz eigenstates χ↑(1/2) = χ↓(−1/2) = 1, χ↓(1/2) =
χ↑(−1/2) = 0. Due to its discrete nature, this repre-
sentation has the potential to introduce large variations
of sampled quantities during stochastic updates as well
as loss of efficiency in propagation due to the decreased
acceptance rate. Besides the fluctuations of various quan-
tities of interest (local energy, drifts, values of the wave
function, etc.), the discrete sampling would eventually
lead to exponential efficiency barrier in the many-particle
limit.

One possibility to address this obstacle is to make the
spin configuration space continuous, which allows for con-
tinuous evolution as well as importance sampling [3, 4].
We choose an overcomplete spin representation through
the utilization of a 1D ring (i.e. a U(1) representation)
with the lowest pair of degenerate, orthogonal eigenstates
as follows:

〈sj |χ↑〉 = eisj , 〈sj |χ↓〉 = e−isj (8)

where the spin variable sj ∈ [0, 2π) . Clearly, the paths
in this space are continuous and resemble paths for spa-
tial coordinates. As will be shown below, this partic-
ular choice of representation coupled with our modified
Hamiltonian allows the spin variables to evolve and be
updated in the exact same fashion as the spatial vari-
ables.

D. Importance sampling

Rewriting the Schrödinger equation in an integral form
with importance sampling by ρT leads to the following
equation for the mixed distribution g = ρρT

g(R′, t+ τ) =

∫
dR

ρT (R′)

ρT (R)
G(R′ ← R, τ)g(R, t) (9)

which is well-known from the fixed-node QMC [3, 4].
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Spin variables are sampled by introducing a spin “ki-
netic” energy with a corresponding energy offset such
that for all si, i ∈ {1, 2, ..., N} we write

T si = − 1

2µs

[
∂2

∂s2
i

+ 1

]
. (10)

where µs is an effective mass. The full Hamiltonian then

becomes H ′ = H +
∑N
i=1 T

s
i . Clearly, T si ψ(ri, si) = 0

due to the introduced offset so that there is no energy
contribution from the spin Laplacian. The inclusion of
the spin kinetic energy leads to the following importance
sampled Green’s function

G̃(X′ ← X; τ) ' TX′,Xe
−τ [EL(X)+EL(X′)−2ET ]/2 (11)

with

TX′,X ∝ exp

[
−
∣∣R′ −R− τvR

D(R)
∣∣2

2τ

]

× exp

[
−
∣∣S′ − S− τsvS

D(S)
∣∣2

2τs

]
(12)

where X = (r1, r2, ..., rN , s1, s2, ..., sN ) = (R,S). Here
we have introduced a spin time step τs = τ/µs as well as
vR
D = ∇R ln ρT (X) and vS

D = ∇S ln ρT (X) which corre-
spond to the spatial and spin drifts. The local energy is
given by EL = Re[(H ′ΨT )/Ψ∗T ] [1, 3]. With this choice of
spin representation, implementation into existing codes is
rather straightforward. The spin variable can be treated
essentially like another spatial degree of freedom, except
that the effective spin mass implies two evolutions: one
for the spins and another for the spatial degrees for free-
dom. That in turn introduces two types of time steps
when implementing the dynamics of the whole system.

Note that there are two possible limiting cases with
regard to µs vs the ordinary me.

The first limit corresponds to µs << me, i.e., spin
mass being much smaller than the electron mass. The
spin degrees of freedom then evolve much faster so that
effectively the spins are integrated out much faster than
is the pace of the spatial propagation. That guarantees
to provide the fixed-phase limit and it is expected that
it will lead to the higher energy since the fixed-phase
potential is non-zero in the whole space. Therefore it
should lead to the larger bias when compared with the
fixed-nodes that are codimension 1. Indeed, this is what
we have presented already in our previous work, see Ref.
[4], Fig. 3.

The opposite limit, that is relevant for our present
study, corresponds to the very slow spin evolution, i.e.,
µs >> me. The spin configurations then appear as al-
most static external constraints in a (relatively) much
faster spatial evolution. In the results section we come
to this point again and we show that in this mode the
simulations will enable us to recover the fixed-node solu-
tion. Before fully appreciating this point we need to ex-
plain the trial function forms and corresponding choices
of spin coordinates as outlined below.

We close this section with the note that the practical
implementation of different masses is done through the
different time steps for spins and spatial variables. Note
that the extrapolation to the zero time step limit should
be done in such a way that the ratio of the two time
steps is constant as given by the choice of µs/me. Alter-
natively, one of the time steps can be chosen sufficiently
small so that its bias is negligible overall, while the other
can vary within an acceptably low-bias range, as we have
chosen to do in this study.

III. TRIAL WAVE FUNCTIONS

The FPSODMC trial functions are built from spinors
χ(r, s) = αϕ↑(r)χ↑(s) + βϕ↓(r)χ↓(s) where orbitals
ϕ↑, ϕ↓ are calculated in spinor-based DFT, HF/DHF or
correlated methods. The full configuration space for par-
ticles is X = {(r1, s1), . . . , (rN , sN )} ∈ R3N × [0, 2π)N

and we write the trial wave function as

ΨT (X) = eU(R)
∑
α

cαdetα [. . . , χi(rk, sk), . . .] . (13)

with i, k = 1, ..., N . The particle correlations are ex-
plicitly approximated by the Jastrow factor U(R) that
captures two-particle and, possibly, higher order correla-
tions, as is customary in QMC calculations [3, 4, 6, 7].

A. From fixed-phase to fixed-nodes

In this work we are particularly focused on the limit of
vanishing complex component of the wave function and
how the single-reference spinor determinant simplifies to
the product of spin-up and spin-down determinants, i.e.,
to the usual fixed-node form. We emphasize that in the
present exploration of the FPSODMC method the spin-
orbit interactions are disregarded in both all-electron and
pseudopotential settings. Let us show that this is in-
deed what happens for our spin representation as briefly
sketched earlier [4]. Note that our previous exposition of
this aspect was not formulated precisely [4], so that we
clarify it in detail here. For the sake of consistency with
the previous paper we consider N occupied spinors that
can be grouped as N/2 Kramer’s pairs (for simplicity as-
suming N to be even). We can write the Kramer’s pair
as

χ+ = (ϕ+ ∆ϕ)χ↑ + (ϕ−∆ϕ)χ↓ (14)

χ− = (ϕ−∆ϕ)χ↑ − (ϕ+ ∆ϕ)χ↓ (15)

where the ∆ϕ is the spin-orbit induced splitting of
the spatial orbital ϕ. The block of the first four
rows/columns from the corresponding Slater determinant
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reads as follows

det


χ+

1 (1) χ+
1 (2) χ+

1 (3) χ+
1 (4) ...

χ−1 (1) χ−1 (2) χ−1 (3) χ−1 (4) ...
χ+

2 (1) χ+
2 (2) χ+

2 (3) χ+
2 (4) ...

χ−2 (1) χ−2 (2) χ−2 (3) χ−2 (4) ...
...

 . (16)

Now we assume that the spin-orbit splitting ∆ϕ→ 0 and
then

χ+ = ϕ(eis + e−is)→ ϕeis (17)

χ− = ϕ(eis − e−is)→ ϕe−is (18)

by elementary rearrangements (adding, subtracting rows
with the same ϕ). Explicitly, this gives

det


ϕ1(1)eis1 ϕ1(2)eis2 ϕ1(3)eis3 ϕ1(4)eis4 ...
ϕ1(1)e−is1 ϕ1(2)e−is2 ϕ1(3)e−is3 ϕ1(4)e−is4 ...
ϕ2(1)eis1 ϕ2(2)eis2 ϕ2(3)eis3 ϕ2(4)eis4 ...
ϕ2(1)e−is1 ϕ2(2)e−is2 ϕ2(3)e−is3 ϕ2(4)e−is4 ...

...


(19)

which is the usual Slater determinant of spin-orbital ma-
trix with the size N ×N . This form effectively complexi-
fies the usual real wave function due to particular choice
of spin functions. Clearly, for arbitrary values of spin
variables this wave function is different from the usual
spin-up and spin-down product used on fixed-node cal-
culations although in what follows we will demonstrate
how to recover the fixed-node form using an appropri-
ate choice for the spin coordinates. Let us now assume
that si = s1, s3, ... will become the spin-up channel while
si = s2, s4, ... will end up being the spin-down channel.
In order to reach this spin-up/down partitioning explic-
itly we restrict s1, s3, s5, ...,= s, and s2, s4, ... = s′ where
s, s′ are distinct. Then we can write the determinant

det


ϕ1(1)eis ϕ1(2)eis

′
ϕ1(3)eis ϕ1(4)eis

′
...

ϕ1(1)e−is ϕ1(2)e−is
′
ϕ1(3)e−is ϕ1(4)e−is

′
...

ϕ2(1)eis ϕ2(2)eis
′

ϕ2(3)eis ϕ2(4)eis
′
...

ϕ2(1)e−is ϕ2(2)e−is
′
ϕ2(3)e−is ϕ2(4)e−is

′
...

...


(20)

and eliminating elements in each odd row we get

det


0 c0ϕ1(2) 0 c0ϕ1(4) ...

ϕ1(1)e−is ϕ1(2)e−is
′
ϕ1(3)e−is ϕ1(4)e−is

′
...

0 c0ϕ2(2) 0 c0ϕ2(4) ...

ϕ2(1)e−is ϕ2(2)e−is
′
ϕ2(3)e−is ϕ2(4)e−is

′
...

...


(21)

where

c0 = [eis
′
− ei(2s−s

′)] = eis[ei(s
′−s) − e−i(s

′−s)] =

= 2ieis sin(s′ − s).

Furthermore, by reshuffling the first two rows and
columns and factorizing out the spins from the deter-
minant we get

∝ [sin(s′ − s)]N/2det


ϕ1(1) ϕ1(3) 0 0 ...
ϕ2(1) ϕ2(3) 0 0 ...

0 0 ϕ1(2) ϕ1(4) ...
0 0 ϕ2(2) ϕ2(4) ...

...

 .
(22)

After reshuffling the rest of rows and columns, the sin-
gle determinant of spinors factorizes into the product of
two determinants of spin-up and spin-down block matri-
ces. Generalization to odd N with unpaired spinor(s)
is straightforward. Therefore this decomposition strictly
depends on the fact that all the spins have to acquire one
of the two distinct values as expected when going from
continuous to the fixed-label form that is traditionally
used in FNDMC calculations.

B. Wave functions with full space-spin symmetries

In our recent paper we have probed into the behavior
of such wave functions for simple cases [5]. It is useful
to use an example such as the Li atom wave function to
illustrate various wave function forms we consider here
(assuming usual nucleus-electrons Hamiltonian without
spin terms). The full symmetry exact wave function for
the Li atom doublet is given by [8, 9]

Ψ(1, 2, 3) = | ↑〉1| ↑〉2| ↓〉3F (1, 2, 3)

+ | ↑〉1| ↓〉2| ↑〉3F (3, 1, 2)

+ | ↓〉1| ↑〉2| ↑〉3F (2, 3, 1) (23)

where the function F depends only on the spatial coor-
dinates. The function F is the exact, irreducible, spatial
variables-only eigenstate for the three electrons in the
doublet state. Indeed, it corresponds to the exact fixed-
node solution sought after in the FNDMC method.

The single-configuration trial wave function in the
fixed-node framework would look like

ΨT (1, 2, 3) = det↑1,2[1s, 2s]det↓3[1s] (24)

where the electrons 1 and 2 are assigned as spin-up while
the electron 3 is spin-down. Clearly, this is just a pro-
jection onto the spin state | ↑〉1| ↑〉2| ↓〉3 with the single-
reference term approximating the spatial part F (1, 2, 3).

Our wave function with variable spins is given by

Ψ = det[1s× eis, 1s× e−is, 2s× eis]
= eiΦ1det↑1,2[1s, 2s]det↓3[1s]− eiΦ2det↑3,1[1s, 2s]det↓2[1s]

+eiΦ3det↑2,3[1s, 2s]det↓1[1s]. (25)

It therefore results in a product of determinants approx-
imating the function F with the phase factors from vary-
ing spins as coefficients. If one chooses, s1 = s2 = s
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and s3 = s′, the wave function collapses to a single de-
terminant with a spin variable dependent coefficient as
described above.

Sampling both spin and position spaces enables one to
evolve between the spatial wave functions with permuted
coordinates, i.e., eventually sampling all such equivalent
possibilities. Note that the overall structure of the ex-
act wave function and our variable spin formulation are
analogous. While in this example the variable spins and
corresponding phase factors appear superfluous, they en-
able us to use the fixed-phase formalism to reach the
fixed-node limit as explained above. In addition, the
form becomes fully operational whenever spin-dependent
terms in the Hamiltonian are switched on.

For completeness, let us mention that in the limit of
fast spins (small effective spin masses) the energy will be
higher than in the fixed-node limit. This is straightfor-
ward to understand: we have complexified the wave func-
tion which is actually real. The added continuous spin
space and corresponding phase potential “contaminate”
the wave function and the expectation values. Note that
this aspect was not our focus here. Further advances of
the method in this limit are in progress, however, they
are out of scope of the present study.

IV. FIXED-PHASE VARIABLE SPINS QMC AS
A GENERAL METHOD

In fixed-node QMC calculations with real wave func-
tions the node improvement is often very challenging
since any general method proposed so far appears to have
very unfavorable scaling. In several papers we have made
some progress in understanding the relations between
electron density, multiplicity of bonds and node curva-
tures that appear to be related with increased fixed-node
bias [10]. In addition, we found relationships between
nodes and eigenvalues that show the nodes carry infor-
mation about the spectrum as presented elsewhere [11].

In this respect, the fixed-phase approximation opens
new perspectives both in a better understanding of re-
lated issues with regard to antisymmetry and the corre-
sponding fermion sign problem as well as possibilities for
new constructions of more efficient approximations.

One important property of the fixed-phase approxima-
tion is that the sampled distribution ρ is non-negative
everywhere and, as we mentioned, generically its zero lo-
cus is a subset of configurations with codimension 2, i.e.,
two dimensions lower than the full configuration space.
In that case the sampling of the configuration space is er-
godic. One then solves for the bosonic ground state in a
given, state-dependent potential. A simple toy example
is an atomic two-particle 3P state with the wave function

Ψ(1, 2) = r1r2g(r1)g(r2)[Y11(1)− Y11(2)]

where g are positive radial functions. Its phase-generated

potential is given by

Vph =
1

2[(x1 − x2)2 + (y1 − y2)2]

while the corresponding non-negative amplitude ρ(r1, r2)
vanishes only at x1 = x2, y1 = y2 [5]. This also has other
consequences that make it favorable in comparison with
the fixed-node approach, namely, the divergences of the
local energy and drift are significantly diminished making
them much smoother. For example, the drift for the im-
portance sampled distribution given by ∇ ln ρ is smooth
except at the point of vanishing ρ. This removes compli-
cations around nodes of real functions such as large local
energy fluctuations, poor approximation of the Green’s
function, non-zero probability of crossing/re-crossing the
node within a given time step, possible occurrences of
stuck walkers and other difficulties, due to the fact that
ln ΨT is non-analytic at the node. Of course, all these
complications can be brought under the control by de-
creasing the time step in the fixed-node formalism. How-
ever, here these complications are simply absent in the
fixed-phase formulation by being smoothed out into the
lower dimension.

We note that in low-dimensional systems or for partic-
ular symmetry constraints one can end up with special or
non-generic cases having zeros of ρ with codimension 1,
i.e., one dimension higher than the generic codimension
2 mentioned above. A simple example is the lowest two-
particle triplet in a periodic box with the wave function
det[1, eikx]. This leads to ρ(x1, x2) = 2| sin[(x1 − x2)/2]|
that has a (2d−1)-dimensional zero locus regardless of d,
i.e., the dimensionality of the box. The reason is that this
particular state effectively behaves as having 1D nodal
structure that is non-generic. Interestingly enough, for
d > 1 this node volume is smaller than in the correspond-
ing fixed-node wave function given by the real (or imag-
inary) part, Re{det[1, eikx]}. This aspect is more thor-
oughly investigated in our subsequent work [11] that ex-
plore the corresponding properties of nodes in such cases
and further generalizations.

Perhaps the most appealing and yet unexplored prop-
erty is that the approximation has a form of an additive
effective many-body potential

Vph = (1/2)[∇ΦT ]2 (26)

so that the original Schrödinger equation changes to

(T + V )Ψ = EΨ → (T + V + Vph)ρ = Eρ (27)

This effective potential formulation offers a clear con-
ceptual understanding of the transformed problem that
reminds us of effective potential/field methods used in
other areas of quantum and high energy physics. It has
a number of desired properties when thinking about the
solution of the many-body problem, such as that the solu-
tion is non-negative everywhere, the state-dependent po-
tential Vph is purely repulsive (it only raises the energy)
and it is explicitly and directly given by the approximate
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phase. Consequently, it provides a constructive path for
improvements with the perspective that the solution re-
ally exists, i.e., in the case of the exact phase one obtains
the exact solution/eigenstate similarly to the fixed-node
approximation (that is its special case). Interestingly, not
much is known about the phases of stationary states. It is
possible that more thorough analysis of the correspond-
ing effective potentials will lead to a better understanding
as well as to better approximations for practical calcula-
tions of realistic systems. What follows provides the first
attempts to probe some aspects of this formulation.

V. RESULTS

We calculate the total energies for the first-row atoms
using both the FN and FP approximations. For the FN
calculations, we build our trial wave function from HF
orbitals generated from Gamess-US [12]. For the FP
calculations, we build our trial wave function from the
one-particle spinors generated from Dirac14 [13]. For
the FN calculations, we perform a linear time step ex-
trapolation to zero time step. In all cases, a spatial time
step of 0.001 Ha−1 is in agreement with the zero time
step limit. Motivated by that, for all FP calculations we
hold the spatial time step fixed at τ = 0.001 Ha−1, rather
than performing a spatial time step extrapolation.

We have previously studied some of the aspects of ef-
fective spin masses and the corresponding difference be-
tween the spin vs. spatial evolutions [1, 4]. The analysis
of total energies as function of spin mass leads to the
following conclusions:

a) With µs << me, the spins are basically fully in-
tegrated out for each spatial step that is assumed to be
much smaller. Then one sees higher fixed-phase bias since
the repulsive potential acts in the full configuration space
unlike the fixed-node condition that applies only on the
configuration subspace.

b) With µs >> me and for a small number of electrons,
the propagation eventually finds the region(s) close to the
pure fixed-node wave function. Apart from small spin
fluctuations the energy therefore reaches very closely to
the fixed-node solution.

In both limits and also for intermediate spin mass
regimes the energy is an upper bound, since the energy
is basically limited from below by the fixed-node limit.
The complexified wave function and the fixed-phase only
increases the energy since it acts in full space instead
of fixed-node codimension 1 hypersurface and expands
the configuration space in an ad hoc manner through the
continuous spin as we argued in previous parts. This has
also further implications that single reference wave func-
tions will be, in general, less accurate, as we have actually
observed in calculations of several systems [4, 5]. Here
we are actually focused on the large spin mass limit that
enables us to recover the fixed-node results although the
calculations are carried out in FPSODMC setting.

As described in §III, we initialize the spin-

configurations to facilitate the decomposition into two
independent determinants, as must be the case in a spin
independent Hamiltonian. As an illustration of why
this is necessary, consider the N atom using HF spa-
tial orbitals and no Jastrow factor. The VMC energy
should agree with the HF energy, within the statisti-
cal errors. This is because for any trial wave func-
tion using our spinor representation and Hs =

∑
i T

s
i ,

〈ΨT |H + Hs|ΨT 〉 = 〈ΨT |H|ΨT 〉 by construction since
Hs|ΨT 〉 = 0. Therefore, the spin kinetic energy does not
contribute to the energy expectation value. However, the
trial wave function with included complex spin-orbitals
is different from the usual fixed-node ΨT with spin-up
and -down product of determinants. For arbitrary val-
ues of spin variables our ΨT cannot be factorized into
such a fixed-node form. Consequently, if one randomly
samples the spin variables and performs such VMC cal-
culation, the obtained energy is −54.3341(8) Ha which
clearly disagrees with the HF value of -54.40093 Ha. It
is higher since we made the wave function complex in a
way that for arbitrary values of spin variables does not
allow direct separation of spin and space degrees of free-
dom (although the Hamiltonian does, since H and Hs do
commute). Note however, that this is perfectly appropri-
ate and, in fact necessary, for systems where spins truly
vary such as with spin-orbit interactions.

On the other hand, if we initialize the spin variables
such that s1 = s3 = s5 = s6 = s7 = s and s2 = s4 = s′,
which yields a product of determinants with a trivial
phase prefactor, and keep spins effectively static, we ob-
tain variationally −54.4003(7) Ha, which agrees with the
energy obtained via HF as expected.

When performing FPSODMC for our systems here, we
vary the spin mass until the energy is saturated for a
fixed spatial time step. An example of the extrapola-
tion is shown in Figure 1. For µs between 105 and 109

(ie, τs between 10−12 and 10−9), the DMC energies all
agree to within error bars and are converged. Perform-
ing the same procedure for all atoms, we list the total
energies in Table I. By comparing the FN and FP total
energies to the exact energies in the non-relativistic limit
(NRL)[14], we calculate the fixed-node/phase correlation
energy percentage error and is plotted in Figure 2.

Regardless of the approximation, the associated error
decreases with atomic number subject to the choice of
HF nodes/phases. Additionally, the FN and FP approx-
imations yield essentially identical errors. A few com-
ments to explain these results is warranted. While we are
interested in the energy from the physical Hamiltonian
EFPDMC(H), we are actually calculating EFPSODMC(H+
Hs). SinceHs ∝ µ−1

s , in the limit that µs →∞ we obtain
the desired physical limit, namely EFPSODMC(H+Hs)→
EFPDMC(H). Additionally, by setting the initial spin
variables to a desired configuration, we set the trial wave
function/trial phase. As explained above, with a proper
choice for the spin assignment coupled with heavy spins
(i.e. µs →∞) we are able to reproduce the FNDMC re-
sults since the wave function then effectively reaches the
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limit of the product of spin-up and -down determinants.
It is well known that using HF nodes, the Be atom ex-

hibits a significant FN error [10]. The ground state sym-
metry of Be is 1S0, which is obtained with the electron
configuration 1s22s2. Using a HF trial wave function,
the nodal surface ∂Ω =

{
R ∈ R3N |ΨT (R) = 0

}
sepa-

rates the configuration space into 4 nodal domains, two of
which give positive wave function while by symmetry the
other two exhibit negative values. It is also well-known
that by adding just one more configuration that coore-
sponds to the near-degenerate state of the same sym-
metry one finds only two nodal domains as expected for
generic fermionic ground state [15–17]. Previous calcu-
lations have found that it almost completely eliminates
the fixed-node bias [16, 18]. The corresponding two-
configuration trial function is given by

|ΨT 〉 = c0|1s22s2〉+ c1
∑

i∈{x,y,z}

|1s22p2
i 〉 (28)

as with this choice of trial wave function and full opti-
mization of all variational parameters one can reach al-
most zero bias in the FN calculation [18]. Instead we
perform an optimization of this wave function with only
the Jastrow parameters and expansion coefficient, keep-
ing the HF orbitals fixed with resulting small increase
in the energy compared to the nearly exact value. To-
tal energies are shown in Figure 3. Again, by choosing
the FP calculations to preserve the spin assignments of
s1 = s3 = s and s2 = s4 = s′ by using a large spin mass,
the FN and FP calculations agree to within statistical
uncertainty.

Thus far, we have only presented results for all-electron
systems. We also consider the FN and FP approxima-
tion when nonlocal pseudopotentials are included [1, 4].
We calculate the binding curve for the nitrogen dimer in
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FIG. 1: FPDMC energy of the C atom with varying spin
masses µs (or equivalently the spin time step τs = τ/µs).
The initial spin configurations were chosen so that the wave
function decomposes into a product of determinants.
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FIG. 2: Percentage error of the correlation energies in the
fixed-node (FN) and fixed-phase (FP) extrapolated calcula-
tions.
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FIG. 3: Total energies for the Be atom with a two-
configuration wave function. The top x-axis shows the actual
spin time step for the FN calculation, which is linearly ex-
trapolated to zero time step with an energy of -14.66071(5)
Ha. The bottom x-axis indicates the spin mass for the FP
calculation, where with each value configurations are initial-
ized such that s1 = s3 = s and s2 = s4 = s′. We hold the
spatial time step fixed at τ = 0.001 Ha−1 throughout.

the 1Σg state, using a single-reference trial wave func-
tion for each approximation built from PBE0 spatial or-
bitals. We utilize a BFD pseudopotential for N [19]. In
order to calculate the binding curve, we first calculate
the isolated N atom both in FN and FP. Under the lo-
cality approximation [20], we perform a time step ex-
trapolation within FNDMC and obtain a total energy
of −9.79135(8) Ha. Using a fixed spatial time step, we
perform a spin mass extrapolation as described above to
facilitate decomposition into a product of two indepen-
dent determinants using FPSODMC and obtained a total
energy of −9.7917(1) Ha.
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Atom HF NRL[14] FN FP
Li −7.43272 −7.47806 −7.47794(2) −7.47804(7)
Be −14.57302 −14.66736 −14.65720(6) −14.6574(2)
B −24.52906 −24.65393 −24.64030(9) −24.64016(8)
C −37.68861 −37.84500 −37.8300(3) −37.8291(3)
N −54.40093 −54.58930 −54.5750(6) −54.5754(1)
O −74.80939 −75.06700 −75.049(1) −75.0513(1)
F −99.40934 −99.73400 −99.7164(6) −99.7175(1)

TABLE I: Total energies in Ha for the first-row elements using FN(FP) DMC with HF nodes (phases). FN calculations are
extrapolated to zero time step. FP calculations take a spatial time step of 0.001 and decrease the effective spin mass (decrease
the actual spin time step) until the energy is unchanged. NRL is the estimated nonrelativistic exact energy.

The dimer curve is shown in Figure 4 and shows the
binding obtained from the FN and FP methods. The
QMC data is fit to the Morse potential

V (r) = De

[
e−2a(r−re) − 2e−a(r−re)

]
(29)

and the vibrational frequency can be obtained via

ω0 =

√
2a2De

µ
(30)

where µ is the reduced mass of the dimer. The FN and
FP solutions are quite similar, only differing by roughly
0.1−0.5 mHa throughout the entire curve. Coupled with
the slightly different energies for the individual atom,
the overall binding energy differs from the FN result by
roughly ∼ 0.02 eV, as shown in Table II. Clearly, the
differences between the methods are very small, basically
similar to variations in the fixed-node biases for different
atoms and molecular systems and choices of orbitals used
in single-reference trial functions.

It remains an interesting question whether the FP-
SODMC energy could go below the corresponding
FNDMC energy. On general grounds this cannot be a
priori ruled out since we have expanded the configura-
tion into a larger space through the introduction of an
overcomplete spin representation. Overcompleteness can
possibly compromise the upper bound property, i.e., the
energy could go below the fixed-node limit at some values
of µs < ∞. In general, this is determined by the type
of overcomplete construction. In our case, for Hamilto-
nians without spin terms we also make the trial wave
function “worse” by making it non-separable in the spin
and space variables, although for expectations (varia-
tional level) the Hamiltonian is separable. These two
tendencies therefore go against each other. So far the in-
dications are that the non-separability distortion appears
stronger than the freedom gained from the overcomplete-
ness, hence the energies obtained by FPSODMC are ei-
ther higher or, in appropriate limit, equal to FNDMC.
However, for heavy but not fully static spins it is diffi-
cult to dismiss the possibility that the DMC algorithm
might find spin-space regions with favorable energies that
could push the overall expectation below the FNDMC
limit. Clearly, this aspect calls for further studies.
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FIG. 4: N2 binding curve for the 1Σg molecular state using
a HF nodal surface/phase. The horizontal line indicates the
experimental dissociation energy. The experimental error bar
is too small to be visible on this scale. The small increase
in FP underbinding comes from a slightly smaller fixed-phase
bias in the N atom and a slightly larger bias in the dimer
with the HF phase. We note that the results need not to
be necessarily identical for Hamiltonians with ECPs due to
marginal differences in localization errors from two close, but
non-identical trial wave functions.

TABLE II: Equilibrium bond lengths (re), dissociation en-
ergies (De) and vibrational frequencies (ν0) for the various
approximations compared to experiment using a PBE0 nodal
surface/phase. Parameters and uncertainties are obtained
from a fit to the Morse potential.

Method re (Å) De (eV) ω0 (cm−1)
FN 1.0905(7) 9.659(6) 2387(24)
FP 1.091(1) 9.64(1) 2377(45)

Expt.[21] 1.098 9.758(6) 2358.57(9)

VI. CONCLUSIONS

In this paper we elaborate in detail on a particularly
important aspect of the fixed-phase spin-orbit/spinor
DMC (FPSODMC) method that we have introduced re-
cently [1]. We highlight some of the key aspects how
the method can be useful even in cases with no spin-
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orbit terms and with nominally real eigenstates. In par-
ticular, we illustrate how to obtain the fixed-node limit
results from the fixed-phase setting both in theory and
in practical calculations. This is enabled by complexi-
fying the wave function through spinors that correspond
to up/down spin states which are usually static and as-
signed in the beginning of common fixed-node calcula-
tions. We allow them to vary around the fixed values
providing thus a complex “noise” that allows us to use
fixed-phase rather than the fixed-node methodology.

We point out the promising features of such fixed-phase
method and also analyze its behavior in our continuous
spin formalism and we present the results for the first-
row atoms and molecule calculations. The method en-
ables us to write full space-spin symmetry wave functions
for Hamiltonians with or without explicit spin terms and
opens thus possibilities for possible further improvements
of trial wave functions. We consider the results very en-
couraging since in a straightforward manner we were able

to obtain the fixed-node results in both all-electron and
effective core potential settings as well as confirm essen-
tially the same quality of both single and multi-reference
trial wave functions. The method opens interesting new
perspectives for many-body electronic structure calcula-
tions in complex wave function and spinor formalism that
takes into account variable nature of the spin degrees of
freedom and provides new possibilities for construction
of more general trial wave functions.
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