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A hyperuniform random heterogeneous material is one in which the local volume fraction fluc-
tuations in an observation window decay faster than the reciprocal window volume as the window
size increases. Recent studies show that this new class of materials are endowed with superior phys-
ical properties such as large isotropic photonic band gaps and optimal transport properties. Here,
we employ a stochastic optimization procedure to systematically generate realizations of hyper-
uniform heterogeneous materials with controllable short-range order, which is partially quantified
using the two-point correlation function S2(r) associated with the phase of interest. Specifically,
our procedure generalizes the widely-used Yeong-Torquato reconstruction procedure by including an
additional constraint for hyperuniformity, i.e., the volume integral of the auto-covariance function
χ(r) = S2(r)−φ2 over the whole space is zero. In addition, we only require the reconstructed S2 to
match the target function up to a certain cut-off distance γ, in order to give the system sufficient
degrees of freedom to satisfy the hyperuniform condition. By systematically increasing the γ value
for a given S2, one can produce a spectrum of hyperuniform heterogeneous materials with varying
degrees of partial short-range order compatible with the specified S2. The mechanical performance
including both elastic and brittle fracture behaviors of the generated hyperuniform materials is
analyzed using a volume-compensated lattice-particle method. For purpose of comparison, the cor-
responding non-hyperuniform materials with the same short-range order (i.e., with S2 constrained
up to the same γ value) are also constructed and their mechanical performance is analyzed. Here,
we consider two specific S2 including the positive exponential decay function and the correlation
function associated with an equilibrium hard sphere system. For the constructed systems associated
with these two specific functions, we find although the hyperuniform materials are softer than their
non-hyperuniform counterparts, the former generally possesses a significantly higher brittle fracture
strength than the latter. This superior mechanical behavior is attributed to the lower degree of stress
concentration in the material resulting from the hyperuniform microstructure, which is crucial to
crack initiation and propagation.

PACS numbers: 05.20.-y, 61.43.-j

I. INTRODUCTION

The concept of hyperuniformity was first introduced by
Torquato and Stillinger for many-particle systems [1] and
was subsequently generalized by Zachary and Torquato
to heterogeneous materials [2]. Specifically, a hyperuni-
form point pattern (e.g., a collection of particle centers
in a many-body system) is one in which the local num-
ber density fluctuations grow slower than the volume of
an observation window as the window size increases, im-
plying that the infinite-wavelength number density fluc-
tuations completely vanish. Similarly, a hyperuniform
random heterogeneous material is one in which the local
volume fraction fluctuations in an observation window
decay faster than the reciprocal window volume as the
window size increases and the infinite-wavelength local
volume fraction fluctuations are completely suppressed.

The property of hyperuniformity has been identified
in many physical and biological systems, including the
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density fluctuations in early universe [3], maximally ran-
dom jammed packing of hard particles [4–7], certain
exotic classical ground states of many-particle systems
[8–15], jammed colloidal systems [16–19], driven non-
equilibrium systems [20–23], certain quantum ground
states [24, 25], avian photoreceptor patterns [26], organi-
zation of adapted immune systems [27], and amorphous
silicon [28, 29], to name but a few. It has been suggested
that hyperuniformity can be considered as a new state of
matter [1], which possesses a hidden order in between of
that of a perfect crystal and a totally disordered system
(e.g., a Poisson distribution of points). In addition, it
has been shown that hyperuniform heterogeneous mate-
rials can be designed to possess superior physical proper-
ties including large isotropic photonic band gaps [30–32]
and optimized transport properties [33]. Very recently,
the notation of hyperuniformity has been further gen-
eralized to vector fields, anisotropic and inhomogeneous
systems [34, 35]. In addition, materials with hyperuni-
form structures have also been successfully fabricated or
synthesized using different techniques [36, 37].

A hyperuniform many-particle system with a specific
degree of spatial order can be reconstructed using the
collective coordinate approach (CCA) [10–12, 14, 15].
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Specifically, in CCA an initial random configuration of
particles is evolved using stochastic optimization to a fi-
nal state possessing a prescribed structure factor S(k)
with the small-wavenumber limit limk→0 S(k) = 0 to en-
sure hyperuniformity. The degree of order in the system
can be controlled by imposing different forms of S(k), sat-
isfying the condition limk→0 S(k) = 0. This approach has
recently been generalized to reconstruct hyperuniform
heterogeneous materials possessing a prescribed spectral
density χ̂(k) with limk→0 χ̂(k) = 0 [34]. In this case,
an initial random distribution of pixels representing the
phase of interest is evolved using stochastic optimization
to a final microstructure with the prescribed χ̂(k). The
hyperuniform condition limk→0 χ̂(k) = 0 for heteroge-
neous materials is discussed in detail in Sec. II.

In this paper, we devise an alternative procedure to
systematically generate realizations of hyperuniform het-
erogeneous materials with controllable short-range order.
Instead of evolving the material microstructure to achieve
a prescribed spectral density χ̂(k), in our reconstruction
the final microstructure is required to partially match a
set of prescribed spatial correlation functions (e.g., the
two-point correlation function S2) for the phase of in-
terest while simultaneously satisfying the hyperuniform
condition limk→0 χ̂(k) = 0. This is achieved by generaliz-
ing the Yeong-Torquato reconstruction procedure [38] to
include an additional energy term for the hyperuniform
condition, which can be also expressed as the volume in-
tegral of the auto-covariance function χ(r) = S2(r) − φ2

over the whole space being zero. Different from previ-
ous reconstruction/construction studies, we only require
the reconstructed S2 to match the target function up to
a certain cut-off distance γ, in order to give the system
sufficient degrees of freedom to satisfy the hyperuniform
condition. By systematically increasing the γ value, one
can produce a spectrum of hyperuniform heterogeneous
materials with varying degrees of partial short-range or-
der compatible of the specified correlation function. In
this work, we consider two specific S2 including the posi-
tive exponential decay function and the correlation func-
tion associated with an equilibrium hard sphere system.

For purpose of comparison, the corresponding non-
hyperuniform materials, defined as materials possess the
same correlation function as the hyperuniform counter-
part for r ≤ γ but do not satisfy the hyperuniform
condition, are also generated. A hyperuniform mate-
rial and its non-hyperuniform counterpart possess mi-
crostructures that are statistically indistinguishable from
one another on small length scales.

We also study the mechanical performance of
the generated hyperuniform and corresponding non-
hyperuniform materials, including both elastic and
failure behaviors using a volume-compensated lattice-
particle method. For the specific materials associated
with the two correlation functions studied here, we find
although the hyperuniform materials are softer than
their non-hyperuniform counterparts, i.e., with a smaller
Young’s modulus, the hyperuniform materials generally

possess a superior brittle fracture behavior, including
both a higher resistance to crack initiation and a larger
fracture strength. We find this superior mechanical be-
havior is attributed to the lower degree of stress concen-
tration in the material resulting from the hyperuniform
microstructure, which is crucial to crack initiation and
propagation.
The rest of the paper is organized as follows: In Sec.

II, we provide definitions of quantities that are relevant
to hyperuniform heterogeneous materials. In Sec. III, we
present the stochastic reconstruction procedure for gener-
ating hyperuniform heterogeneous materials with varying
degrees of short-range order. In Secs. IV and V, we re-
spectively provide detailed analysis on the structural and
mechanical properties of the generated hyperuniform ma-
terials and their non-hyperuniform counterparts. In Sec.
VI, we make concluding remarks.

II. DEFINITIONS FOR HYPERUNIFORM

HETEROGENEOUS MATERIALS

A. n-Point Correlation Function

In general, the microstructure of a heterogeneous ma-
terial can be uniquely determined by specifying the in-
dicator functions associated with all of the individual
phases of the material [39, 40]. Without loss of generality,
we focus on two-phase materials (binary medium) in this
work. We note that the generalization of the subsequent
discussion to a multiple phase system is straightforward.
Consider a statistically homogeneous materialM occu-

pying the region V in the d-dimensional Euclidean space
R

d (d = 1, 2, 3) which is partitioned into two disjoint
phases: phase 1, a region V1 of volume fraction φ1 and
phase 2, a region V2 of volume fraction φ2. It is obvious
that V1∪V2 = V and V1∩V2 = 0. The indicator function
I(i)(x) of phase i is given by

I(i) (x) =

{
1 x ∈ Vi,
0 x ∈ V̄i,

(1)

for i = 1, 2 with Vi ∪ V̄i = V and

I(1)(x) + I(2)(x) = 1. (2)

The n-point correlation function S
(i)
n for phase i is defined

as follows:

S(i)
n (x1,x2, ...,xn, ) =

〈
I(i)(x1)I

(i)(x2)...I
(i)(xn)

〉
,

(3)
where the angular brackets “〈...〉” denote ensemble aver-
aging over independent realizations of the medium.

The two-point correlation function S
(i)
2 for phase i, the

focus of this study, is defined by

S
(i)
2 (x1,x2) =

〈
I(i)(x1)I

(i)(x2)
〉
. (4)
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As pointed out in Sec. I, for a statistically homogeneous

medium, S
(i)
2 is a function of the relative displacements

of point pairs, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (x2 − x1) = S

(i)
2 (r), (5)

where r = x2 − x1. In the infinite volume limit, if the
medium is also ergodic the ensemble average is equivalent
to the volume average, i.e.,

S
(i)
2 (r) = lim

V →∞

1

V

∫

V

I(i) (x) I(i) (x+ r) dx (6)

If the medium is also statistically isotropic, S
(i)
2 is a radial

function, depending on the separation distances of point
pairs only, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (|r|) = S

(i)
2 (r). (7)

Interested readers are referred to Ref. [40] for a detailed

discussion of S
(i)
2 and other higher order S

(i)
n . Hence-

forth, we will drop the superscript i in S
(i)
2 for simplicity.

Without further elaboration, S2 is always the two-point
correlation function of the phase of interest.
The two-point correlation function S2 can be efficiently

computed from given digital images of a material, in
which the microstructure is represented as a 2D (or 3D)
array of pixels (or voxels), in which value of each pixel
indicates the local state (e.g., phases) of that pixel. For
a binary system, the array is simply a collection of black
and white pixels on a regular lattice. The probabilistic
interpretation of the correlation functions enable us to
develop a general sampling method for the reconstruc-
tion of statistically homogeneous and isotropic digitized
textures based on the “lattice-gas” formalism, which is
introduced in Refs. [41, 42] and generalized in Ref. [43].
In the generalized formalism, pixels with different values
(occupying the lattice sites) correspond to distinct local
states and pixels with the same value are considered to
be “molecules” of the same “gas” species. In the case of
S2, all “molecules” are of the same species. We denote
the number of lattice-site separation distances of length
r by NS(r) and the number of molecule-pair separation
distances of length r by NP (r). Thus, the fraction of
pair distances with both ends occupied by the phase of
interest, i.e., the two-point correlation function, is given
by S2(r) = NP (r)/NS(r).

B. Hyperuniformity in heterogeneous materials

A hyperuniform heterogeneous material has the prop-
erty that the variance in the volume fraction of the
phase of interest in an observation window Ω decays more
quickly than the reciprocal volume of that window [2]. In
the case of a spherical observation window, this definition
implies that the variance σ2

τ (R) in the local volume frac-
tion τ(x) decays more quickly than R−d in d dimensions,
where R is the radius of the observation window.

In particular, the local volume fraction τ(x) of the
phase of interest is defined as:

τi(x;R) =
1

v(R)

∫
I(z)w(z − x;R)dz, (8)

where v(R) is the volume of the observation window, w is
the corresponding indicator function, and I is the indica-
tor function of the phase of interest. Using this definition,
the variance σ2

τ in the local volume fraction is given by:

σ2
τ =

1

v(R)

∫

Rd

χ(r)α(r;R)dr, (9)

where χ(r) is the autocovariance function, i.e., χ(r) =
S2(r)− φ2, and α(r;R) is the scaled intersection volume
which has the support [0, 2R], the range [0, 1], and the
following integral representation:

α(r;R) = c(d)

∫ cos−1[r/(2R)]

0

sind(θ)dθ, (10)

where c(d) is a d-dimensional constant given by

c(d) =
2Γ(1 + d/2)

π1/2Γ[(d+ 1)/2]
. (11)

The variance in the local volume fraction admits the
asymptotic expansion [2]:

σ2
τ =

ρ

2dφ

{
Aτ

(
D

R

)d

+Bτ

(
D

R

)d+1

+ o

[(
D

R

)d+1
]}

(12)

Aτ =

∫

Rd

χ(r)dr = lim
‖k‖→0

χ̂(k) (13)

Bτ = −
κ(d)

D

∫

Rd

‖r‖χ(r)dr =
1

πv(1)D

∫

Rd

χ̂(k)

‖k‖d+1
dk.

(14)

The coefficients Aτ and Bτ in (13) and (14) control the
asymptotic scaling of the fluctuations in the local vol-
ume fraction. By definition, a hyperuniform heteroge-
neous material possesses a local volume fraction variance
σ2
τ ∼ R−(d+1) as R → +∞, which requires the coefficient

Aτ of the leading term in the asymptotic expansion (12)
vanishes, i.e.,

Aτ = lim
‖k‖→0

χ̂(k) = 0. (15)

In other words, for a hyperuniform material, its spectral
density χ̂ goes to zero in the zero wave-vector limit. For
statistically homogeneous and isotropic materials, the hy-
peruniform condition (15) reduces to

Aτ = lim
k→0

χ̂(k) =

∫

r

[S2(r) − φ2]Ωd(r)dr = 0, (16)

where Ωd(r) is the surface area of a sphere with radius r
in d dimensions, and the integral is over the entire space
the system is defined.
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III. GENERATING REALIZATIONS OF

HYPERUNIFORM MATERIALS USING

STOCHASTIC OPTIMIZATION

Generating realizations of heterogeneous materials
from limited morphological information is a topic of great
interest [41–60]. Our procedure for reconstructing hyper-
uniform heterogeneous materials is developed within the
Yeong-Torquato (YT) stochastic reconstruction frame-
work [38], in which an initial random microstructure is
evolved to minimize an energy function that measures the
difference between the target correlation functions and
the corresponding functions of the simulated microstruc-
ture.
In the YT procedure, the reconstruction problem is

formulated as an “energy” minimization problem, with
the energy functional E defined as follows

E =
∑

r

∑

α

[
fα
n (r) − f̂α

n (r)
]2

, (17)

where f̂α
n (r) is a target correlation function of type α

and fα
n (r) is the corresponding function associated with

a trial microstructure. The simulated annealing method
[61] is usually employed to solve the aforementioned min-
imization problem. Specifically, starting from an initial
trial microstructure (i.e., old microstructure) which con-
tains a fixed number of pixels (voxels) for each phase con-
sistent with the volume fraction of that phase, two ran-
domly selected pixels (voxels) associated with different
phases are exchanged to generate a new trial microstruc-
ture. Relevant correlation functions are sampled from
the new trial microstructure and the associated energy is
computed, which determines whether the new trial mi-
crostructure should be accepted or not via the probabil-
ity:

pacc = min{exp(−∆E/T ), 1}, (18)

where ∆E is the energy difference between the new and
old trial microstructure and T is a virtual temperature
that is chosen to be initially high and slowly decreases
according to a cooling schedule [38]. An appropriate
cooling schedule reduces the chances that the system
gets trapped in a shallow local energy minimum. In
practice, a power law schedule T (n) = αnT0 is usually
employed, where T0 is the initial temperature, n is the
cooling stage and α ∈ (0, 1) is the cooling factor. The
simulation is terminated when E is smaller than a pre-
scribed tolerance (e.g., 10−8). Generally, a large number
of trial microstructures need to be searched to generate
a successful reconstruction. Therefore, highly efficient
sampling methods [41–43] are used that enable one to
rapidly obtain the prescribed correlation functions of a
new microstructure by updating the corresponding func-
tions associated with the old microstructure, instead of
completely re-computing the functions.
Here, we generalize the YT procedure by introducing

an additional constraint for hyperuniformity. In addi-
tion, we allow the given two-point correlation function

to be constrained only up to a certain cut-off distance γ
for controlling the short-range order in the system. This
is different from previous reconstruction studies in which
the all values of S2 are constrained. Specifically, the “en-
ergy” for the reconstruction now contains two terms, i.e.,

E = E1 + E2, (19)

where E1 and E2 are respectively associated with the

target correlation function Ŝ2 and the hyperuniform con-
straint, i.e.,

E1 =

γ∑

r=0

[
S2(r) − Ŝ2(r)

]2
, (20)

where γ ∈ [0, L/2) (L is the linear system size) and

E2 = |

L/2∑

r=0

[
S2(r)− φ2

]
Ωd(r)|

2, (21)

where Ωd(r) is surface area of a sphere with radius r in
d dimensions. For d = 2, the main focus of this paper,
Ω2(r) = 2πr. We note that Eq.(21) is the discrete form
of the hyperuniform condition (16) in which the integral
over the entire space is replaced by the summation over
all r values consistent with the periodic boundary condi-
tion.
We note that the ground state of the reconstruction

requires E1 = E2 = 0. The summation in Eq. (21) is the
discrete form of the integral in Eq. (16), and thus, the
condition E2 = 0 also implies Aτ = 0. In addition, we
employ periodic boundary condition in the reconstruc-
tions and the largest distance in S2 is given by half of
the linear system size L/2. However, the constraints im-
posed by E1 = 0 and E2 = 0 are not independent of one
another. For example, if an arbitrary given S2 is com-
pletely constrained up to r = L/2, there is no guarantee
that the hyperuniform condition (16) can be satisfied.
Therefore, we will only constrain S2 up to the cut-off
distance γ to impose partial short-range order consistent
with the given S2, and always require E2 = 0 to ensure
hyperuniformity is achieved. As we will show below, the
unconstrained values for S2 can be significantly differ-
ent from those of the target function in order to achieve
hyperuniformity.

IV. MICROSTRUCTURE OF HYPERUNIFORM

HETEROGENEOUS MATERIALS

A. Correlation functions for controlling partial

short-range order

Two types of 2-point correlation functions are em-
ployed here to control the partial short-range order of
the reconstructed hyperuniform materials, i.e., the expo-
nential decay function SED

2 and the hard sphere function



5

SHS
2 . It is also convenient to introduce the scaled auto-

covariance function, i.e.,

f(r) =
S2(r) − φ2

φ(1− φ)
, (22)

where φ is the volume fraction of the phase of interest.
Different from S2, the scaled autocovariance function is
independent of the reference phase and phase volume
fraction, and characterizes the intrinsic spatial correla-
tions in the material system.

FIG. 1: Correlation functions employed to control the short-
range order in the reconstructed hyperuniform materials. Up-
per panel: The exponential decay function fED. Lower panel:
The hard sphere function fHS.

The exponential decay function is given by

fED = exp(−r/a), (23)

where a is a characteristic correlation length of the ma-
terial and we use a = 10 pixels for the subsequent recon-
structions. This monotonic decreasing correlation func-
tion, as shown in Fig. 1, is also referred to as the Debye

random medium function [41], which corresponds to ma-
terials containing random clusters of arbitrary sizes and
shapes. The hard sphere function fHS does not possess
an analytical expression. Therefore, we compute fHS

from an ensemble of 2D hard sphere packings sampled
from a Monte Carlo simulation of an equilibrium 2D
hard sphere fluid [40]. As shown in Fig. 1, fHS con-
tains significant oscillations for small distances, indicat-
ing the spatial correlations among the spheres due to the
non-overlapping constraint. The diameter of the sphere,
which corresponds to the r value associated with first
minimum of the oscillating function, is D = 10 pixels.
For the subsequent reconstructions, we will consider two
values of volume fraction, φ = 0.3 and φ = 0.5, which are
respectively below and above the percolation threshold
for the corresponding materials. The two-point function
S2(r) can be readily obtained from the corresponding
f(r) using Eq. (22).
The choice of aforementioned correlation functions is

inspired by Refs. [34, 35]. Specifically, since the ex-
ponential function fED(r) is always positive, it is not
possible for Eq. (16) to hold for this function (i.e., the
integral is always greater than zero for all volume frac-
tions). This implies that the partial short-range order
imposed by fED(r) will be competing with the global
hyperuniformity constraint, and hyperuniformity is suc-
cessively more difficult to achieve as the cut-off distance γ
increases. On the other hand, the oscillating hard sphere
function fHS(r) is more compatible with the hyperuni-
form condition (16), suggesting that it is easier to achieve
hyperuniformity in system with such fHS(r). As we will
show in Sec. IV, the reconstructed hyperunfiorm mate-
rials associated with these two different correlation func-
tions can possess distinct properties compared to their
non-hyperuniform counterparts.

B. Realizations of hyperuniform materials

The realizations of hyperuniform materials with a lin-
ear size of 300 pixels associated with the aforementioned
correlation functions fED(r) and fHS(r) with increasing
constraint distance γ = 5, 10, 15, 25, 50, 80, 100 and 120
pixels as well as their non-hyperuniform counterparts are
generated using the generalized stochastic reconstruction
procedure described in Sec. III. For all of the recon-
structions, we require that the final energy E < 10−8.
In the case of hyperuniform materials, this implies that
the hyperuniform constraint E2 < 10−8 and the degree
of hyperuniformity is also independently verified by di-
rectly computing the local volume fraction fluctuations
as a function of observation window size.
Figures 2 and 3 respectively show the reconstructed

microstructures associated with fED(r) at volume frac-
tions φ = 0.3 and 0.5 for selected γ values (i.e., 15, 25,
50 and 100 pixels). For all γ values, the constraint (21)
is satisfied to a high degree for the hyperuniform sys-
tems with E2 ∼ 10−8, in contrast to the large E2 ∼ 102
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FIG. 2: Realizations of the hyperuniform materials (first row)
and the corresponding non-hyperuniform materials (second
row) associated with the exponential decay function fED for
different cut-off distances γ with φ = 0.3 for the inclusion
phase. The associated target (solid curve) and reconstructed
correlation functions (solid circles for hyperuniform materials
and empty square for non-hyperuniform materials) are shown
in the panels on the third row. The spectral densities χ̂(k)
for the reconstructed materials (solid red curve or light gray
in print version for hyperuniform materials, and dashed blue
curve or dark gray in print version for non-hyperuniform ma-
terials) are shown in the fourth row. The insets (with vertical
axis in log scale) show the small k behavior of χ̂(k). The con-
straint distances γ from left to right are 15, 25, 50 and 100
pixels.

for the non-hyperuniform systems. This is also consis-
tent with the small k behavior of the spectral densities
χ̂(k) associated with reconstructed systems (see insets
in the fourth row of Figs. 2 and 3). It can be seen that
for both φ values, the reconstructed microstructures con-
tain “clusters of arbitrary sizes and shapes”, which is a
well-known structural feature of the so called Debye ran-
dom media [41] associated with the exponential decay S2.
Also shown are the target and reconstructed correlation
functions for different cut-off distance γ.

In the case of φ = 0.3, it can be clearly seen that
for small γ values (i.e., 15 and 25 pixels), the recon-
structed correlation functions for both the hyperuniform
and non-hyperuniform cases deviate significantly from
the corresponding target functions. For intermediate γ
values (e.g., 50 pixels), the reconstructed S2 for the non-
hyperuniform case well matches the target function even
for r values beyond the constrained distance. However,
for the hyperuniform case, the reconstructed S2 starts to
exhibit a significant decay immediately beyond γ. We
note that this behavior is necessary to achieve the hy-
peruniformity imposed by the constraint (21). Even for

FIG. 3: Realizations of the hyperuniform materials (first row)
and the corresponding non-hyperuniform materials (second
row) associated with the exponential decay function fED for
different cut-off distances γ with φ = 0.5 for the inclusion
phase. The associated target (solid curve) and reconstructed
correlation functions (solid circles for hyperuniform materials
and empty square for non-hyperuniform materials) are shown
in the panels on the third row. The spectral densities χ̂(k)
for the reconstructed materials (solid red curve or light gray
in print version for hyperuniform materials, and dashed blue
curve or dark gray in print version for non-hyperuniform ma-
terials) are shown in the fourth row. The insets (with vertical
axis in log scale) show the small k behavior of χ̂(k). The con-
straint distances γ from left to right are 15, 25, 50 and 100
pixels.

large γ values (e.g., 100 pixels), the reconstructed S2 for
the hyperuniform materials still exhibits weak yet non-
vanishing oscillations beyond the constrained distance.
Again, these oscillations are required by the hyperuni-
form constraint (21).

The behaviors of the reconstructed systems with φ =
0.5 for both hyperuniform and non-hyperuniform cases as
γ increases are very similar to the corresponding systems
with φ = 0.3. We note that for both volume fractions,
the reconstructed hyperuniform systems and their non-
hyperuniform counterparts are almost visually indistin-
guishable in a statistical sense. This is because by con-
struction these systems possess the same partial short-
range spatial correlations (imposed by the same S2 up
to the cut-off distance γ). Yet the two types of systems
possess distinctly different structural characteristics on
large length scales as indicated by the distinct E2 values.

Figures 4 and 5 respectively show the reconstructed
systems associated with fHS(r) at volume fractions φ =
0.3 and 0.5 for selected γ values (i.e., 15, 25, 50 and 100
pixels). In the reconstructed hyperuniform systems, the
constraint (21) is satisfied to a high degree for all γ val-
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FIG. 4: Realizations of the hyperuniform materials (first row)
and the corresponding non-hyperuniform materials (second
row) associated with the hard sphere function fHS for differ-
ent cut-off distances γ with φ = 0.3 for the inclusion phase.
The associated target (solid curve) and reconstructed corre-
lation functions (solid circles for hyperuniform materials and
empty square for non-hyperuniform materials) are shown in
the panels on the third row. The spectral densities χ̂(k) for
the reconstructed materials (solid red curve or light gray in
print version for hyperuniform materials, and dashed blue
curve or dark gray in print version for non-hyperuniform ma-
terials) are shown in the fourth row. The insets (with vertical
axis in log scale) show the small k behavior of χ̂(k). The con-
straint distances γ from left to right are 15, 25, 50 and 100
pixels.

ues with E2 ∼ 10−8. Interestingly, the non-hyperuniform
systems associated with the hard-sphere function fHS(r)
possess a much smaller E2 ∼ 10−3 compared to that for
non-hyperuniform systems associated with the exponen-
tial function fED(r), although this value is still much
larger than that for the hyperuniform systems. This is
also consistent with the small k behavior of the spectral
densities χ̂(k) associated with reconstructed systems (see
insets in the fourth row of Figs. 4 and 5). As we discussed
in Sec. IV.A, the oscillatory feature of fHS(r) makes it
naturally possess a smaller E2. In addition, the target
fHS(r) is associated with the equilibrium hard sphere
system, which is already in a state close to hyperunifor-
mity [4].

For φ = 0.3, the reconstructed microstructures contain
statistically homogeneous dispersions of compact clusters
(i.e. “hard particles”) with relatively small aspect ratios.
It has been shown that the original spherical particles
cannot be perfectly reproduced in the reconstructions
using S2 alone since critical topologically connectedness
information of the system is missing. For φ = 0.5, the lo-
cal spatial correlations are realized by the interconnected

FIG. 5: Realizations of the hyperuniform materials (first row)
and the corresponding non-hyperuniform materials (second
row) associated with the hard sphere function fHS for differ-
ent cut-off distances γ with φ = 0.5 for the inclusion phase.
The associated target (solid curve) and reconstructed corre-
lation functions (solid circles for hyperuniform materials and
empty square for non-hyperuniform materials) are shown in
the panels on the third row. The spectral densities χ̂(k) for
the reconstructed materials (solid red curve or light gray in
print version for hyperuniform materials, and dashed blue
curve or dark gray in print version for non-hyperuniform ma-
terials) are shown in the fourth row. The insets (with vertical
axis in log scale) show the small k behavior of χ̂(k). The con-
straint distances γ from left to right are 15, 25, 50 and 100
pixels.

stripe-like local structures with well-defined characteris-
tic width λ, resembling those in a typical Eutectic mi-
crostructure. A closer inspection reveals that λ ≈ D,
where D is the distance associated with the first local
minimum in fHS(r), roughly corresponding to the diam-
eter of the spheres in the original system.

Different from the systems associated with fED(r),
neither the reconstructed correlation functions nor the
realizations significantly vary as the constraint distance
γ increases in the current systems. We note that the os-
cillations in fHS(r) stems from the strong short-range
correlations in the original hard sphere system due to
the hard-core repulsions. A direct manifestation of the
hard-core repulsion in fHS(r) is the deep first local mini-
mum (valley) and the first local maximum (peak), which
respectively corresponds to the size of the hard spheres
(i.e., exclusion shell) and the size of the nearest neighbor
shell. Once these two crucial length scales are set, the
remaining correlations (i.e., oscillations) are also deter-
mined. In our reconstructions, all of the cut-off distances
used are large than the sphere diameter, i.e., γ > D = 10
pixels. The reconstructed functions thus have virtually
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no freedom to adopt values significantly different from
those in the target, even beyond the constrained distance.
This leads to the good agreement of the reconstructed
and target correlation functions for all distances beyond
the cut-off γ.
In addition, the reconstructed hyperuniform systems

for both volume fractions are visually indistinguishable
from the corresponding non-hyperuniform systems in a
statistical sense. This is again because by construction
these systems possess the same partial short-range spa-
tial correlations, which are most sensitive to eyeball tests.
On the other hand, the large scale structural character-
istics are more difficult to be picked up via visual in-
spection. We note that in this case, the distinction be-
tween the hyperuniform and non-hyperuniform systems
on large length scales is less dramatic than in the systems
associated with the exponential decay function. This
also leads to a less dramatic difference in the mechan-
ical properties of the hyperuniform and corresponding
non-hyperuniform systems as shown in Sec. V.

V. SUPERIOR MECHANICAL PROPERTIES

OF HYPERUNIFORM HETEROGENEOUS

MATERIALS

A. Lattice-particle method for micromechanical

analysis

The elastic and fracture behaviors of the generated hy-
peruniform heterogeneous materials are analyzed using
the volume-compensated lattice-particle method (LPM)
[62, 63]. In the LPM, the continuum is treated as an or-
dered network of interacting material points (consistent
with the reconstruction grid), which obeys a cohesive
law directly obtained from basic constitutive relation-
ships with analytical solutions. The interactions among
the material points include both local pair-wise potential
between two particles Upair and a multi-body potential
among non-local particles UV , i.e., U = Upair + UV . Ac-
cordingly, the force field between two neighboring parti-
cles only depends on their relative displacements (i.e.,
pair-wise potential), but also includes a contribution
from all the neighboring particles surrounding them (i.e.,
non-local multi-body potential). The unique advantage
of the LPM formulation is that material fracture can be
naturally simulated by breaking the bonds between ma-
terial points based on critical bond length or force. The
LPM has been successfully applied to study the mechan-
ical performance of a variety of heterogeneous material
systems [64–66]. Interested readers are referred to Refs.
[62, 63] for details of this method.

B. Elastic behavior

We now apply the LPM to study the mechanical
properties of the reconstructed hyperuniform materials.

Specifically, we consider the inclusion phase serves as
the reinforcement for the matrix, and both phases are
isotropic. The Young’s modulus and Poisson’s ratio for
the inclusion and matrix phase are respectively EI = 100
GPa, µI = 0.33 and EM = 10 GPa, µM = 0.32. We
note that the exact values of the mechanical properties
of individual phases do not affect the conclusions of our
study, yet the contrast between the Young’s moduli of
the inclusion and matrix phases does affect the degree
of contrast between the effective moduli of the hyperuni-
form and the corresponding non-hyperuniform materials.
A uniaxial load is applied to the top and bottom bound-
ary of the square representative volume element (RVE)
reconstructed in Sec. IV, which leads to an overall axial
elastic strain ǫ = 0.002. The remaining two boundaries of
the RVE are force free. In the subsequent LPM simula-
tions, we will focus on the systems with φ = 0.3 for which
the inclusion phase forms a dispersion of compact clus-
ters and particles, in contrast to the nearly percolating
morphology of the inclusion phase for the systems with
φ = 0.5. Thus, we expect to observe more significant
contrast between the mechanical behaviors of the hyper-
uniform and non-hyperuniform systems with φ = 0.3.

FIG. 6: Elastic strain energy density distribution Ω(x) in
a hyperuniform material (left panels) associated with the
exponential decay function (with γ = 50) and its non-
hyperuniform counterpart (right panels).

Figure 6 shows an example of the elastic strain en-
ergy density distribution Ω(x) in a hyperuniform mate-
rial associated with the exponential decay function (with
γ = 50) and its non-hyperuniform counterpart. Figure 7
shows the associated statistics of the strain energy den-
sity distribution f(Ω) in both systems. It can be seen
that the high strain energy densities usually occur in re-
gions with a high degree of clustering of the inclusion
phases in both systems. In addition, the quantitative
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FIG. 7: Statistics of the strain energy density distribution
f(Ω) in the hyperuniform system (red curve or light gray
curve in print version) and non-hyperuniform system (black
curve) as shown in Fig. 6.

statistics indicate that the non-hyperuniform system pos-
sesses a significantly larger population of high strain en-
ergy density values compared to its hyperuniform coun-
terpart, which would be due to the distinct large-scale
structural characteristics of the two systems.
Figure 8 shows the averaged local strain energy density

Ω̄ defined as

Ω̄ =
1

V

∫
Ω(x)dx, (24)

where V is the volume of the system, for systems asso-
ciated with both the hard sphere function fHS(r) and
the exponential decay function fED(r) for different cut-
off distances γ. It can be seen that for both correla-
tion functions, the non-hyperuniform systems generally
possess a larger Ω̄ compared to the corresponding hy-
peruniform systems, which would be mainly due to the
excessive number of high Ω states in the former. Fig-
ure 9 shows the normalized effective Young’s modulus
Ē/EM of the reconstructed heterogeneous materials, i.e.,
Ē = σ̄/ǫ, where σ̄ is the average tensile stress in the sys-
tem and ǫ is the applied tensile strain. Consistent with
the trends in Ω̄, we see again that the non-hyperuniform
systems generally possess a higher Ē compared to the
corresponding hyperuniform systems. A possible reason
for the observed smaller Ω̄ and Ē in hyperuniform sys-
tems considered here is the higher degree of uniformity
in the distribution of clusters on large length scales. This
would effectively lead to a lower degree of stress concen-
tration in such systems and thus, an overall lower elastic
energy and smaller modulus.
It is interesting to note that the contrast between Ē of

the hyperuniform and non-hyperuniform systems associ-
ated with the exponential decay function fED is signifi-
cantly stronger than that for systems associated with the
hard sphere function fHS . As discussed in Sec. IV, due
to the nature of fHS and the associated original equilib-
rium hard sphere system that is close to hyperuniformity,

FIG. 8: Averaged elastic strain energy density Ω̄ in the re-
constructed materials associated with the exponential decay
function fED(r) (upper panel) and the hard sphere function
fHS(r) (lower panel) for different γ values.

the structural distinctions between the hyperuniform and
non-hyperuniform systems associated with fHS are much
smaller on both small and large length scales. This has
led to a weaker contrast between Ω̄ of the hyperuniform
and non-hyperuniform systems and thus, a weaker con-
trast between Ē.

C. Brittle fracture analysis

We now study the brittle fracture behavior of the re-
constructed systems. As briefly discussed in Sec. V.A, in
the LPM the continuum is modeled as a regular array of
material points interacting with near neighbors and thus,
fracture is naturally captured via breaking of bonds be-
tween the material points. The same Young’s modulus
and Poisson’s ratio for the inclusion and matrix phases
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FIG. 9: Normalized effective Young’s modulus Ē/EM of the
reconstructed heterogeneous materials associated with the ex-
ponential decay function fED(r) (red square or light gray
square in print version) and the hard sphere function fHS(r)
(black circle) for different γ values.

as in Sec. V.B are also used here. In addition, the crit-
ical stress for bond breaking is set to be σc = 950 MPa.
We note that similar to the elastic analysis, although the
exact value of the fracture strength σf depends on the
choice of σc, the conclusions drawn here are not affected
by σc. A uniaxial load is applied to the square RVE of
the reconstructed materials under the quasi-static load-
ing condition, with a strain rate dǫ/dt = 10−7 per loading
step and a total of N = 40, 000 loading steps are used.
After each loading step, the stress and strain distribu-
tions in the RVE are computed and each bond is checked
for possible breaking. If the stress in a bond is greater
than the critical stress σc, this bond (i.e., the connection
between two materials points) is removed from the sys-
tem, which corresponds to the nucleation of a micro-void.
This will lead to a significant change of the stresss/strain
distributions in the next loading step. The reaction force
F (and the uniaxial tensile stress) is computed at each
loading step. The material is consider to fail when a
abrupt drop is observed in F . The fracture strength is
then computed from the maximum reaction force, i.e.,
σf = Fmax/A, where A is the cross-sectional area of the
RVE.

Figure 10 shows an example of our brittle fracture
simulations of the reconstructed hyperuniform material
and its non-hyperuniform counterpart associated with
fED(r) and γ = 50 pixels. The corresponding reaction
forces as a function of tensile strain ǫT is shown in Fig.
11, which is overall an increasing function of ǫT . We note
that the small oscillations in the F−ǫT , which are due to
the dynamic method for solving the LPM equations and
will vanish in the limit of zero strain rate, do not affect
the calculation of the fracture strength. It can be clearly
seen in Fig. 11 that the hyperuniform material possesses
a much higher maximal reaction force Fmax and thus, a
higher fracture strength σf than the corresponding non-

FIG. 10: Growing cracks in the reconstructed hyperuniform
material (left) and its non-hyperuniform counterpart (right)
associated with fED(r) and γ = 50 pixels generated using
LPM simulations.

FIG. 11: Reaction forces as a function of tensile strain ǫT
in the two materials (red curve or light gray curve in print
version for non-hyperuniform system, black curve for hyper-
uniform system) shown in Fig. 10 under quasi-static uniaxial
loading condition.

hyperuniform material.
The same analysis is applied to all systems with φ =

0.3 reconstructed in Sec. IV, and the obtained fracture
strengths of the hyperuniform materials vs. the corre-
sponding non-hyperuniform materials are shown in Fig.
12. We can see that for the systems associated with
the exponential decay function fDE(r), the hyperuni-
form systems generally possess a higher fracture strength
σf than the corresponding non-hyperuniform systems.
Specifically, σf of the hyperuniform materials can be
larger than that for the corresponding non-hyperuniform
materials by as large as 20%. However, for systems with
the hard sphere function fHS(r), the hyperuniform sys-
tems possess similar and even slightly smaller σf com-
pared to their corresponding non-hyperuniform counter-
parts. We note that this observation is also consistent
with the trend observed in the effective Young’s modu-
lus, i.e., the contrast between the hyperuniform and non-
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FIG. 12: Fracture strengths of the hyperuniform materials
vs. the corresponding non-hyperuniform materials associated
with the exponential decay function fED(r) (red square or
light gray square in print version) and the hard sphere func-
tion fHS(r) (black circle).

hyperuniform systems associated with the exponential
decay function is generally larger than that for systems
associated with the hard sphere function. This again is
attributed to the smaller structural distinctions between
the hyperuniform and non-hyperuniform systems associ-
ated with fHS(r) on both small and large length scales.
To understand why hyperuniform materials generally

possess superior brittle fracture behavior, we further ex-
amine the mechanisms for the nucleation and growth of
the cracks in the reconstructed systems. Specifically, due
to the larger population of local high strain energy states
in the non-hyperuniform materials, it is expected that
a larger number of cracks are nucleated in such systems
compared to their hyperuniform counterparts at the same
loading level. This is evident from Fig. 10, which shows
the distribution of cracks before the overall material fail-
ure occurs. It can be seen that the hyperuniform mate-
rial contains a single major crack in the matrix phase,
which indicates the failure is mainly due to the continu-
ous growth of individual dominant cracks in the system.
In contrast, the non-hyperuniform material contains a
large number of smaller cracks, which start to connect to
one another and form a percolating large crack across the
entire system. Therefore, the major failure mechanism
in the non-hyperuniform materials is the fast growth and
percolation of many small cracks, which under the same
loading condition leads to a lower fracture strength than
that of the corresponding hyperuniform materials.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have employed a stochastic opti-
mization procedure to systematically generate realiza-

tions of hyperuniform heterogeneous materials, whose
short-range orders are partially controlled by two distinct
two-point correlation functions, i.e., the exponential de-
cay function fED and the hard sphere function fHS . For
purpose of comparison, corresponding non-hyperuniform
materials possessing the same partial short-range order
(i.e., possessing the same correlation function up to the
cut-off distance γ) have also been reconstructed and ana-
lyzed. We found that the partial short-range correlations
imposed by the oscillating hard sphere function fHS are
compatible with the constraint on large-scale local vol-
ume fraction fluctuations and thus, hyperuniformity is
more easily achieved in the systems associated with fHS .
On the other hand, the positive exponential function fED

is not compatible with the hyperuniform constraint and
the reconstructed hyperuniform and non-hyperuniform
materials associated with this function possess distinct
structural characteristics on large length scales.
In addition, we have investigated the mechanical per-

formance of the reconstructed hyperuniform materials
and their non-hyperuniform counterparts including both
elastic and failure behaviors using the LPM simula-
tions. For the constructed systems with partial short-
range order consistent with the two specific correlation
functions considered here, we found that the hyperuni-
form materials generally possess a smaller Young’s mod-
ulus than their non-hyperuniform counterparts. How-
ever, the hyperuniform materials are found to be more
resistent to brittle fracture, with a significantly higher
fracture strength compared to the corresponding non-
hyperuniform materials. This superior mechanical be-
havior is attributed to the lower degree of stress concen-
tration in the material resulting from the hyperuniform
microstructure, which results in different failure mech-
anisms in different systems. We emphasize our con-
clusion that a hyperuniform material is softer than its
non-hyperuniform counterpart is restricted to the spe-
cific systems studied here. Generally, it can be expected
a carefully designed hyperuniform material can certainly
be made much stiffer than its nonhyperuniform counter-
part.
Designing heterogeneous materials with superior me-

chanical properties especially failure resistance is a topic
of great interest. Our study here suggests a possible av-
enue to achieving this goal, i.e., by imposing hyperunifor-
mity in the system. The realizations of the hyperuniform
materials can be easily fabricated using 3D printing. It
is also interesting to see whether existing materials with
a high fracture resistance such as certain natural and
synthesized composites [67–69] would possess a nearly
hyperuniform microstructure.
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