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Abstract

We present a theory of electrostatic fluctuations in two component plasmas where electrons

and ions are described by Maxwellian distribution functions at unequal temperatures. Based on

the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion,

and ion-ion collision integrals, the dynamic form factor, S(~k, ω), is derived for weakly coupled

plasmas. The collective plasma responses at ion-acoustic, Langmuir and entropy mode resonances

are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality.

The collisionless limit of S(~k, ω) and the strong-collision result based on the fluctuation-dissipation

theorem and classical transport at Te = Ti are recovered and discussed. Results of several Thomson

scattering experiments in the broad range of plasma parameters are described and discussed by

means of our new theory for S(~k, ω).

PACS numbers: 52.25.Dg, 52.25.Mq, 52.35.Fp

1



I. INTRODUCTION

The theory of fluctuations produced by particle discreteness in stable plasmas plays an

important role in the statistical description of plasmas [1, 2]. These fluctuations are re-

sponsible for particle diffusion and transport. Thomson scattering (TS) of electromagnetic

radiation from electron-density fluctuations has proven to be a powerful diagnostic in de-

termining plasma parameters and basic plasma processes. Because of the progress that has

been achieved in TS experiments in recent years [3, 4] the theory of fluctuations remains an

active field of research. This article will be concerned with the theory of fluctuations and is

motivated by the TS measurements in weakly coupled collisional nonequilibrium plasmas at

different electron and ion temperatures, Te 6= Ti. Frequent particle collisions and unequal

temperatures characterize dense laser produced plasmas and high energy density systems.

With the motivation of explaining ionospheric experiments the general form of the Thom-

son scattered spectrum of a collisionless plasma were determined independently in 1960 by

Feyer [5], Renau [6], Daugherty and Farley [7] and Salpeter [8]. These fluctuations caused

by particle discreteness have been described by the linearized Vlasov equation and therefore

these theories do not include effects of particle collisions but they work for nonequilibrium

plasmas, for example with Te 6= Ti. Vlasov theory for the dynamical correlation function of

density fluctuations will be recovered from our result in the limit of vanishing collisions and

for Maxwellian electron and ion particle distribution functions.

The dynamical evolution of the correlation functions of fluctuations is described by the

linearized kinetic equations for the one particle distribution function with initial conditions

corresponding to static correlations [9, 10]. Equivalently, following Onsager’s hypothesis

[11], fluctuations of dynamical quantities evolve in accordance with the same model equa-

tions as those governing macroscopic processes. Thus the fluctuations on a hydrodynamical

scale in thermal equilibrium relax due to collisions according to the equations of linearized

hydrodynamics [12, 13]. In plasmas the relevant hydrodynamical theories are transport

models of Spitzer-Härm [14] and Braginskii [15] that are used to derive collision dominated

fluctuation spectrum. This result will be recovered from our theory in the opposite to

Vlasov, strongly collisional limit. The macroscopic model in our theory is the system of

linearized equations of nonlocal and nonstationary hydrodynamics that works everywhere

from the collisionless Vlasov limit to the strongly collisional limit of hydrodynamical fluc-
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tuations. These equations have been derived in the process of finding rigorous solutions to

the linearized Vlasov-Landau kinetic equation in the entire regime of plasma collisionality

for all frequencies and wave numbers [16–18]. These results are used here in derivation of

the correlation functions of density fluctuations. The nonlocal hydrodynamics is formulated

in the Fourier space and it is well suited for the problem of finding spectral densities of the

correlation functions of fluctuations. In particular, we are interested in finding the electron

density correlation function which is used in the calculation of the TS cross-section.

The nonlocal hydrodynamics has been introduced in our paper because it describes evo-

lution of the fluctuations and it is used in finding solution to the linearized Vlasov-Landau

kinetic equation. One can derive linear plasma response using nonlocal hydrodynamic equa-

tions and plasma dispersion function in terms of the nonlocal and nonstationary transport

coefficients [17, 18]. This method of the solution of the kinetic equation follows the pioneer-

ing work by A.R. Bell [19]. He introduced nonlocal thermal conductivity for the first time by

considering small amplitude perturbations associated with linear ion acoustic waves. Sub-

sequently the full set of linear electrostatic modes [17, 18, 20], including the entropy mode,

and the complete linear plasma response in the entire regime of particle collisions have been

found. Dispersion and damping of electrostatic modes describe long time plasma evolution

and define resonances of the dynamical form factor discussed in our paper.

We proceed with the solution of the linearized kinetic equations for the one particle

distribution functions. This has been done several times before for the two component,

electron-ion plasmas [21, 22] and for the electron transport problem [16, 17]. The first

moment of the perturbed electron distribution function will be identified with the fluctuation

of electron density and used to calculate the density correlation function.

In this study TS experiments provide the motivation for our work. They have enabled

advancements in the understanding of dense plasmas: from the atomic physics of high Z

plasmas [23], through nonlocal thermal transport [24] to studies of enhanced fluctuations

and plasma turbulence [25, 26]. TS is routinely used as a primary diagnostic of plasma

parameters such as electron and ion temperatures, particle density and flow velocities [27,

28]. And, in recent years, applications of short wavelength laser probes in the X-ray and

VUV regimes have made possible for the first time TS experiments in solid density plasmas

and shock compressed materials [4].

The wide range of plasma parameters that have been investigated in TS measurements
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underscores the need for the general expression for the dynamical form factor, S(~k, ω),

such as derived in our paper, in order to properly account for all k-values and frequencies.

The utility of Thomson scattering is greatly enhanced when it is used in conjunction with

good theoretical models of the dynamical form factor. This paper contains the theory of

the dynamical form factor that is valid for all frequencies and k-vectors that span the broad

regime of parameters from the strongly collisional to the collisionless limits in weakly coupled

nonequilibrium plasmas.

The paper is organized as follows: Section II summarizes the main steps from the theory

of nonlocal and nonstationary hydrodynamics, including initial conditions and source terms,

transport relations and plasma linear dielectric response. The derivation of the dynamical

form factor is presented in Sec. III, first for the equilibrium plasma where Te = Ti and next

for plasmas away from equilibrium with Te 6= Ti. The accuracy of this derivation is tested by

recovering the correct limiting expression of S(~k, ω) for collisionless plasmas. Applications

of our results to different TS experiments are discussed in Sec. IV. These include the

strong-collision regime, and low frequency and high frequency limits. Section V discusses

the implications of this work and gives a summary of our results.

II. SOLUTION OF THE KINETIC EQUATION

The starting point of our theory of fluctuations is the linearized Vlasov-Landau, or Vlasov-

Fokker-Planck, kinetic equation. The stationary background state of the plasma is described

by uniform and isotropic Maxwellian distribution functions with different temperatures for

electrons and ions. We assume that during the time of correlation evolution the background

temperatures remain constant.

A. Linearized Fokker-Planck kinetic equations

The general form of the kinetic equation for the one particle distribution functions,

Fa(~r,~v, t) (a = e, i), in unmagnetized two component plasmas reads:

∂Fa
∂t

+ ~v · ~∇Fa +
ea ~E(~r, t)

ma

· ∂Fa
∂~v

=
∑
r=a,b

Car(Fa, Fr), (1)
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where ~E is the self-consistent electrostatic field calculated from Maxwell equations using par-

ticle distribution functions. We consider small perturbations of the electron and ion distribu-

tion functions. The background plasma state is described by the homogeneous Maxwellians,

F a
M = na(ma/2πTa)

3/2 exp(−mav
2/2Ta) (a = e, i), including densities na (Zni = ne) and

temperatures Ta. We will neglect collisional energy equilibration of the background temper-

atures and keep Te and Ti constant, Te 6= Ti. This assumption and several approximations

below in the collisional operators take advantage of the large mass ratio, mi/me � 1. The

electron and ion distribution functions are represented in terms of background Maxwellians

and small perturbations fa, Fa = F a
M + fa(~r,~v, t). The Fourier transformed perturbations

of the distribution functions fa(v, µ, t) =
∑∞

0 fal (v, t)Pl(µ) (we dropped the subscripts ~k

indicating Fourier transformed quantities to lighten the notation) are expanded in a series

of Legendre polynomials Pl(µ), where µ is the cosine of the angle between velocity ~v and

wave vector ~k. With these expansions the kinetic equations (1) with Landau collisional

terms are decomposed into two infinite coupled sets of equations for the harmonics fal (v, t)

of the electron and ion distribution functions:

∂fal
∂t

+ ikv
l

2l − 1
fal−1 + ikv

l + 1

2l + 3
fal+1 = C l

aa + C l
ab + (eaE/Ta)vF

a
Mδl1 . (2)

The collision operators, C l
ab, are defined by the Rosenbluth potentials. Because of the small

mass ratio me/mi � 1 collisions between electrons and ions can be described in a simplified

form [15, 17, 31, 37],

C l
ei = − l(l + 1)

2
νeif

e
l + δl1νei

v

v2Te
F e
Mui, (3)

C l
ie = δl1

(
v

vT i
F i
M

Rie

nimivTi
+ νTei

mene
mini

C
(1)
ie

)
,

C
(1)
ie =

1

v2
∂

∂v
v3f il +

Te
miv2

(
∂

∂v
v2
∂

∂v
− l2 − l

)
f il ,

where δgh is the Kronecker delta function, νab(v) = 4πnb(eaeb)
2Λab/m

2
av

3 is the velocity de-

pendent particle collision frequencies, Λab is the Coulomb logarithm, ua = 4π
∫
dvv3fa1 /3na

is the mean particle velocity, vTa =
√
Ta/ma is the particle thermal velocity, νTei =

νei(vTe)
√

2/π/3 and Rie = 4πme

∫
dvv3νei(v)f e1/3 is the friction force. The term C

(1)
ie in

the expression for C l
ie in Eq. (3) is small and can be neglected for the calculation of an ion

distribution function. At the same time, C
(1)
ie is important to ensure ion momentum conser-

vation. For like particle collisions, C l
aa, we use the general form of the collisional operator

[22, 31, 37].

5



B. Source terms and initial conditions

The handling of source terms in solutions to kinetic equations (2) is an important part

of the analysis of particle transport in plasmas with arbitrary collisionality [16] . Although

transport occurs in response to local gradients in the fluid variables, the generation of such

inhomogeneities requires the input of particles or heat into the system. In the strong-collision

limit, source terms do not play an important role in the analysis, but when considering

arbitrary collision rates, and in particular for the collisionless plasma, they must be treated

explicitly as driving terms in the kinetic equations. It was assumed in the derivation of

nonlocal transport equations [16] that the sources vanish after some time, t = 0, and the

nonlocal hydrodynamics properly describe plasma response as the solution to the initial

value problem. More importantly the particular choice of the initial conditions is based on

the linearized local Maxwellian distribution functions,

fa(~k, v, t = 0) =

[
δna(~k, 0)

na
+
δTa(~k, 0)

Ta

(
v2

2v2Ta
− 3

2

)]
F a
M(v). (4)

This form of fa(t = 0) enables closure of the hydrodynamic equations by introducing initial

perturbations, or sources, in terms of hydrodynamic variables: namely the particle densities

δna(0) and temperatures δTa(0). These initial perturbations are subsequently expressed in

terms of perturbations of hydrodynamic variables and fields at later times in the nonlocal

transport theory of Refs [16, 22, 37]. Clearly the distribution function need not to be

Maxwellian (4) in regime close to t = 0 when collisional effects are very weak. On the

other hand it is not clear whether a transport theory can be constructed at all for the

fully non-Maxwellian case and whether it would have any advantages compared to a kinetic

description.

The role of initial perturbations in the theory of fluctuations, which are studied here

is equally important but conceptually much simpler. We are concerned with the state

of the plasma which is well approximated by the local Maxwellian distribution function

due to the long time collisional evolution. Different temperatures of electrons and ions

are the only signatures of non-equilibrium effects in the background state of the plasma.

Temperatures of the both species are treated as constants because the energy equilibration

in the background state is assumed to take place on the time scale much longer than the

evolution of fluctuations. However, in order to describe the evolution of a dynamic form
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factor we still need to consider the entire range of particle collisionality because the plasma

response depends on the product kλab, i.e. the ratio between wavelength of fluctuations 2π/k

and the particle collision mean free path λab. As it was the case for nonlocal hydrodynamics

[16, 22, 37] the sources of fluctuations are introduced through the initial conditions (4) by

performing Laplace transformation of Eqs. (2),

L̂fal − C l
aa − C l

ab = Sal , (5)

L̂fal ≡ −iωfal + ikv
l

2l − 1
fal−1 + ikv

l + 1

2l + 3
fal+1 .

where Sa0 = fa(t = 0) (4) and Sa1 = (eaE/Ta)vF
a
M . The higher order terms Sal (l ≥ 2) vanish.

We continue with the simplified notation using fal for fal (k, v, ω).

C. Solutions for the basis functions

We will seek solutions to Eqs. (5) as the linear superposition of different basis functions

ψbAl (v) (A = N, T,R) and (b = e, i)

f el =

(
i
eE

kTe
δl0 +

(
δne(0)

ne
− ω eE

kTe

)
ψeNl +

3

2

δT (0)

Te
ψeTl − ikuiψeRl

)
f eM , (6)

and

f il =

{
i
ZeniE +Rie

kniTi
δl0 +

(
δni(0)

ni
+ ω

ZeniE +Rie

kniTi

)
ψiNl +

3

2

δTi(0)

Ti
ψiTl

}
f iM , (7)

where ψbAl (v) describe electron and ion response to the initial fluctuations of particle densi-

ties, temperatures, electric field E, ion average velocity ui and the friction force Rie.

Using relations (6), (7) we can obtain the system of equations for the basis functions

ψbAl (v) from Eq. (5) with different source terms on the right-hand side,

L̂ψbAl + δbe
l(l + 1)

2
νeiψ

bA
l −

1

F b
M

C l
bb[F

b
Mψ

bA
l ] = SbAl , (8)

where δij are Kronecker delta functions, SbN,bTl = δl0S
bN,bT , SeRl = 3δl1S

R, and SbN = 1,

SbT = v2/3v2Tb − 1, SR = ivνei/3kv
2
Te.

To make further progress we will use a simplified form of C l
aa for l� 1 in (8) in order to

close this infinite system of equations. Because of this simplification, starting from the order

l = lmax, all the equations for the harmonics of the basis functions take on the following

simple form (l > lmax):

2L̂ψbAl = −l(l + 1)ν∗bψ
bA
l , (9)
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where ν∗a = νeiδae + νaa(I
a
0 + 2Ja−1/3 − Ia2/3), and the two integrals Iam =

4π/(nav
m)
∫ v
0
dvvm+2F a

M and Jam = 4π/(nav
m)
∫∞
v
dvvm+2F a

M have been introduced before,

cf. eg. Ref. [31] p. 276, when evaluating Rosenbluth potentials. The infinite system of equa-

tions (9) has been solved following the summation procedure [17, 30] where one evaluates

the renormalized effective collision frequencies νal from the following recurrence formula

νal = −iω +
1

2
l(l + 1)ν∗a +

(l + 1)2

4(l + 1)2 − 1

k2v2

νal+1

. (10)

Equation (10) can also be represented in terms of continuous fractions. In practice,

finding νalmax
with high accuracy requires no more than 20 - 30 iterations. After that,

it is sufficient to solve a finite number of equations (8) to find basis functions ψbAl for

l ≤ lmax given that ψbAlmax+1 = i[(lmax + 1)/(2lmax + 3)](kv/νblmax+1)ψ
bA
lmax

. We solve

this system of equations, expanding the basis functions ψbAl in Sonine-Laguerre polyno-

mials: ψbA2l = λbi
vTb

∑∞
n=0 c

bA
2l,nL

1/2
n

(
v2

2v2Tb

)
and ψbA2l+1 = λbiv

v2Tb

∑∞
n=0 c

bA
2l+1,nL

1/2
n

(
v2

2v2Tb

)
, where

λei = 3
√
π/2vTe/νei(vTe) = vTe/ν

T
ei and λaa = 3

√
πvTa/νaa(vTa) = vTa/ν

T
aa are the e-i and i-i

(e-e) mean free paths. Substitution of this expansion into Eq. (8) gives a system of linear

algebraic equations for the coefficients cbAln . This system was solved with the Mathematica

software package. The calculations were performed for lmax = 8 resulting in an error related

to the closure procedure that does not exceed 1− 2%.

Now to exclude initial perturbation from Eqs. (6,7) we take the first moments of the

kinetic equation to calculate δna = 4π
∫∞
0
fa0 v

2dv, δTa = (4πma/3na)
∫∞
0
dvv2(v2 − 3v2Ta)f

a
0

(a=e,i) and ui:

δne
ne

= i
eE

kTe
+

(
δne(0)

ne
− ω eE

kTe

)
JeNN +

3

2

δTe(0)

Te
JeTN − ikuiJeRN ,

δTe
Te

=

(
δne(0)

ne
− ω eE

kTe

)
JeNT +

3

2

δTe(0)

Te
JeTT − ikuiJeRT , (11)

ikui =

(
δni(0)

ni
+ ω

ZeniE +Rie

kniTi

)
(1 + iωJ iNN ) +

3

2

δTi(0)

Ti
iωJ iNT ,

δTi
Ti

=

(
δni(0)

ni
+ ω

ZeniE +Rie

kniTi

)
J iTN +

3

2

δTi(0)

Ti
J iTT , (12)

where

J bAB =
4π

nb

∫ ∞
0

v2dvψbA0 f bMS
bB , (B = N, T ) , JeAR =

4π

ne

∫ ∞
0

v2dvψeA1 f eMS
R . (13)

8



Finally one can derive fa0 using hydrodynamic moments:

f el=i
eE

kTe
f eM +

(
δne
ne
− i eE

kTe

)
JeTT ψeNl − JeNT ψeTl

DeNT
NT

f eM +
δTe
Te

JeNN ψeTl − JeTN ψeNl
DeNT
NT

f eM − (14)

ikui

(
ψeRl −

DeRT
NT

DeNT
NT

ψeNl −
DeNR
NT

DeNT
NT

ψeTl

)
f eM ,

f il=i
ZeniE+Rie

kniTi
f iMδl0+ikui

J iTT ψ
iN
l − J iNT ψiTl

J iTT + iωDiNT
NT

f iM+
δTi
Ti

(1 + iωJ iNN )ψiTl − iωJ iTN ψiNl
J iTT + iωDiNT

NT

f iM ,(15)

where DbCD
AB = J bCA J bDB − J bDA J bCB . We have described above a procedure that allows on

reducing kinetic equations to the system of hydrodynamic equations for the first few moments

of the distribution functions. This will be further discussed in the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give the equations of continuity, motion,

and energy balance for electrons (a = e) and ions (a = i). After taking their Fourier

transform, linearizing the fluid equations and keeping only components of perturbed vector

and tensor quantities along the k-vector we find the following set of hydrodynamic equations

in the electrostatic approximation

∂δna
∂t

+ naikua = 0 ,

∂ua
∂t

=
ea
ma

Ea
∗ − 1

mana
ikΠa

‖ +
1

mana
Rab , (16)

∂δTa
∂t

+
2

3na
ikqa +

2

3
Taikua = 0 ,

where the friction force satisfies Rei = −Rie, and Rie = Rie−meneν
T
eiui, E

∗
a = E−ik(δnaTa+

naδTa)/(eana) is the effective electric field, and

Πa
‖ =

8πma

15

∫
dvv4fa2 , qa =

2πTa
3

∫
dvv3

(
v2

v2Ta
− 5

)
fa1 (17)

are the longitudinal components of the stress tensor, Πa
‖, and the particle thermal flux, qa.

The following transport relations for electron fluxes were obtained before in [16, 29]

qe = −αTe
σ
j − κeikδTe − neTeβui , E∗e =

j

σ
− α

σ
ikδTe −

βj
σ
eneui (18)

Rie = −(1− βj)
σ

enj +
(
β +

eα

σ

)
ikneδTe +

(
e2neβj(1− βj)

σ
−meβrν

T
ei

)
neui

9



where j =
∑

a eanaua and the transport coefficients: σ - the electrical conductivity, κe

- the electron thermal conductivity, α - the thermocurrent coefficient, and different the

convection transport coefficients, β, βj, βr were introduced before in Refs. [16, 29]. They

can be expressed in terms of functions J bAB , JeAR (13) in the following form:

σ =
e2ne
k2Te

(
JeTT
DeNT
NT

+ iω

)
, α = − ene

k2Te

(
JeNT + JeTT
DeNT
NT

+ iω

)
, (19)

βj = 1− DeRT
NT

DeNT
NT

, β = 1 +
JeNT − JeRT + iωDeRN

NT

JeTT + iωDeNT
NT

,

βr = 1 +
k2v2Te
νTei

(
JeRR +

JeRT DeRN
NT − JeRN DeRT

NT

DeNT
NT

)
,

κa =
na
k2

(
1 + iωJaNN

JaTT + iωDaNT
NT

+
3

2
iω

)
,

where the thermal transport coefficient, κa, is defined for both, electrons, a = e, and ions,

a = i. The transport relations for ion fluxes read [21, 22]

qi = −κiikδTi − βiniTiui , Π‖ = −4/3ikηiui − βiniδTi, (20)

where βi and the shear viscosity coefficient ηi are given by the following expressions,

ηi =
3niTi

4

(
DiNT
NT

J iTT + iωDiNT
NT

+
iω

k2v2T i

)
, βi = 1 +

J iTT
J iTT + iωDiNT

NT

(21)

The transport relations (18) and (20) together with nonlocal and nonstationary transport

coefficients (19), (21) derived in [16, 21, 22, 29] provide closure for the fluid equations (16),

that are now fully equivalent to the kinetic description in terms of the linearized kinetic

equation (2), (3).

E. Dielectric response

The transport coefficients in (18) and (20) and linear response functions below are ex-

pressed in terms of time-Fourier transformed quantities. To lighten notation we will simply

use the same symbols for functions of frequency as for time dependent quantities. After

taking the temporal Fourier transforms of hydrodynamic equations (16) we have eliminated

electron temperature perturbation, δTe, and electron density perturbation, δne, from ex-

pressions for friction force and electric current:

j = ∆e

(
−ie

2ne
k2Te

ωE + eneui∆1

)
, (22)

Rie = −eneE +
ik2Te
eω

(j∆1 − eneui∆2) ,
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where

∆e =

[
1− iω

(
e2ne
k2Teσ

+
2ne(σ + eα)2

σ2(2k2κ− 3iωne)

)]−1
≡ 1 + iωJeNN , (23)

∆1 =

[
1− iω

(
e2neβj
k2Teσ

+
2ne(σ + eα)(1− β)

σ(2k2κ− 3iωne)

)]
, (24)

∆2 =

[
1− iω

(
e2neβ

2
j

k2Teσ
+

2ne(1− β)2

2k2κ− 3iωne
+
νTeiβr
k2v2Te

)]
.

Similarly we have eliminated ion temperature perturbation, δTi, and ion density perturbation

δni, from (16) in order to obtain,

Rie + ZeniE =
ik2niTiui
ω∆i

, (25)

where the contribution of the ion transport coefficient is defined by

∆i =

[
1− ω2

k2v2T i
− iω

(
4

3

ηi
niTi

+
2ni(1− βi)2

2k2κi − 3niiω

)]−1
≡ 1 + iωJ iNN , (26)

Combining Eqns. (25) and (22) we can express the average ion and electron flow velocities

in terms of the electrostatic field:

ikue = −k2λ2Deχe
eEω

kTe
, ikui = k2λ2Deχi

eEω

kTe
(27)

We have introduced in (27) electron, χe(k, ω), and ion, χi(k, ω), susceptibility functions,

χe =
∆e

k2λ2De
+

∆i

k2λ2Di

∆1∆e(∆1∆e − 1)

1− g∆i(∆2
1∆e −∆2)

≡ 1 + iωJeNN
k2λ2De

+
1 + iωJ iNN
k2λ2Di

(1 + iωJeRN )iωJeRN
1− igω(1 + iωJ iNN )J̃RR

,

χi =
∆i

k2λ2Di

∆1∆e

1− g∆i(∆2
1∆e −∆2)

≡ 1 + iωJ iNN
k2λ2Di

(1 + iωJeRN )

1− igω(1 + iωJ iNN )J̃RR
, (28)

where g = ZTe/Ti, J̃
R
R = JeRR + νTei/k

2v2Te and λDa = (4πe2ana/Ta)
1/2 (a=e,i) are the Debye

lengths. By utilizing the Maxwell equation −iωE + 4πj = 0, one can define the plasma

dielectric function ε(k, ω) = 1 + i4πj/(ωE) = 1 + χe + χi in the following form,

ε = 1 +
∆e

k2λ2De
+

∆i

k2λ2Di

∆2
1∆

2
e

1− g∆i(∆2
1∆e −∆2)

. (29)

ε = 1 +
1 + iωJeNN
k2λ2De

+
1 + iωJ iNN
k2λ2Di

(1 + iωJeRN )2

1− igω(1 + iωJ iNN )J̃RR
. (30)

The expressions (29,30) has been recently studied in detail in Ref. [18] wherein solutions for

the electrostatic modes, Langmuir and ion-acoustic waves, and also for the entropy mode
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have been obtained for the entire range of plasma collisionality. These results are important

for the understanding of the dynamic form factor and the Thomson scattering cross section.

Before calculating the dynamic form factor we will examine the limiting behavior of

ε(k, ω), in particular, the form of the dielectric function in the absence of collisions. From

the solution of the kinetic equations for the basis functions we have JeRN = 0, J̃RR = 0 and

J iNN = iJ+(ω/kvT i)/ω, JeNN = iJ+(ω/kvTe)/ω, where the plasma dispersion function reads

W (z) =
1√
2π

∫
dv

v

v − z
exp(−v2/2) = 1− ωJ+(z), z = ω/kvTa. (31)

Taking the collisionless limit of Eq. (29) and using the above relations one recovers the

well-known expression for the plasma dispersion function, ε = 1+
∑

a=e,iW (ω/kvTa)/k
2λ2Da.

In the strong collisional limit of kλai → 0 Eq. (29) assumes a form that is consistent with

the results of classical collision-dominated hydrodynamics [15], [31].

III. DENSITY FLUCTUATIONS

This Section is concerned with the linear plasma response to the initial density fluctua-

tions which represent external perturbation applied to the plasma. We will derive expres-

sions for the electron density of fluctuations δne and the density-density correlation function

Gab(~ρ, τ) = 〈δna(~r, t)δnb(~r′, t′)〉, where ~ρ = ~r − ~r′ and τ = t − t′. Of particular interest

will be dynamic form factor S(k, ω) related to the Fourier-Fourier transform of the electron

density correlation function

S(k, ω) =
〈δn2

e〉k,ω
ne

=
1

ne

∫
d3ρ

∫
dτeiωτ−i

~k·~ρGee(~ρ, τ). (32)

A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete equilibrium state of a plasma,

where T = Te = Ti. In this case, the density fluctuations can be calculated as a full system

response to the initial perturbations. On the other hand, in the case of a nonequilibrium

plasma with different temperatures of electrons and ions, that is discussed in the next Sub-

section, will require separate treatment of each species in addition to calculations of the

selfconsistent field from the full system response. The initial perturbations of the plasma
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electron density are introduced by taking the Laplace transformation of the transport equa-

tions (16). In particular, ∫ ∞
0

dteiωt
∂δne
∂t

= −iωδñe(k, ω)− δne(0), (33)

where δñe indicates the Lapalce transformed electron density perturbation, δñe(k, ω) =∫ +∞
0

dteiωtδne(k, t) and δne(0) ≡ δne(k, 0) is the initial perturbation. It is helpful to dis-

tinguish between Laplace transformed perturbations and the Fourier transformed quantities

that were used before. Using the Laplace transformed Eqns. (16) one can eliminate tem-

perature perturbations from the expressions for the friction force and the electric current:

j̃ = ∆e

(
−ie

2ne
k2T

ωẼ + eneũi∆1 +
ie

k
δne(0)

)
, (34)

R̃ie = −eneẼ +
ik2T

eω

(
j̃∆1 − eneũi∆2 −

ie

k
δne(0)

)
,

Combining Eqns. (25) and (34) we can express the average ion flow velocity in terms of the

electrostatic field and the initial density perturbations.

ikũi = k2λ2De

{
χi
eẼω

kT
− δne(0)

ne
χC

}
, (35)

where we have introduced a term, χC , that is proportional to the electron-ion collision

frequency. Here, e-i collisions are responsible for coupling of electrons to ion evolution

through friction force and ion velocity terms in Eqns. (16),

χC =
∆i

k2λ2Di

∆1∆e − 1

1− g∆i(∆2
1∆e −∆2)

≡ 1 + iωJ iNN
k2λ2Di

iωJeRN
1− igω(1 + iωJ iNN )J̃RR

, (36)

Next we can eliminate the electrostatic field Ẽ by means of the Maxwell equation −iωẼ +

4πj̃ = 0

Ẽ =
kT

eωε(k, ω)

δne(0)

ne
χe(ω, k) , (37)

where we used the following relations,

ε = 1 +
∆e

k2λ2D
+ χi∆1∆e , χe =

∆e

k2λ2D
+ χC∆1∆e . (38)

that follow from Eqs. (28), (29), and (36). Finally we substitute the expressions for j̃

(34), ũi (35) and Ẽ (37) into the first equation of the system (16) for δñe and write the

Fourier-Laplace transformed electron density fluctuation in terms of initial values δne(k, 0),

δñe(ω, k) =
i

ω

{
1− k2λ2De

χe(1 + χi)

ε
+ k2λ2DeχC

}
δne(0) (39)
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The relation (39) for δñe(ω, k) has been derived from the solutions to the kinetic equation in

terms of Laplace transformed quantities, that evolve in response to the initial perturbation,

δna(k, 0). Using these quantities we have to define the pair correlation function in the Fourier

space < δnaδnb >k,ω as follows

< δnaδnb >k,ω= Re [< δña(k, ω)δnb(−k, 0) > + < δñb(k, ω)δna(−k, 0) >] (40)

For the initial density correlation function we will assume a simple equilibrium plasma

result consistent with the weakly coupled limit, Gab(k, 0) =< δna(k, 0)δnb(−k, 0) >= nbδab.

This leads to the following expression for the Fourier-Fourier transformed electron density

correlation function for the density fluctuations about the complete equilibrium state (Te =

Ti),

< δn2
e >ω,k=

2k2λ2Dene
ω

Im

[
χe(1 + χi)

ε
− χC

]
. (41)

We can recover from Eq. (41) the well known limit of the collisionless plasma where the

susceptibility functions χe, χi (28) are evaluated using (31) as discussed at the end of

Sec. II and the coupling due to electron-ion collisions is neglected, χC = 0. Validity

of (41) in the strong-collision limit will be discussed in Sec. IV where we will compare

(41) with the results of the fluctuation-dissipation theorem [32] and the full set of classical

hydrodynamic equations describing fluctuations. One can apply the fluctuation-dissipation

theorem because we have dealt so far with complete plasma equilibrium conditions (Te = Ti).

Such calculations and experimental results were discussed in Refs. [33] where dissipation

was described in the strongly collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied to nonequilibrium plasmas

with two different background temperatures, Te 6= Ti, leads to incorrect results for the den-

sity correlation function. This can easily be seen in the collisionless limit of (41) where there

is an extra factor of Ti/Te multiplying ionic contributions (cf. e.g. Ref. [3] and Eq. (5.6.4)

therein) for Te 6= Ti. Difficulties in calculating fluctuations in nonequilibrium plasmas are

evident when the fluctuation-dissipation theorem [32] is used and they have been discussed

early on (cf. e.g. Ref. [35]). More recently, kinetic theory based on the Klimontovich for-

malism with stochastic force sources has been applied in the derivation of the dynamic form
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factor in collisional nonequilibrium plasmas [36]. The generalized fluctuation-dissipation

theorem of Ref. [36] led to a dynamic form factor of a similar form as in our theory for the

nonequilibrium stationary plasmas (51). However, the rigorous solution to the full set of

linearized Vlasov-Fokker-Planck kinetic equations, without simplifing assumptions, remains

the unique feature of our theory. In order to describe the evolution of fluctuations in the

two subsystems that correspond to the two species plasma we have utilized the set of nonlo-

cal and nonstationary transport equations that are fully equivalent to the linearized kinetic

equations. These two components of the nonequilibrium plasma are coupled by the self-

consistent electric field. To start the calculations we first ignore this field and calculate the

spontaneous fluctuations and linear response functions associated with each species. This

will be achieved by introducing generalized test particle fluctuations, δnte, δn
t
i, that are not

affected by the self-consistent field and polarization of the plasma. The dynamics of these

test particle fluctuations is governed by convective and pressure terms and by particle col-

lisions. They also depend on the temperature of each species. In the second stage, we will

calculate the fluctuations and linear response functions for the whole electron-ion plasma

with self-consistent electric fields in response to test particle fluctuations, δnte, δn
t
i.

1. Initial value problem for the calculation of test particle fluctuations

As before in Sec. III A we will apply the Laplace transformation to Eqns. (16) and

introduce the initial conditions for the density perturbations, δna(0), except that now the

self-consistent field, E = 0, and density perturbations correspond to test particles. We will

eliminate electron temperature perturbation from the expressions of the friction force and

the electric current in the electron formalism,

j̃ = ∆e

(
eneũi∆1 +

ie

k
δne(0)

)
, (42)

R̃ie =
ik2Te
eω

(
j̃∆1 − eneũi∆2 −

ie

k
δne(0)

)
,

and ion temperature perturbations in the formulas relevant to the ion response

R̃ie +
kTi
ω
δni(0) =

ik2niTiũi
ω∆i

, (43)
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Combining Eqns. (43) and (42) we can express the average ion flow velocity in terms of

the initial density perturbations

ikũi = k2λ2De

{
−δne(0)

ne
χC +

Ti
Te

δni(0)

ne
(χi − χC)

}
(44)

Finally we substitute our expressions for ũi (44) and j̃ (42) into the first equation of system

(16) for δñta and write the Fourier-Laplace transformed density fluctuation in terms of initial

values δna(k, 0),

δñte(k, ω) =
i

ω

{
(1− k2λ2De(χe − χC))δne(0) +

Ti
Te
k2λ2DeχCδni(0)

}
, (45)

δñti(k, ω) =
i

ω

{(
1− Ti

ZTe
k2λ2De(χi − χC)

)
δni(0) +

k2λ2De
Z

χCδne(0)

}
. (46)

We proceed by calculating the density fluctuations produced by test particle perturbations

when the coupling between the two species by the self-consistent field is restored.

2. Response to test particle fluctuations

Density perturbations due to test particles are related to the external source current

jt = eω(Zδnti − δnte)/k that is included into the Maxwell equation 4π(j + jt) − iωE = 0.

Note, that all perturbations are now Fourier-Fourier transformed. Then, one can proceed

and calculate electrostatic self-consistent field due to test density perturbation as follows

E = i
4πe

kε

(
δnte − Zδnti

)
(47)

The electrostatic field (47) is related to density fluctuations, that are calculated by using

continuity equations and our relations (27).

δne(k, ω) = δnte + χe
ikE

4πe
=

1 + χi
ε

δnte +
χe
ε
Zδnti , (48)

δni(k, ω) = δnti − χi
ikniE

4πene
=

1 + χe
ε

δnti +
χi
Zε
δnte .

Using these expressions for the density fluctuations we can calculate the electron density

correlations in terms of test particles densities (cf Ref. [36]):

< δneδne >k,ω =
|1 + χi|2

|ε|2
< δnteδn

t
e >k,ω +Z2 |χe|2

|ε|2
< δntiδn

t
i >k,ω + (49)

+Z
(1 + χi)χ

∗
e

|ε|2
< δnteδn

t
i >k,ω +Z

(1 + χ∗i )χe
|ε|2

< δntiδn
t
e >k,ω .
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In the remaining theory we will use δñta (45), (46) to obtain the test particle correlation

functions and after substituting them into (49) we will find the dynamical form factor for

nonequilibrium plasmas.

3. The dynamic form factor

Relations (45), (46) for δnta(k, ω) (a = e, i) have been derived from the solutions to the

kinetic equation in terms of Laplace transformed quantities (33). They can be used to

construct the Fourier transformed correlation function in accordance with Eq. (40). By

using Eqns. (45) and (40) we calculate the test density correlation functions

< δnteδn
t
e >k,ω=

2nek
2λ2De
ω

Im(χe − χc) ,

< δntiδn
t
i >k,ω=

2nek
2λ2De

Z2ω

Ti
Te

Im(χi − χc) , (50)

< δnteδn
t
i >k,ω= −2nek

2λ2De
Zω

(
1 +

Ti
Te

)
Im(χc) .

Substituting correlation function of test particle fluctuations (50) into Eqs. (49) for the

electron-electron correlation functions we obtain the following expression for the dynamic

form factor S(k, ω) =< δn2
e >k,ω /ne:

S(k, ω) =
2k2λ2De
ω|ε|2

{
|1 + χi|2Im[χe − χC ] +

Ti
Te
|χe|2Im[χi − χC ]− (51)

−
(

1 +
Ti
Te

)
Re[(1 + χi)χ

∗
e]Im[χC ]

}
Expression (51) is the main result of our theory. In equilibrium plasma, where Te = Ti

(51) has the form identical to (41). S(k, ω) (51) is valid in the entire regime of particle

collisionality, 0 ≤ kλαβ ≤ ∞ in weakly coupled plasmas and it accounts for the collective

plasma response in terms of Langmuir, ion-acoustic and entropy wave resonances. Our result

is a generalization of the theory from Ref. [38]. As compared to previous studies, S(k, ω)

(51) includes the high frequency response, entropy waves and charge separation effects and

has been derived from a complete solution of the kinetic equation [18] without simplifying

assumptions about the plasma parameters. For example, restrictions to Z � 1 are not

necessary. In fact, it is for the first time that S(k, ω) (51) has been derived in a form

that allows applications to weakly coupled plasmas at all k-vectors and frequencies. We

can obtain the results with arbitrary accuracy, including for nonequilibrium plasmas where

17



Te 6= Ti. We will describe applications of our theory in unmagnetized plasmas with emphasis

on laser produced plasmas where Thomson scattering has become one of the most important

diagnostic technique.

In the collisionless limit of kλαβ � 1, the dynamic form factor S(k, ω) (51) takes the form

of the well known expression [3], which was derived for the first time in Refs. [5–8], and it

is equivalent to the classical limit of the random phase approximation (RPA) expression [4].

The collisionless limit of (51) can be achieved using definitions from Eq. (31) and JRA = 0,

Ji = iJ+(ω/kvT i)/ω, JNN = iJ+(ω/kvTe)/ω. After introducing χVα = W (ω/kvTa)/k
2λ2Da we

can show that S(k, ω) (51) leads to

SV (~k, ω) =

√
2π

k

[(
1
vTe

)
exp

(
− ω2

2k2v2Te

)
|1 + χVi (~k, ω)|2 +

(
1
vTi

)
exp

(
− ω2

2k2v2Ti

)
|χVe (~k, ω)|2

]
|1 + χVe (~k, ω) + χVi (~k, ω)|2

,

(52)

where the superscript V indicates collisionless dynamical evolution of correlations that is

described by the Vlasov equation. The rest of this paper will examine effects of particle

collisions on the high frequency Langmuir wave spectra, low frequency ion acoustic and

entropy fluctuations using S(~k, ω) (51). We will compare (51) with results of the theory of

hydrodynamic fluctuations based on the Braginskii’s model [15] and for the high-frequency

plasma fluctuations we will also discuss Born-Mermin (BM) theory [39, 40] of plasma re-

sponse. Comparison with the BM approximation will help to define limits of applicability

of our theory in dense plasmas approaching strongly coupled regime.

IV. RESULTS AND APPLICATIONS

The main application for the theory of the dynamic form factor is in the calculation of

the Thomson scattering cross section [3]. In TS experiments, the ~k-vector is defined by the

geometry of the scattering process, ~k = ~k1−~k0 (satisfying ω = ω1−ω0), where k0,1 = 2π/λ0,1

and ω0,1 are the wave number and frequency of the pump (0) and scattered (1) light waves.

In experiments, the angle θ between ~k0 and ~k1 is typically fixed, but the magnitude of

k1 is changed as different frequencies (wavelengths λ1) are examined in the scattered light

spectrum. It is customary to plot S(~k, ω) as a function of λ1, and this will be done in the

following.
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A. Limit of strong collisions

As promised in Sec. III A we will first compare our theory with earlier results [33]

that were obtained using the fluctuation-dissipation theorem (Te = Ti = T ) and Braginskii

transport equations [15] describing dissipation in the plasma in terms of collisional transport

coefficients. These papers [33] included experimental results from TS experiments with a

CO2 laser probe that were well reproduced by the theoretical form factor. Some discrepancies

are always expected as the Braginskii hydrodynamics and transport relations are valid in the

kλab � 1 limit, where k is inverse of the gradient scale length and λab are collisional mean-

free-paths. The dynamic form factor was defined via the fluctuation-dissipation theorem

[2, 32] in the following form [34]

S(k, ω) =
k2T

πω2e2ne
Re[σe(k, ω)], (53)

where σe is the AC electric collisional conductivity that describes the electron current re-

sponding to external electric field perturbation acting on electrons. Braginskii’s equations

[15] that are used to evaluate σe were simplified and only three dominant transport processes

were retained described by the electron thermal conductivity κe0 = 3.14nev
2
Te/νei, the ion

thermal conductivity κi0 = 3.91niv
2
T i/νii and the ion viscosity ηi0 = 0.96niTi/νii. All three

transport coefficients represent stationary (ω → 0) and local (k → 0) limits of the transport

coefficients that were introduced in transport relations (18), (20) of our theory for plasmas

with Z = 1 according to the experimental conditions in [33]. With these approximations

the dynamical form factor (53) has the following form [33]

S(k, ω) = 2
A(k) +B(k)b(k)/D(k, ω)

[A(k) +B(k)b(k)/D(k, ω)]2ω2 +H(k, ω)2
, (54)

H(k, ω) = 2− ω2/ω2
0i + 1.5B(k)ω2/D(k, ω), B(k) = 1 + 3(me/mi)neνei/(k

2κe0),

A(k) = ne/(k
2κe0) + (4/3)ηi0/(neT ), D(k, ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)

1/2,

b(k) = k2κi0/ne + 3(me/mi)νei.

Comparison between results for the dynamic form factor based on Eq. (54) and our theory

(51) is shown in Fig. 1. At the typical plasma parameters from [33] used in Fig. 1 we find

that the collisional parameter for electrons is kλei =0.08 and for ions kλii =0.11. The TS

parameter α = 1/(kλDe) =489.7. While for these parameters electrons can be described
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by the Braginskii transport theory, i.e. nonlocal effects are small, the ion response will

nevertheless be affected by nonlocal effects. In particular, the ion thermal conductivity is

reduced from the κi0 and this lowers the damping of the entropy mode as it is seen in Fig.

4 of Ref. [18], cf. also Ref. [20]. This explains the discrepancy between two curves in Fig.

1 at the zero frequency entropy mode.

This trend continues for plasma parameters corresponding to less collisional plasmas.

Figure 2 shows the results for increased temperature of Te = Ti =5 eV (the rest of parameters

are as in Fig. 1). In hotter plasmas collisional parameters are kλei =0.38 and for ions

kλii =0.54 and the TS parameter is α = 1/(kλDe) =309.7.

Now, the strong collision theory (54) is not only incorrect for the entropy mode but elec-

tron transport is also in the nonlocal regime causing changes in the frequency and damping

of the ion-acoustic fluctuations. Again, results in Fig. 2 reflect changes to the dispersion

relations of the ion-acoustic waves and entropy modes in the regime of weaker collisions

discussed in [18].

B. Low frequency fluctuations

TS in the collective regime (α = (kλDe)
−1 > 1) and in the low frequency range (ω ≤ ωpi)

is used to investigate ion-acoustic and entropy mode fluctuations. For α � 1 the dynamic

form factor S(~k, ω) characterizes long wavelength fluctuations in the hydrodynamical regime

as discussed in the previous section. However, for the typical conditions in laser produced

plasmas, S(~k, ω) will be in the weakly collisional regime where damping and dispersion of the

modes depend on the nonlocal and nonstationary properties of transport relations. To illus-

trate these features of the S(~k, ω) theory we will first address a typical regime encountered

in carbon plasmas that is characteristic of laser produced plasmas at modest intensities.

In fact, we will discuss results relevant to measurements in Ref. [27] (cf. Fig. 4 therein).

Consider the TS probe at λ0 = 5270Å, a scattering angle of θ = 117◦, with Te=100 eV,

ne =5.6 1018 cm−3, and α=1.58 in carbon plasmas. At these conditions kλei=133 and there-

fore electron collisions have no effect on the TS cross-section. On the other hand for the

three ion temperatures examined in [27] ion-ion collisions play a role and their effects are

illustrated in Fig. 3.

Figure 3 displays three panels (a), (b) and (c) that show redshifted ion-acoustic peaks
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calculated for the above plasma parameters and for different ion temperatures using our

complete theory for S(~k, ω) (51) (solid lines) and collisionless SV (~k, ω) theory (52) (dashed

lines). The latter was also employed in Ref. [27]. The two ion acoustic peaks are symmetric

and there is no entropy mode perturbation thus by showing only one peak we fully illus-

trate TS results. Figure 3d combines all three cases in one plot for the collisional plasma

calculations. The origin of discrepancies between two theories are ion collisions. The most

significant effect is for Ti =20 eV in Fig. 3a resulting in kλii =0.68, i.e. relatively collisional

case where ion collisions play the most important role within these three examples. At the

same time, ZTe/Ti=30 (Z = 6) is the largest in 3a and therefore ion Landau damping is

negligible. This narrows the width of the ion acoustic peak for SV (~k, ω) (52) results. The

intermediate case in Fig. 3b for Ti=40 eV, kλii=2.2, shows enough broadening of the ion-

acoustic peak due to collisions that the result may exceed the accuracy of the experimental

spectra fitting in Ref. [27]. At Ti =60 eV, kλii=4.0, the two theories start to converge as

the plasma becomes less collisional. The importance of ion collisions increases in high−Z

plasmas. Thus, TS from gold plasmas, particularly for ICF related conditions and very high

temperatures is dominated by ion collisions at Z =40 - 50.

TS from the nitrogen gas jet plasma in Ref. [24] was used to map out temperature pro-

files of the propagating heat waves and led to one of the most convincing demonstration

of the nonlocal heat conduction in laser produced plasmas. Dynamical form factors in this

experiment were calculated over a broad range of electron temperatures from Te =20 eV, cf.

Fig. 4a, up to Te =160eV, cf. Fig. 4b at electron density ne=1019 cm−3. The electron tem-

perature was deduced in [24] from the peak separation in the ion acoustic wave spectra and

discrepancy shown in Fig. 4a between the correct collisional theory and collisionless results

used in [24] is well within experimental accuracy of these measurements. The comparisons

between collisionless and collisional theory in Fig. 4a involves k-vectors such that kλei=5.67

and kλii=0.27. The shift in the position of the ion-acoustic peak is consistent with the

effect of collisions on the ion acoustic frequency [18]. With the parameters of Fig. 4a also

electrons in addition to ions (as in Fig. 3) contribute to damping and dispersion of the ion

acoustic waves through nonlocal and nonstationary transport coefficients. Contributions of

ions remain in the weakly collisional regime at higher temperatures (Te = 2Ti =160 eV) and

for Z =7 in Fig. 4b where kλii =2.23. While the electron’s contributions are in collisionless

regime, kλei = 129.
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C. High frequency fluctuations

Here, we consider the plasma response at frequencies close to the electron plasma fre-

quency, ωpe. In the collective regime (k � kDe) the maxima of the dynamic form factor

correspond to resonances at the Langmuir wave frequencies. We will also consider transi-

tional region into non-collective plasma response (k ≥ 0.5kDe) at conditions of some plasma

experiments. For high frequencies we can neglect ion dynamics, i.e. taking Ji = JRN = g = 0

in Eq. (51), and write the dynamic form factor as SHF ,

SHF (~k, ω) = 2Re
[
KHF
e (~k, ω)

]
(55)

KHF
e (~k, ω) =

i
(
1 + iωJNN (1− k2λ2De)

)
ωε(~k, ω)k2λ2De

, (56)

where the plasma dielectric function (29) is taken in the following form

εHF (k, ω) = 1 +
1 + iωJNN
k2λ2De

. (57)

Only one moment, JNN , of the basis function ψeN0 (8) is required in the above expressions to

properly describe the collisional plasma response at high frequencies.

In addition to the complete theory of the dynamical form factor (51) and its simpler

version that is applicable to high frequency regime (55) we will also consider the simpler and

commonly used model based on the Bhatnagar-Gross-Krook (BGK) [41, 42] approximation

to the collision operator. Our implementation of the BGK model involves the following

expression for the plasma dielectric function,

εBGK(~k, ω) = 1 +
4πe2

mek2

∫
d3v

1

ω + iνei(v)− ~k · ~v
~k · ∂F

e
M

∂~v
, (58)

where the electron-ion collision frequency, νei = 4πZe4neΛei/m
2
ev

3, is the velocity dependent

function. The S(~k, ω) based on the BGK approximation (58) to particle collisions is derived

from the fluctuation dissipation theorem [2, 32],

SBGK(~k, ω) = −2k2λ2D
ω
=

[
1

εBGK(~k, ω)

]
. (59)

Figure 5 compares results of the collisionless theory, SV (~k, ω) (52) (dashed lines) or equiv-

alently its simplified version of Ref. [8], complete theory of the dynamical form factor, (51)

or (55) (continuous lines) and simplified theory of fluctuations in the collisional plasma based
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on the BGK model (59) (dotted lines marked with letters BGK). We show only red-shifted

peak that is symmetric with the blue shifted feature. We have examined parameters of the

experiment in [27] that were discussed for the low frequency response and shown in Fig. 3

(ne = 5.61018cm−3, Te = 100eV, Z = 6, α = 1.58, θ = 117◦). As we wrote before for these

parameters of the experiment in Ref. [27] the electron collisional parameter, kλei=133, is

very large and collisions do not affect the calculations. All three theories produce dynamic

form factors that are indistinguishable. Therefore, in order to illustrate the effects of electron

collisions we consider modified plasma parameters with electron temperature Te =50 eV and

further introduce scattering angle θ =10◦ in Fig. 5a. With these new parameters α =21.8

and kλei =4.05. For such a small value of kλDe collisionless theory (52) gives an extremely

narrow and small peak. The plasma density fluctuations are defined entirely by collisional

processes in spite of the weakly collisional regime at this wavelength of fluctuations. In Fig.

5b the scattering angle is θ =60◦ that gives α =3.8 and kλei =23. Even for these weakly

collisional effects the complete theory significantly differs from the dominant collisionless

peak and agrees reasonably well with the BGK approximation. The discrepancy between

full kinetic model results (55) and the calculations based on the BGK approximation (59)

underscores need for the careful modelling of collisions with inclusion of high angular har-

monics, frequency effects and electron-electron in addition to electron-ion collisions. Perhaps

the most surprising outcome of the comparisons in Fig. 5 corresponds to the essentially col-

lisionless regime in Fig. 5b that still displays significant deviations from the collisionless

theory at the large values of the collisionality parameter kλei = 23. Collisions in the BGK

model or in the complete theory are responsible for 30% to 50% differences in the amplitude

of the Langmuir waves peaks.

Effect of collisions on the plasma dispersion function in the high frequency regime and

the modifications of the Langmuir wave dispersion relation have been well understood (cf.

e.g. [44]). Also our solutions to the kinetic equations (see Sec. II) and in particular the

method of harmonics summation by the renormalized effective collision frequency (10) have

been applied before to the description of Langmuir wave dispersion and damping [18, 43].

In particular Ref. [43] examined the BGK approximation (58) and compared it with the

approach involving harmonic expansion and effective collision frequency (10). Discrepancies

between dielectric functions derived from the rigorous solution of the full kinetic equation of

Sec. II and from the approximate models such as the BGK operator lead also to differences
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in the dynamical form factors.

The most interesting developments in TS in recent years has been application of short

wavelength probes, from the VUV to hard X-ray parts of the spectrum in experiments

with dense highly compressed plasmas [4]. An example in Fig. 6 illustrates results for the

parameters of such experiment [45] where an X-ray beam (photon energy 5.5 keV) from a free

electron laser is scattered from cryogenic hydrogen. This example is focussed on scattering

in the high frequency regime because the spectral resolution of the scattered light that is

used in these experiments does not yet allow measurements of the separation of ion acoustic

peaks in the low frequency regime. Figure 6 shows again red-shifted Langmuir wave peaks

for the parameters of experiment with the X-ray probe, λ0 = 2.25Å scattered from liquid

hydrogen jet at ne = 1023 cm−3 and Te =20 eV at θ = 10◦. At these parameters the plasma is

approaching the strongly coupled regime and in spite of the very short probe wavelength the

fluctuations are also affected by collisions, kλei =1.4. Also for α = 1/kλDe =1.97 this is the

transitional regime to non-collective plasma response and at Z =1 higher order corrections

due to e-e collisions are comparable to e-i collision contributions. While evaluating collisional

form factors (51) or (55) and SBGK (59) in Fig. 6 we have clamped Coulomb logarithms at

2 in the collisional frequencies. This approximate treatment of the strongly coupled limit

will be evaluated by comparison with theory that includes proper treatment of collision

frequency in dense plasmas such as the Born–Mermin (BM) approximation [4, 46–48]. The

BM approximation employs the Mermin expression [39, 40] for the electronic part of the

susceptibility function,

χBMe (k, ω) =

(
1 + iν

B(ω)
ω

)
χRPA
e (k, ω + iνB(ω))

1 + iν
B(ω)
ω

χRPA
e (k,ω+iνB(ω))

χRPA
e (k,0)

, (60)

where νB(ω) is the elecron–ion collision frequency and χRPAe = χVe in classical plasmas. In

BM theory, νB(ω) is approximated by the 2nd order perturbation expansion in terms of the

electron–ion interaction (Born approximation) [49],

νB(ω) = −i ε0Zf
6π2e2me

∫ ∞
0

dq q6
[
V S
ei (q)

]2
Sii(q)

1

ω

[
χRPA
e (q, ω)− χRPA

e (q, 0)
]
. (61)

V S
ei (q) = e2/ε0q

2(1 +κ2sc/q
2) is the statically screened electron–ion potential with the inverse

screening length κsc, Sii(q) is the static ion–ion structure factor, taken here in the Debye–

Hückel approximation Sii(k) = k2/(k2 + κ2D). The dynamical form factor SBM(~k, ω) in BM
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approximation is evaluated using Fluctuation-Dissipation theorem (59) where 1 +χBMe (60)

replaces εBGK . SBM(~k, ω) is shown by the blue solid line in Fig. 6.

The BM theory accounts for electron–ion collisions only. Replacing χRPA
e (k, ω) in Eq. (60)

by an expression for the correlated electron–electron susceptibility, using the local field cor-

rection (LFC) leads to the generalized BM approximation describing also electron–electron

collisions [50, 51]. The BM curve in Fig. 6 describes collisional broadening of electron–

plasma resonance in qualitative agreement with the other collisional theories. The peak

position is closer to the collisionless RPA result than the other theories. This is a well

known and understood feature of the BM approximation, which due to the analytical struc-

ture of the BM theory can only describe the plasmon dispersion of the RPA. Deviations from

the RPA dispersion have been observed in the generalized BM approximation [50]. However

for the present plasma parameters, also the generalized BM approximation does not yield a

significant deviation from the RPA dispersion.

The final example is related to first collective X-ray scattering measurements of fluctu-

ations at plasma frequency in beryllium solid density plasmas [52] as illustrated in Fig. 7.

We have examined plasmas with increasing electron temperatures while all other parameters

(scattering angle, plasma density and photon energy) are kept constant. Figures 7b,c, and d

show form factors in regimes where plasma response become gradually more non-collective,

α=1.23, 1., 0.87, respectively. All theories, SV (52), SBM (60) and SHF (55) converge to a

single curve with exception of the BGK approximation (59) that greatly overestimates the

effect of collisions. Comparisons between form factors at Te =10 eV, Fig. 7a, show strong

effect of collisions in SHF (55) and lesser modifications by e-i collisions in the BM (60) re-

sults. The collisionless theory SV (52) and BGK approximation (59) are the least accurate.

The difference between BM approximation and the SHF (55) demonstrate importance of

the proper modelling of the collision frequency. The simple fix of clamping Coulomb loga-

rithms at two that is used in SHF (55) to account for the strongly coupled plasma effects

overestimates importance of collisions in Fig. 7a as compared with BM results.

V. SUMMARY AND CONCLUSIONS

The theory of density fluctuations of this paper is firmly based on the results of nonlocal

and nonstationary plasma hydrodynamics which has been developed over the years [16–
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18, 21, 22] and gives rigorous solutions to the linearized Vlasov-Landau kinetic equation for

the two component plasmas. This approach is well suited to the problem of evaluating plasma

fluctuations and the dynamic form factor because solutions for the small perturbations of

the particle distribution functions are found in terms of Fourier transforms in space and

time. The background state is described by Maxwellian distribution functions with two

different temperatures. We have derived a new expression for S(~k, ω) for nonequilibrium

two temperature plasmas. We also verified that the proper expression in the collisionless

limit is recovered.

The main result of our theory of the dynamic form factor S(~k, ω) (51) is applicable

to TS experiments in the entire weakly coupled plasma regime from the hydrodynamical

fluctuation limit modelled by Braginskii equations to the collisionless RPA limit of Eq. (52).

Our theory works for nonequilibrium plasmas with different temperatures of electrons and

ions, Te 6= Ti. Therefore, it avoids limitations imposed by the application of the fluctuation

dissipation theorem [2, 32] in calculations of the S(~k, ω) that requires a complete equilibrium

state to be valid. From the analysis of several TS experiments and by studying examples

corresponding to laboratory plasmas in Sec. IV we have found that collisions matter and

can change the form factor more than experimental accuracy of the fits. This is true even

for the collisional parameter, kλab ≥10. Such plasmas are in the weakly collisional regime

that is well described by our nonlocal and nonstationary hydrodynamics. We expect that

with time our program using Mathematica to evaluate Eq. (51) will be commonly available

and our theory will be widely used to reproduce experimental TS data.
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FIG. 1: Dynamical form factors for argon plasma at ne = 1017cm−3, T = 2eV, Z = 1, A = 18. The

probe wavelength is λ0 = 10.6µm and the scattering angle θ = 6◦. Dashed line is obtained using

(54) and the continuous black line corresponds to the full theoretical S(k, ω) of our theory (51) for

Te = Ti = T
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FIG. 2: Dynamical form factors for argon plasma at ne = 1017cm−3, T = 5eV, Z = 1, A = 18. The

probe wavelength is λ0 = 10.6µm and the scattering angle θ = 6◦. Dashed line is obtained using

(54) and the continuous black line corresponds to the full theoretical S(k, ω) of our theory (51) for

Te = Ti = T
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FIG. 3: Dynamic form factors for Thomson scattering probe at λ0 = 5270Å, scattering angle

θ = 117◦, Te=100 eV, ne = 5.6 1018 cm−3, and α=1.58. Only red shifted ion acoustic peaks are

shown for three different ion temperatures in panels (a), (b) and (c). Results of the full collisional

theory (51) of S(~k, ω) are depicted by continuous lines, the collisionless SV (~k, ω) expression (52)

gives results depicted by dashed lines. Panel (d) shows all three cases calculated using (51).
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FIG. 4: Dynamic form factors for ne = 1019cm−3, λ0 = 5320, θ = 90◦ in nitrogen plasma. Only

one, red shifted peak is shown out of two symmetric resonances. Results for ollisional plasma with

kλei=5.67, kλii=0.27, Z=4, Te = 2Ti =20 eV are shown in (a), results for Te = 2Ti=160 eV, Z = 7,

kλei=129, kλii=2.23 are shown in panel (b). Dashed lines correspond to the collisionless theory

(52), continuous lines correspond to the complete theory of the dynamical form factor (51).
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FIG. 5: Dynamic form factors for ne = 5.6 1018cm−3, λ0 = 5270, Te = 50eV . (a) θ = 10◦, (b)

θ = 60◦. Dashed lines correspond to the collisionless RPA theory (52), continuous lines correspond

to the complete theory of the dynamic form factor, (51) or (55) and the BGK model (59) is shown

by dotted lines, marked with BGK.
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FIG. 6: Dynamic form factors in the high frequency regime corresponding to H plasmas from X-ray

probe scattering experiment with λ0 = 2.25Å, ne = 1023 cm−3, Te =20 eV, θ = 10◦, α = 1.97.

Dashed lines correspond to the collisionless theory (52), continuous lines correspond to the complete

theory of the dynamical form factor, (51) or (55) and the BGK model (59) is shown by dotted

lines. For comparison, we also show results from the Born-Mermin (BM) approximation [46].
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FIG. 7: Dynamic form factors in the high frequency regime, red shifted peak, corresponding to

Be (Z=2, A=9) plasmas from X-ray scattering experiments with λ0 = 4.19Å, ne = 1023 cm−3,

θ = 30◦. Dashed lines correspond to the collisionless theory (52), continuous lines correspond to

the complete theory of the dynamical form factor, (51) or (55) and the BGK model (59) is shown by

dotted lines. (a) Te = 10eV, kλei=0.28, α=1.74; (b) Te=20eV, kλei=1.12, α=1.23; (c) Te=30eV,

kλei=2.51, α=1.; (d) Te=40eV, kλei=4.46, α=0.87; For comparison, we also show results from the

BM approximation [46].
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