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Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-
density plasmas where the magnetic field is advected by heat flux via the Nernst effect. Here we
elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation
and a generalized Ohm’s law derived from first principles, we show that momentum transport
due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic
reconnection. Scaling analysis and simulations show that the reconnection process comprises of a
magnetic field compression stage and quasi-steady reconnection stage, and the characteristic width
of the current sheet in this regime is several electron mean-free-paths. These results show the
important interplay between nonlocal transport effects and generation of anisotropic components to
the distribution function.

I. INTRODUCTION

Magnetic fields in high-energy-density (HED) plasmas
are of interest as the field can modify and direct elec-
tron heat flux and therefore determine the energy con-
finement properties of these plasmas. Strong, Mega-
Gauss-scale (MG-scale) magnetic fields can be generated
in laser-target interactions by a number of mechanisms
including the Biermann battery effect [1], plasma insta-
bilities in coronal plasmas[2], the Rayleigh-Taylor insta-
bility [3], and the Weibel instability [4, 5]. The pres-
ence of magnetic fields improves energy confinement in
hohlraums [6]. Magnetic fields can also be applied exter-
nally with pulsed-power systems, underlying the MagLIF
fusion concept [7], and, for example, have been shown to
improve direct-drive fusion performance on OMEGA [8].

A novel effect in many HED plasmas is that the mag-
netic field can itself be advected by the heat flux, via
the so-called Nernst effect in the generalized Ohm’s law
(GOL) [9–11]. The Nernst effect arises from the v−3

velocity dependence of the collision frequency in plas-
mas; intuitively, the magnetic field appears frozen to the
low-collisionality, hot population of electrons, but diffuses
across the compensating colder return current, with the
net effect that the field advects parallel to the heat flux.
Several experimental results have demonstrated the im-
portance of the Nernst effect in HED regimes [12–15],
with promising agreement obtained between experiment
and simulation. Nevertheless, correctly simulating the
evolution of the magnetic field in these systems remains a
challenge due to the coupling of the magnetic field to the
heat flux, which can be nonlocal in character[10, 16, 17].

The evolution of the magnetic field in these HED sys-
tems can be further determined by magnetic reconnection
driven by collision of opposing magnetic fields[18–20].
Magnetic reconnection then affects the self-organization
of plasma profiles by modifying the plasma transport pro-

cesses, even in high-beta regimes. The HED plasmas is
of general interest as a new platform for laboratory study
of magnetic reconnection in high-beta regimes. Previous
simulations of reconnection in HED plasmas in which re-
connection is driven by plasma flows [21, 22] have re-
cently been extended to demonstrate that the magnetic
field inflow can also be driven solely by the Nernst ef-
fect [23] in a high-beta (βp � 1) and semi-collisional

(Ωτ ≈ 1.47B[T](Te[keV])3/2/(Zne[1020cm−3]) ∼ 1)
regime (hereafter denoted the Nernst regime), where Ω
is the electron cyclotron frequency and τ is the electron
collision time. Interestingly, since the Nernst term is a
pure advection term, it vanishes at the magnetic field
null point, indicating additional dissipation or decoupling
mechanisms are required to allow for reconnection in this
regime. In simulations [23] it is observed that momen-
tum transport (given by off-diagonal components of the
electron pressure tensor Π) dominates resistivity and pro-
vides the dissipation mechanism to break field lines in
the reconnection layer. The presence of such a momen-
tum transport in the semi-collisional Nernst regime is
highly interesting; for one, momentum transport is well-
established in collisionless particle-in-cell (PIC) simula-
tions of reconnection [24, 25]. However, finding closures
for the kinetic equation to predict the magnitude of the
momentum transport in collisionless regimes has proved
challenging[26].

In this paper, we present fully kinetic particle-in-cell
simulations and analytic theory to elucidate the mecha-
nism of magnetic reconnection driven by the Nernst ef-
fect, which demonstrates the interaction between non-
local transport, momentum transport, and the dynam-
ics of the magnetic field. Momentum transport in the
current sheet provides the out-of-plane electric field for
reconnection, and is fundamentally a nonlocal process.
The momentum transport obtained in the simulations
is shown to be due to the “heat-flux-viscosity” [27, 28],
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which describes the momentum transport arising from
gradients in the heat-flux. A consequence is that in
the Nernst regime, the half-width of the reconnection
layer must be of the order of a few electron mean free
paths (λmfp ≈ 110µm(Te/1keV)2/(Zne/1020cm−3)), a
potentially experimentally-observable prediction. At the
mean-free-path scale, in the magnetic cavity of the recon-
nection layer, the transport transitions from diffusive to
free-streaming, requiring nonlocal analysis[10, 11, 17, 29].
This indicates that a typical heat flux driven magnetic
reconnection process will have two stages: (1) a progres-
sive formation of a thin current sheet as the two oppos-
ing fields are compressed together until, (2) the shear
width becomes of the order of several mean-free-paths.
The very thin width of the layer is consistent with strong
nonlocal effects [14] inside the reconnection layer. The re-
sults indicate how nonlocal effects and momentum trans-
port are readily coupled for magnetic field transport in
HED plasmas; this has often been ignored in previous
calculations[10, 17] which assumed an isotropic distribu-
tion function and ignore momentum transport.

This paper is organized as follows. In Sec. II we show
the generalized Ohm’s law derived from the transport
theory, including the full contribution of the anisotropic
pressure tensor. In Sec. III we show a scaling analysis
of the GOL in the Nernst regime. In Sec. IV we demon-
strate the results of a 2D collisional particle-in-cell sim-
ulation for heat-flux-driven magnetic reconnection, and
analyze the advection and diffusion of the magnetic fields
using the derived GOL. We also confirm that the origin
of the anisotropic pressure tensor is mainly from the heat
flux viscosity, and that nonlocal effects are important in-
side the reconnection layer. In Sec V we conclude with
a summary. In Appendix A, we show the details of the
derivation of the GOL.

II. GENERALIZED OHM’S LAW WITH
PRESSURE TENSOR

The dynamics of the magnetic field, including both
advection and diffusion effects, follow from a generalized
Ohm’s law for the electric field, in combination with Fara-
day’s law. For simplicity, we assume that ions are immo-
bile using an extension of the electron MHD (eMHD)
picture. (The inclusion of ion dynamics does not change
the qualitative picture.) The standard GOL can be calcu-
lated from the first-order moment of the kinetic equation,

E =
Rei

nee
+

j×B

neec
− ∇ · (peI + Π)

nee
, (1)

where we have ignored the inertial term proportional to
the small electron mass. [30] Here E is the electric field,
ne is the electron density, Te is the electron temperature,
pe = neTe, and Π is the traceless pressure tensor. Rei

is the friction force from electron-ion collisions, which in-
cludes not only the resistivity effect, but also includes the

thermal force, which can be shown to contain the Nernst
effect. Separating the contributions to Rei in this man-
ner, we derive a new GOL based on the the representation

f = f0 + f1 · v/v + f2 : vv/v2, (2)

and solve the kinetic equation for f1 following the steps
in Appendix A. Note that in the traditional derivation
of the local transport theory[31, 32], contributions of f2
are ignored. But in the nonlocal regime[16], the trans-
port model becomes non-perturbative and the contribu-
tion from f2 can be of the same order as the other terms.

Here we incorporate the contributions from f2 associated
with the viscosity, which can be regarded as a first-order
nonlocal transport effect in the GOL.

The new GOL can be written as,

E =
α · j
n2ee

2
+

j×B

neec
− ∇ · (peI + Π)

nee
−
β · ∇ ·

(
TeI + 2

5Π/ne
)

e
,

(3)

where α is the resistivity tensor, which can be expressed
as α = (mene/τ)αc, where αc is the dimensionless resis-
tivity (In this paper the superscript “c” denotes the di-
mensionless prefactor to the transport coefficients, which
are generally functions of Ωτ and the ion charge Z.), and
τ is the mean electron-ion collision time[32],

τ =
3
√
meT

3/2
e√

2πniZ2e4 ln Λ
. (4)

where me is the electron mass, ni is the ion density, and
ln Λ is the Coulomb logarithm.

In addition, β is the thermoelectric tensor. The result

of αc and β as functions of Z and Ωτ can be found in

[32]. The Nernst effect is contained in the off-diagonal
terms of β · ∇Te. Note that the anisotropic pressure ten-

sor, Π, appears a second time in the thermoelectric term,
which is different from Eq. (1). We can see that like the
resistivity, the pressure tensor introduces an additional
dissipation effect in GOL that can break field line and
cause reconnection.

In a collisional plasma, the anisotropic pressure tensor,
Π, which describes the momentum transport in plasma,
can be calculated from the viscosity in the transport the-
ory. In addition to the standard flow viscosity which
comes from the shear and compression of the flow, in
[28] we showed the heat-flux viscosity (HFV) have a
form analogous to the flow viscosity but with the re-
placement of the plasma flow with the Nernst velocity.
The anisotropic pressure tensor can then be calculated
by combining the two viscosity effects,

Π = η : ∇ve + µ : ∇vNe, (5)

where ve is the electron flow velocity, and vNe =
2qe/(5neTe) is the electron Nernst velocity, where qe is
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the electron heat flux [9]. η and µ are the viscosity co-

efficients for particle-flow viscosity (PFV) and heat-flux
viscosity (HFV), respectively. These coefficients are pro-
portional to the electron collision time, which indicates
that momentum transport matters when the mean free
path is comparable to the gradient length scale. It can be
regarded as a first-order nonlocal transport effect. The
picture of the HFV can also be understood by consider-
ing that an electron heat flux consists of counter-flowing
electron populations at high and low energies; then, given
that plasma viscosity decreases with collisionality, the
high energy electrons make a larger contribution to mo-
mentum transport than the low energy electrons, giving
a net viscosity effect.

III. SCALING ANALYSIS OF THE
GENERALIZED OHM’S LAW

We now provide a scaling analysis to compare the mag-
nitudes of the terms in the GOL in the Nernst regime to
motivate the analysis of particle-in-cell simulations to fol-
low. We first estimate the ratio of the contributions of
HFV and PFV to dissipation in the reconnection layer:

R1 =
µ∇ (κ∇Te/pe)
η∇ (j⊥/nee)

=
µcκc

ηc
1

Ωτ

λ2mfp

d2e

LS

LT
, (6)

where j⊥ is the perpendicular current, κ = (neTeτ)κc is
the heat transfer coefficient, de = c/ωpe is the electron
skin depth, and λmfp = vTeτ is the electron mean free
path . Note that λ2mfp/d

2
e = βp(Ωτ)2/2, where βp is the

plasma beta associated with the thermal energy. Here
LS is the scale length of the magnetic shear, which is
approximately the half-width of the reconnection layer,
and LT is the scale length of temperature gradient driv-
ing the reconnection. It is interesting that this ratio is
similar to HN of [23], which describes a condition for
the Nernst regime. As shown in Fig. 1, the ratio of the
prefactor, µcκc/(ηcΩτ), stays near 14 for Ωτ . 0.1, and
then falls as (Ωτ)−2 for Ωτ � 1. In the semi-collisional
regime (Ωτ ∼ 1), this demonstrates that if the plasma
temperature is sufficiently high, such that λmfp � de,
then the HFV dominates the PFV in maintaining the
pressure tensor.

We next compare the HFV and the resistivity in the
GOL:

R2 =
∇Π

αj⊥
=
µcκc

αc

1

Ωτ

λ4mfp

LSLT d2e
. (7)

The resulting prefactor, µcκc/ (αcΩτ), stays near 25 for
Ωτ . 0.1, and falls as (Ωτ)−4 asymptotically for Ωτ � 1.
If LS and LT are not too large, which is a necessary con-
dition for a strong Nernst effect in the upstream, and
again λmfp � de, the pressure tensor contribution then
dominates the resistivity. The factor λ2mfp/(LSLT ) im-
plies that the HFV enters as a nonlocal effect, where the
λmfp is not ignorable compared to global length scales.

Note that it has been shown that in the collisionless limit
pressure tensor can balance the electric field in the recon-
nection layer and drive fast reconnection. Here we shown
that even in semi-collisional regime this scenario is also
possible.

Finally, we examine the balance between the HFV and
the Nernst-driven inflow in the reconnection layer, as
would be required to obtain a steady reconnection rate.
Note that both terms depends on the heat flux qe, so any
flux-limitation effect due to the nonlocal transport will
cancel. We obtain

R3 =
∇Π

vNB/c
=

µc

Ωτ

λ2mfp

L2
S

. (8)

The resulting prefactor, µc/(Ωτ), as shown in Fig. 1,
has a similar trend to the previous two, which stays near
4.3 for Ωτ . 0.1, and goes as (Ωτ)−2 asymptotically for
Ωτ � 1. This indicates that in a quasi-steady state,
where the electric field in the upstream region and in the
reconnection layer reach a balance, LS must be of the
order of a few λmfp, and that LS must decrease when
Ωτ increases. This analysis indicates that in magnetic
reconnection in Nernst regime, a thinning of the recon-
nection layer and a magnetic field compression[21, 22]
can happen until LS becomes comparable to λmfp. The
scaling of R3 with mean-free-path shows that the HFV is
manifestly a nonlocal effect. [33]. In addition, given that
λ2mfp is proportional to βp, the occurrence of significant
reconnection is related to large βp.

10
-2

10
-1

10
0

10
1

10
2

 

10
-5

10
0

c c/( c )

c c/( c )

c/( )

FIG. 1. The coefficients as functions of Ωτ in the dimension-
less analysis of the GOL.

IV. PARTICLE-IN-CELL SIMULATION

We now directly study these processes in a collisional
particle-in-cell (PIC) simulation using PSC [34]. We sim-
ulate a 2D x − z plane. The profile of density and tem-
perature are initialized to be uniform, with ne = ne0,
Te = Te0. During the simulation, the plasma is heated in
two semi-circular regions located at the center of the two
z boundaries to simulate the laser heating. In order to



4

maintain a stationary temperature profile, we also artifi-
cially cool the plasma at the two x boundaries to extract
energy from the system. The magnetic field is initialized
encircling the two hot spots in a similar manner to pre-
vious simulations[21, 23], with a peak value B0. In the
simulation we fix the ions to isolate the electron physics
and simplify the analysis [35].

The parameters we used are as follows: Ωτ = 1.2,
λmfp/de = 14. The box size is 320de × 320de (about
24λmfp × 24λmfp). We make a brief note on the de-
termination of the parameters for our explicit particle-
in-cell simulations. The results of the PIC simulations
can be applied and scaled to match a family of physi-
cal systems which match the relevant dimensionless pa-
rameters. In the case of the Nernst problem consid-
ered here, the relevant parameters are: λmfp/de, Ωτ ,
and L/λmfp (Other parameters which have appeared in
the literature, such as βp, can be derived as combi-
nations of these. In our simulation, the initial βp is
278). Now, we note that if we choose, Te = 0.5 keV,
ne = 1.35 × 1021cm−3 and B = 31T, we will match the
dimensionless parameters above. These values are also
close to current HEDP experiments. To achieve these
dimensionless parameters, while allowing an efficient ex-
plicit particle-in-cell simulation, we run at reduced speed
of light mec

2/Te = 200, rather than 1000 as is usually
associated with Te = 0.5keV. We note this type of com-
promise in the choice of plasma parameters is common
practice in particle-in-cell simulations of magnetic recon-
nection phenomena[21, 36] . While this ratio of scales
is compressed, the parameter is well-matched in regime,
and provides a basis for a convergence study. In the case
of the physics of the Nernst effect studied here, we notice
that for the parameters chosen, the condition vN � c
is satisfied, so the compression of this parameter is not
expected to have significant physical consequences. More
directly, none of the ratios discussed in Sec. III depends
on mec

2/Te. Finally, we conducted a convergence test
which found that the primary results are converged with
respect to this parameter. The parameter does affect
the population of electrons which are relativistic, and
the scale separation of electrostatic and electromagnetic
phenomena.

The temperature profile (normalized to the initial tem-
perature Te0) and the magnetic flux contours at t = 10τ
and t = 120τ are shown in Fig. 2, which demonstrates
that over time the magnetic flux is advected toward the
mid-plane and is reconnected there through an X-point.
We note that in the simulation we observed a collisional-
Weibel instability[37, 38] which causes ripples of the ex-
isting magnetic field and generates new magnetic field in
the heating region. To focus on the reconnection within
parameters easily accessed by a PIC simulation, we force
the magnetic field in the heating region to be zero, in
order to suppress the instability [39].

Fig. 3 shows the out-of-plane electric field, Ey, mea-
sured from the PIC simulation near x = 0, and all the
terms in the GOL calculated by taking moments of the

distribution function obtained from the simulation. The
sum of the terms comprising the right-hand-side of the
GOL are in good agreement with Ey. We can see that
at the early chosen time, when LS is much larger than
λmfp, Ey in the current sheet is smaller than the up-
stream, which results in subsequent compression of the
upstream magnetic field. At a later time, the reconnec-
tion has reached a steady state, where the electric field in
the current sheet and upstream are comparable, mainly
due to the increase of the pressure tensor term, which
dominates the GOL in the reconnection layer. The mag-
netic fields are strongly reconnected in the center due
to the dissipation from ∇ · Π. The pressure tensor term,
though much larger, has a similar profile to the resistivity
term. It thus can be regarded as an effective resistivity
arising from the viscosity effect. The Ey in the reconnec-
tion layer in the quasisteady state is about 0.1VN (VN
is the maximum Nernst velocity in the upstream), which
is in agreement with the result in [23]. As mentioned
earlier, the contribution of the inertial term is negligible
in this regime. We note that, in order to show that the
GOL is satisfied, we also include the contribution of the
second order term in the expansion of f2, which is shown
as the dashed purple line in Fig. 3.

The simulation diagnostic output includes the direct
momentum transport (Π) and direct electron-ion colli-
sional momentum transfer (Rei). We find that near the
X-point Rei and ∇ ·Π make approximately equal contri-
butions. Recall that in the formulation of the Ohm’s law
used here, some of the direct momentum transfer (Rei)
comes from the thermal force and appears as propor-
tional to ∇·Π. The root of this is shown in Fig. 4, where

FIG. 2. The temperature profile (normalized to Te0) and
the magnetic flux contours at t = 10τ (a) and t = 120τ (b).
λmfp is the mean free path calculated from initial density and
temperature.
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we show the structure of the current and heat flux. We
observe a finite out-of-plane heat flux (qy) driven in the
reconnection layer. This heat flux cannot be the Righi-
Luduc effect[10], since the magnetic field crosses through
zero in the layer. Instead this heat flux is driven as a
result of nonlocal effects. Thermal-force-like friction on
this heat flux leads to additional momentum transfer in
the reconnection layer, which supports part of the recon-
nection electric field.

Some recent laser-driven reconnection experiments
have reported significant electron energization[40, 41]. It
is therefore interesting to determine if a Nernst-driven
reconnection can energize significant numbers of parti-
cles. However, the results presented here do not show
significant electron energization; typically the distribu-
tion functions remain close to Maxwellian and have not
pulled out significant tails. This can be understood from
a simple estimation in the Nernst regime. Given that
E ∼ vNB, there is E/ED ∼ (vN/vth)(Ωτ)−1, where
ED is the Dreicer electric field[42]. Typically the former
quantity is limited to be a fraction of 1, and the Nernst
regime is semi-collisional (Ωτ ∼ 1), yielding E/ED < 1.
Indeed, the simulation output shows E/ED ∼ 0.01.

We now investigate the origin of the pressure tensor
that contributes to the GOL in the reconnection layer.
To compare PFV and HFV, we calculate the contribution
from both types of viscosity with Πyz obtained directly
from the PIC simulation in Fig. 4. The HFV is found to
dominate the PFV, consistent with our previous scaling
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FIG. 3. Contributions to the GOL for a cut across the
reconnection layer near x = 0 for (a) before reconnection (t =
10τ), (b) during steady reconnection (t = 120τ). The red line
is Ey obtained from PIC simulation, and the black line shows
the sum of the terms on the various contributing terms. E
fields are measured in terms of B0vth0, where B0 is the initial
peak magnetic field in the simulation and vth0 =

√
Te0/me.

analysis. As shown in Fig. 4, Πyz can be generated
through both the compression term ∂zqz, and the shear
term ∂zqy. The two contributions are found to be of
similar magnitude.

Interestingly, we find that although the magnitudes
of the pressure tensor in the simulation and calculated
from HFV are similar, the gradients inside the recon-
nection layer are significantly different, with the HFV
theory over-predicting the resulting ∇ · Π. This can be
attributed to additional nonlocal effects in the heat flux
viscosity, which is related to the f3 term in Eq. (4) in
[28]. Imagine that if Πyz calculated from PFV and HFV
has a very large gradient in the reconnection layer, the
gradient can then give rise to f3, which in return affects
f2 and makes f2 profile smoother. To get a qualitative
picture of this effect, we apply a nonlocal operator, to
simulate the effect of f3 to Πyz,

(1− ρ2∇2)Πs
yz = Πyz, (9)

where ρ = 1/
√

1/ρ2L + 1/λ2mfp, ρL is the Larmor ra-

dius. Note that this operator is consistent with the
Luciani-Mora-Virmont model[43] for nonlocal heat trans-
port. The result of Πs

yz is shown in Fig. 4, which shows
much better agreement with the simulation result. This
smoothed pressure tensor can then be plugged into Eq.
(3). In this manner, the pressure tensor term in GOL
already includes the nonlocal effect. This is the same ap-
proach for the application of the Nernst effect, where the
Nernst term in GOL is calculated from a flux-limiter or
a nonlocal heat conduction model[14]. To better study
this effect quantitatively, a self-consistent closure of the
nonlocal viscosity, like a Landau fluid model[44, 45], will
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nection layer near x = 0 at t = 120τ . (b) Πyz obtained from
the PIC simulation, calculated from PFV and HFV using the
quantities in the above plot, and a smoothed result applying
the nonlocal kernel of Eq. (9).
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be considered further in future work.

Finally, we have conducted multiple runs at various
Ωτ to further verify the theory. We find that as Ωτ in-
creases the equilibrium LS decreases and the reconnec-
tion layer becomes narrower. As we vary the magnetic
field strength from Ωτ =0.9 to 5.8, the width of the shear
layer decreases from 3 to 1.2, measured in units of the lo-
cal mean-free-path. We also note that when Ωτ < 1, the
equilibrium LS can be larger than λmfp, and consequently
the additional nonlocal effects are found to be smaller
and the calculated profile of pressure tensor shows a bet-
ter agreement with the simulation.

V. CONCLUSIONS

We have depicted the picture of heat-flux-driven mag-
netic reconnection in HED plasmas using a generalized
Ohm’s law in which we include the heat-flux viscosity as
a nonlocal dissipation mechanism. Our calculations show
that the shear and compression of the heat flux gives rise
to momentum transport, which allows for reconnection in
this regime. We find that the balance of the GOL in the
upstream and in the reconnection layer sets the charac-
teristic width of the reconnection layer to be of the order
of several mean free paths. These results show the im-
portant interplay between nonlocal transport effects and
generation of anisotropic components to the distribution
function.

Common approaches to nonlocal transport based on
Fokker-Planck simulation truncate the distribution func-
tion after the first order [10, 17]. (For a recent review
of Fokker-Planck simulation, including results from ex-
tension to higher order, see [46]) However, our results
demonstrate how higher order anisotropic terms can be
generated in magnetized plasmas. These effects manifest
as momentum transport and, as shown here, make an
important contribution to the evolution of the magnetic
field via GOL. The scaling of the off-diagonal terms (i.e.
heat-flux viscosity) in comparison with the Nernst term
(Eq. 8) documented here confirms that these effects enter
at the same order as other nonlocal transport effects [10],
calling for further study of the coupling of momentum
transport to the dynamics of magnetic fields in nonlocal
transport regimes.
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Appendix A: Derivations of the generalized Ohm’s
law

In this section, we show the calculation of the gen-
eralized Ohm’s law from the kinetic equation. We fol-
low standard technique in the transport theory, by doing
an expansion of the distribution function f , and take
moments of the equation for f1. The kinetic equation
with Landau collision operator, including both the test-
particle and field-particle parts, is a complicated inte-
grodifferental equation. To solve this equation, we use
a finite difference method to solve the kinetic equation
numerically, in order to overcome the inaccuracies in the
polynomial expansion method[31]. The method is similar
to that applied in [32], but we include the contribution
from the higher order term of the distribution function
to take into account the first order nonlocal effect.

We now proceed with the calculation. The electrons
distribution f can be expanded in a Cartesian form,

f = f0 + f1 · v/v + f2 : vv/v2. (A1)

The kinetic equation for f1 can be written as follows[47],

df1
dt

+ v∇f0 −
Ee

me

∂f0
∂v

+ Ω× f1 +
2

5
v∇ · f2

− 2

5v3
∂

∂v
(v3

Ee

me
· f2) = C1[f1], (A2)

where Ω is the electron cyclotron frequency with the
same direction of B. C1 is the collision operator for f1.
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For simplicity, we focus on electron kinetics and assume
that ions are stationary. Note that the last two terms on
the left-hand-side (LHS) describe the contribution of f2
to the evolution of f1, which are ignored in [32].

The collision operator C1 can be derived from the Lan-
dau collision operator CL as C1 = (1/4π)

∫
dvvCL[32,

47]. C1 has the same form the the three component of
f1. Including both the electron-electron and the electron-
ion collisions, the collision operator can be expressed as,

C1 = Cee + Cei, (A3)

Cee = n−1νee

[
v2

3
(I02 + J0

−1)
d2f1
dv2

+
v

3
(−I02 + 2J0

−1 + 3I00 )
df1
dv

+
1

3
(I02 − 2J0

−1 − 3I00 )f1

+ 8πv3f1f0 +
v2

5

(
I13 + J1

−2)
) d2f0
dv2

+
v

15
(−3I13 + 2J1

−2 + 5I11 )
df0
dv

]
, (A4)

Cei = −νeif1, (A5)

where νee =
[
4πne(e

2/me)
2 ln Λ

]
/v3, νei =[

4πni(Ze
2/me)

2 ln Λ
]
/v3, and

Iij = 4πv−j
∫ v

0

fiv
2+jdv, J i

j = 4πv−j
∫ ∞
v

fiv
j+2dv.

(A6)
For a given f0 and f2, the distribution function f1 can

then be solved from Eq. (A2) using the finite difference
method. The current and the generized Ohm’s law can
be obtained by taking moment of the resultant f1

j =
4π

3

∫
f1v

3dv. (A7)

The value of f0 is chosen as a Maxwellian distribution,

f0(W ) = ne

(
me

2πTe

)3/2

exp(−W ), W =
mev

2

2Te
,

where ne and Te can be inhomogeneous in space.
For f2, we note that the anisotropic pressure tensor is

associated with the moment of it,

Π = P− pI2 =
8πme

15

∫
f2v

4dv. (A8)

If we expand f2 using the generalized Laguerre polyno-
mials like [31],

f2 = v2f0(W )

∞∑
r=0

RrL
5/2
r (W ), (A9)

and using the orthogonality relations of L
5/2
r , we find that

the coefficient R0 corresponds to the anisotropic pressure
tensor,

Π =
2neT

2
e

me
R0. (A10)

Vice versa, to examine how the pressure tensor affects
the evolution of f1, we can choose f2 which only contains

the L
5/2
0 component. In this way we can calculate the

transport coefficients associated with Π in the generalized
Ohm’s law.

The new Ohm’s law derived from this procedure can
be expressed as

E =
α · j
n2ee

2
+

j×B

neec
− ∇ · (peI + Π)

nee

−
β · ∇ ·

(
TeI + 2

5Π/ne
)

e
− Π

nee
· γ · ∇Te

Te
−

2β

5
·E · Π

pe
.

(A11)

Note that in addition to the terms in the Ohm’s law in
[32], our new generalized Ohm’s law includes four ad-
dtional terms related to Π. The first one shows as a
divergence of momentum flow, which also appears in Eq.
(1). The second one also depends on ∇ · Π, but actually
comes from the friction force Rei in Eq. (1). The trans-
port coefficient of this term happens to be the same as
the thermoelectric term β · ∇Te with an additional fac-
tor 2/5. The last two terms on the right-hand-side are
“cross-terms” which depends on the inner product of Π
and other transport forces (∇Te, E), where γ is another

transport coefficient depending on Ωτ and Z. However,
in this paper we ignore the effects of the cross terms,
given that the gradient scale length of Π (Π/∇Π) is typi-
cally much shorter than that of pressure or temperature,
and Π � pe, so the cross terms are subdominant com-
pared to other terms in GOL.
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