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A high order morphing continuum theory (MCT) is introduced to model highly compressible
turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics.
A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-
Noll procedure and Onsager’s reciprocal relations. The governing equations are then arranged in
conservation form and solved through the finite volume method with a second order Lax-Friedrichs
scheme for shock preservation. A numerical example of transonic flow over a three-dimensional
bump is presented using MCT and the finite volume method. The comparison shows that MCT-
based DNS provides a better prediction than NS-based DNS with less than 10% of the mesh number
when compared with experiments. A MCT-based and frame-indifferent Q-criterion is also derived
to show the coherent eddy structure of the downstream turbulence in the numerical example. It
should be emphasized that unlike the NS-based G-criterion, the MCT-based Q-criterion is objective
without the limitation of Galilean-invariance.

I. INTRODUCTION

Navier-Stokes (NS) equations have been extensively
used to study flow physics for several decades. Other
than deriving the balance laws from the Reynolds Trans-
port Theorem and the three-dimensional Leibniz Theo-
rem common seen in undergraduate textbooks [1], these
laws can also be derived independently from rational con-
tinuum mechanics (RCM) [2–5] or Boltzmann’s kinetic
theory [6–8]. or Classical Irreversible Thermodynamics
[9–14]. This procedure pairs independent variables and
response functions as thermodynamic forces and fluxes,
i.e. a thermodynamic conjugate [9–11]. The Helmholtz
free energy is expanded with thermodynamic forces and
the thermodynamic flux is then found as the derivative
of the Helmholtz free energy with respect to the corre-
sponding thermodynamic force. The derivation process
for linear constitutive equations was understood as the
Onsager–Casimir relations [15–17]. Nevertheless, though
the framework is mathematically rigorous and theoreti-
cally sounding, understanding the physics represented by
the material constants in those equations heavily relies on
experimental observation and measurements.

At the same time, kinetic theory approximates the
gas atoms as points and model the interaction as col-
lisions. Boltzmann derived a distribution function for
equilibrium states with H-theorem and introduced a con-
servation equation with a collision integral [6, 7]. With
the proper definitions for kinetic variables, e.g. mass,
linear momentum and energy, the conservations equa-
tions leads to the balance laws [8]. However, systems
are rarely in equilibrium. As a result, the distribution
function varies with the interactions between gas atoms
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through the collision integral. If the distribution is as-
sumed to linearly deviate from the Boltzmann distribu-
tion, the balance law of linear momentum leads to the
celebrated NS equations [7]. Since kinetic theory is a
physics-based approach, the physical meanings of ma-
terial constants are explained through the inter-particle
collisions. For example, Maxwell showed that the viscos-
ity is independent of the density for a given temperature
through kinetic theory and later verified this fact with ex-
periments [7]. For dilute gases, kinetic theory also shows
a linear relation for the ratio of thermal conductivity to
the product of the viscosity and specific heat. Though ki-
netic theory provides a detailed insights for the governing
equations and material constants, Truesdell raised a con-
cern that all equations derived from kinetic theory only
contain a subset of those from rational continuum theory
and claimed the validity of the continuum equations are
beyond rarefied gases [18].

Regardless of different theoretical origins, NS equa-
tions have been the core of the fluid dynamics research
ranging from turbulence to vortex-dominated flows for
decades. Nevertheless, assumptions made in NS equa-
tions should always be kept in mind. Rational continuum
mechanics assumes a continuum homogenizing volume-
less points. On the other hand, kinetic theory approx-
imates continuous medium populated with monoatomic
gases. This approximation results in a compromise of
relying on an orbital angular velocity, i.e. vorticity, to
describe rotational motions in fluids. In other words, vor-
ticity or vorticity-based methods have been employed to
describe the rotational eddies in turbulent flows, coher-
ent vorticies in dynamic stall or body-vortex interaction
in biomimetics. However, vorticity-based approaches are
only Galilean invariant and present inconsistent results
for vortex visualization from Q-criterion and λ2 method
in rotating flows [19]. Therefore, Speziale and Haller have
been emphasizing the importance of objectivity or frame-
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indifference for vortex descriptions and turbulence mod-
els [19–22]. Further, revealing the detailed eddy struc-
tures with vorticity-based method requires extremely fine
mesh for numerical differentiation. These arbitrarily fine
meshes cause heavy computational burden and make nu-
merical simulation impractical even with the best com-
putational power available today [23].

The Cosserat Brothers initiated the concept of a mor-
phing continuum theory (MCT), i.e. a continuous space
containing inner structures [24]. Later, Eringen formu-
lated a class of morphing continuum allowing rotation at
subscale under the framework of rational continuum me-
chanics and classical irreversible thermodynamics [25].
Independently, Grad introduced a concept of a contin-
uum with arbitrary number of internal degrees of free-
dom and proposed a first order differential equation for
spins [26]. De Groot and Mazur extended Grad’s formu-
lation and proposed a balance law for the internal spins
[17]. Snider and Lewchuk later completed Grad’s formu-
lations with irreversible thermodynamics [27]. The the-
oretical studies independently initiated by Eringen and
Grad were found to be identical.

Similar to the works done for NS equations with sta-
tistical mechanics and kinetic theory, She and Sather re-
lied on the Chapman-Enskog method to derive a kinetic
theory for molecules with arbitrary internal degrees of
freedom [28]. Brau evaluated several different collision
processes under She and Sather’s formulations [29]. Cur-
tiss later integrated these studies and officially introduced
kinetic theory for molecular gases [30].

To the author’s limited knowledge, the detailed com-
parison between irreversible thermodynamics/rational
continuum mechanics and statistical kinetic theory was
first presented in the book, Rational Extended Ther-
modynamics, by Müller and Ruggeri[14]. Rational Ex-
tended Thermodynamics has been used to derive gov-
erning equations for shock wave structure, light scatter-
ing, radiation, relativistic mechanics, phonons and metal
electrons [14]. For monoatomic gases, the phenomeno-
logical equations derived from kinetic theory are found
to be identical to those from thermodynamics of irre-
versible process. Motivated by these early studies, Chen
recently proved that the inviscid version of the MCT
governing equations from rational continuum mechan-
ics/irreversible thermodynamics are identical to the bal-
ance laws at equilibrium from Curtiss’ molecular kinetic
theory [31, 32]. This study unifies both formulations in
kinetic theory and rational continuum mechanics for fluid
system with internal spins, and derives the Boltzmann-
Curtiss distribution from a quantum statistics perspec-
tive [31, 32].

Since its introduction , MCT has been used to study
the flow physics with significant internal spins, eg. tur-
bulence [33–39]. Ahmadi extended the work of Liu [34]
to construct a statistical theory for turbulence via a func-
tional approach [38]. Peddieson was the first one propos-
ing MCT dimensionless parameters to characterize the
wall shear layers in the boundary layer turbulence [36].

More recently, Mehrabian and Atefi compared the analyt-
ical solution of plane Poiseulle flow in MCT with the ex-
perimental velocity profiles, both laminar and turbulent
[40]. Alizadeth et. al. reformulated MCT and studied
the turbulent plane Couette flow with slip. The simu-
lation results agree extremely well with the experiments
[41]. However, all the aforementioned studies are lim-
ited in the analytical solutions for incompressible flows.
More recently, researchers have been focusing on develop-
ing numerical methods for MCT in both incompressible
and compressible flows [42–45].

With the rapid developments on the numerical solvers,
a series of studies were published on incompressible and
compressible turbulence and their statistical characteris-
tics [46–49]. Cheikh and Chen validated that MCT is ca-
pable of predicting the velocity profile over a compression
ramp in a supersonic turbulence [48]. However, MCT is
still relatively new to turbulence community. Tools for
turbulence analysis and visualization are at their infancy.
Therefore, this study will summarize the derivation of
MCT, its connection to turbulence, and an objective tool
for visualizing coherent eddy structures. The derivation
of MCT is briefly reviewed in Section II. The MCT gov-
erning equations will be rearranged in the conservation
forms for numerical methods implementations, e.g. finite
difference method, finite volume method and others, in
Section III. In Section IV, a numerical example of a tran-
sonic flow over a three-dimensional bump will be briefly
presented. An objective Q-critirion with MCT will be de-
rived and discussed in details for eddy and vortex visual-
izations. Section V concludes the highlights and remarks
of this study.

II. MORPHING CONTINUUM THEORY

A morphing continuum is a collection of continuously
distributed, oriented, finite-size subscale structures that
allows rotations. A material point P in the reference
frame is identified by a position and three directors at-
tached to the material point.

The motion, at time t, carries the finite-size subscale
structure to a spatial point and rotates the three direc-
tors to a new orientation. Thus, such a motion can be
understood as the motion of a liquid molecule or an eddy
approximated as a rigid body. MCT possesses not only
translational velocity, but also self-spinning gyration on
its own axis. These motions and their inverse motions
for the morphing continuum can be described as [25]

xk = xk(XK , t) XK = XK(xk, t)

ξk = χkK(XK , t)ΞK ΞK = χ̄Kkξk (1)

K = 1, 2, 3 k = 1, 2, 3

and

χkKχlK = δkl χ̄Kkχ̄Lk = δKL. (2)
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where the lowercase index is for the Eulerian coordinate
while the uppercase index for the Lagrangian coordinate.

It is straightforward to prove that

χkK = χ̄Kk. (3)

Consequently, the righthand side of eq. 2 becomes

χkKχkL = δKL. (4)

Here and throughout, an index followed by a comma de-
notes a partial derivative, e.g.,

xk,K =
∂xk
∂XK

and XK,k =
∂XK

∂xk
. (5)

For fluid flow, deformation-rate tensors are used to
characterize the viscous resistance. Deformation-rate
tensors may be deduced by calculating the material time
derivative of the spatial deformation tensors. For a mor-
phing continuum, two objective deformation-rate tensors
can be derived as

akl = vl,k + elkmωm and bkl = ωk,l, (6)

where vk is the velocity vector and ωk is the self-spinning
gyration vector. The fluid or flow inner structure pos-
sesses two types of motion, translational velocity (vk),
found by solving the MCT linear momentum equation,
and spinning gyration (ωk) found by solving the MCT
angular momentum equation. In the classical Navier-
Stokes equations, the translational velocity can be di-
rectly solved from the balance law of linear momentum.
To investigate the effect of the rotational motion of the
subscale structure, one must use the velocity field and
take the angular velocity to be one-half of the vorticity
i.e., 1

2eijkvj,i. This approximation in the Navier-Stokes
equations limits not only predicting the flow physics in-
volving spinning, but also fails to represent the interac-
tion between translation and spinning [27]. In addition,
highly refined meshes are also needed in order to ob-
tain high resolution vorticity fields. This arbitrary mesh
requirement makes numerical simulations in realistic en-
vironments impractical [23]. On the other hand, MCT
provides both the self-spinning motion and the relative
rotation, e.g. vorticity. The arbitrarily fine meshes are
no longer required since part of the information on rota-
tional motions can be directly obtained from self-spinning
gyration.

A. Balance Laws

Thermodynamic balance laws for morphing continuum
theory include (1) mass; (2) linear momentum; (3) angu-
lar momentum; (4) energy; and (5) the Clausius-Duhem
inequality. All five can be expressed as follows:

Conservation of mass

∂ρ

∂t
+ (ρvi),i = 0 (7)

Balance of linear momentum

tlk,l + ρ(fk − v̇k) = 0 (8)

Balance of angular momentum

mlk,l + eijktij + ρikm(lm − ω̇m) = 0 (9)

Balance of energy

ρė− tklakl −mklblk + qk,k = 0 (10)

Clausius-Duhem inequality

ρ(ψ̇ + ηθ̇) + tklakl +mklblk −
qk
θ
θ,k ≥ 0 (11)

where ρ is mass density, ikm the microinertia for the
shape of the microstructure, fk the body force density,
lm the body moment density, e the internal energy den-
sity, η the entropy density, ψ = e − θη the Helmholtz
free energy, tlk the Cauchy stress, mlk the moment of
stress, and qk the heat flux. It is worthwhile to mention
that tlk, mlk and qk are the constitutive equations for
the morphing continuum theory and can be derived from
the Clausius-Duhem inequality (see eq. 11) through the
Coleman-Noll procedure [12, 50].

The concept of subscale inertia, ikm ≡∫
ρ′ξkξmdv

′/
∫
ρ′dv′ ≡ 〈ξkξm〉, is similar to the mo-

ment of inertia in rigid body rotation and measures the
resistance of the subscale structure to changes to its
rotation. It can be further expressed as

jkm = ippδkm − ikm where j ≡ 1

3
jpp. (12)

The volume v′ refers to the volume of the subscale
structure. If the subscale structure is assumed to be a
rigid sphere with a radius d and a constant density ρ, the
subscale inertia can be computed as j = 2

5d
2. This result

shows the subscale inertia for a sphere is the moment
of inertia of a sphere divided by its mass. The experi-
mental data of Lagrangian velocities of a trace particle
can be used to determine the geometry of the subscale
structure [50, 51]. The new degrees of freedom, gyration,
in MCT can also be directly compared with the direct
experimental measurement of vorticity [52].

B. Constitutive Equations

There are multiple different definitions for fluids, in-
cluding (1) fluids do not have a preferred shape [1], and
(2), fluids cannot withstand shearing forces, however
small, without sustained motion [53]. Nevertheless, all
these definitions describe the physics of fluid flow, and
yet provide little help in mathematically formulating a
continuum theory for fluids. In rational continuum me-
chanics, Eringen formally defined fluids by saying that
“a body is called fluid if every configuration of the body
leaving density unchanged can be taken as the reference
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configuration”[3]. This definition implies xk,K → δkK
and χkK → δkK where δkK is the shifter, the directional
cosine between the current configuration and reference
configuration.

Objectivity is followed throughout the derivation of
constitutive equations. The axiom of objectivity, or
frame-indifference, states that the constitutive equations
must be form-invariant with respect to rigid body mo-
tions of the spatial frame of reference [2–5].

The state of fluids in morphing continuum theory is ex-
pressed by the characterization of the response functions
Y = {ψ, η, tkl,mkl, qk} as functions of a set of indepen-
dent variables Z = {ρ−1, θ, θ,k, akl, bkl}. At the outset
the constitutive relations are written as Y = Y(Z) [54].

The Clausius-Duhem inequality of eq. 11, also known
as the thermodynamic second law, is a statement con-
cerning the irreversibility of natural processes, especially
when energy dissipation is involved. Feynman et. al.
stated “so we see that a substance must be limited in
a certain way; one cannot make up anything he wants;
... This [entropy] principle, this limitation, is the only
rule that comes out of thermodynamics” [55]. After the
Coleman-Noll procedure, i.e., combining the inequality
with the response function and the independent vari-
ables, eq. 11 reduces to

tdklakl +mklblk −
qkθ,k
θ
≥ 0. (13)

The current formulation relying on the Coleman-Noll
procedure only provides local entropy increase and the
conditions for first order weakly nonlocal state.

In eq. 13, there are three pairs of thermodynamic con-
jugates, (tdkl, akl), (mkl, blk), and ( qkθ ,θ,k) that contribute
to the irreversibility of the material. A set of the ther-
modynamic fluxes J is defined as J = {tdkl,mkl,

qk
θ } and

are functions of a set of the thermodynamic forces (ZD)
and other independent variables (ZR), Z = {ZR;ZD} =
{ρ−1, θ; akl, blk, θ,k}. With these sets of thermodynamic
fluxes and thermodynamic forces, the Clausius-Duhem
inequality can be rewritten as

J(ZR;ZD) · ZD ≥ 0. (14)

Onsager and others proposed that the thermodynamic
fluxes can be obtained by the general dissipative function
[9–11, 13, 15, 16, 56]

J =
∂Ψ(ZR,ZD)

∂ZD
+ U, (15)

where the vector-valued function U is the constitutive
residual with ZD ·U = 0. This result indicates that U
does not contribute to the dissipative or entropy produc-
tion. For simplicity, one can further set U = 0.

To determine thermodynamic fluxes for a fluid us-
ing the derivative of Ψ with respect to the thermody-
namic forces ZD, Ψ needs to be invariant under super-
imposed rigid body motion, i.e., the dissipative function
Ψ must satisfy the axiom of objectivity [13]. Hence, Ψ is

an isotropic function of scalar and can be expressed by
Wang’s representation theorem [57, 58] as

Ψ{ZR,ZD} = Ψ{I1, I2, I3, ..., In}
and

J =
∂Ψ

∂ZD
=

n∑
i=1

∂Ψ

∂Ii

∂Ii
∂ZD

. (16)

It should be noted here that blk and mkl are pseudo-
tensors while the rest, including θ,k, tdkl, qk and akl
are normal tensors [50]. Considering the mixing of
pseudo-tensors and normal tensors in ZR and ZD for lin-
ear constitutive equations, the set of invariants includes
I1 = a(ii), I2 = a(ij)a(ji), I3 = b(ij)b(ji), I4 = θ,kθ,k,
I5 = a[ij]a[ji], I6 = b[ij]b[ji], and I7 = eijkbijθk . Here
(...) refers to the symmetric part, [...] indicates the
anti-symmetric part and eijk is the permutation symbol.
Hence, the thermodynamic fluxes can be further derived
as

tdkl = td(kl) + td[kl]

=
∂Ψ

∂a(kl)
+

∂Ψ

∂a[kl]

=
∂Ψ

∂I1
δkl +

∂Ψ

∂I2
a(kl) +

∂Ψ

∂I5
a[kl]

= λammδkl + 2µa(kl) + κ(a(kl) + a[kl])

mkl = m(kl) +m[kl]

=
∂Ψ

∂b(kl)
+

∂Ψ

∂b[kl]

=
∂Ψ

∂I3
b(kl) +

∂Ψ

∂I6
b[kl] +

∂Ψ

∂I7
eklmθ,m

= αbmmδkl +
1

2
(β + γ)b(kl) +

1

2
(β − γ)b[kl] +

αT
θ
eklmθ,m

qk =
∂Ψ

∂θ,k

=
∂Ψ

∂I4
θ,k +

∂Ψ

∂I7
eijkbij

= Kθ,m +
αT
θ
eklmb[kl] (17)
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These equations can also be put into matrix form as
td(kl)
td[kl]
m(kl)

m[kl]

qk

 (18)

=


λδkl + 2µ+ κ 0 0 0 0

0 κ 0 0 0
0 0 αδkl + 1

2 (β + γ) 0 0
0 0 0 1

2 (β − γ) αT eklm

θ
0 0 0 αT eklm

θ K



a(kl)

a[kl]

b(kl)
b[kl]
θ,m



=


λδkl + 2µ+ κ 0 0 0 0

0 κ 0 0 0
0 0 αδkl + 1

2 (β + γ) 0 0
0 0 0 1

2 (β − γ) αT eklm

θ
0 0 0 αT eklm

θ K




1
2 (vk,l + vl,k)

1
2 (vl,k − vk,l + 2elkmωm)

1
2 (ωk,l + ωl,k)
1
2 (ωk,l − ωl,k)

θ,m

 . (19)

Notice the symmetry of this thermodynamic matrix.
Equations 19 connect the thermodynamic fluxes and the
thermodynamic forces, and can be referred to as On-
sager’s reciprocal relations derived in 1931 [15, 16] lead-
ing to his Nobel Prize in Chemistry in 1968. It should
be noted that the reciprocity is the condition for the ex-
istence of the dissipative potential [59, 60]. With further
algebraic manipulation, the linear constitutive equations
for the morphing continuum are

tlk = −pδkl + λvm,mδkl + µ(vk,l + vl,k) + κ(vk,l + eklmωm)

mlk =
αT
θ
elkmθ,m + αωm,mδkl + βωl,k + γωk,l

qk =
αT
θ
elkmωk,l +Kθ,m (20)

where µ is the viscosity, λ is the secondary viscosity, κ
is the subscale viscosity, γ is the subscale diffusivity and
α & β are related to the compressibility of the subscale
structure. Inserting eq. 20 to all the balance laws, eqs. 7-
10, omitting body force and adopting a spherical subscale
structure, the MCT governing equations can be rewritten
as

Conservation of mass

∂ρ

∂t
+ (ρvi),i = 0 (21)

Balance of linear momentum

ρ(
∂vk
∂t

+ vivk,i)

= −pk + (λ+ µ)vm,mk + (µ+ κ)vk,ll + κekijωj,i (22)

Balance of angular momentum

ρj(
∂ωm
∂t

+ viωm,i)

= (α+ β)ωm,mk + γωm,ll + κ(emnkvk,n − 2ωm) (23)

Balance of energy

ρ(
∂e

∂t
+ vie,i)

= [−pδkl + λvm,mδkl + µ(vk,l + vl,k) + κ(vl,k + elkmωm)]

(vl,k + elkmωm)

+ (
αT
θ
eklmθ,m + αωm,mδkl + βωk,l + γωl,k)ωk,l

+Kθ,mm (24)

III. NUMERICAL METHODS

Equations 21 - 24 can be directly discretized and solved
with the classical finite difference method [42]; however,
in order to adopt modern numerical schemes, such as fi-
nite volume method [48, 61], spectral difference method
[43, 62, 63], spectral volume method [64, 65] and oth-
ers [66], the governing equations should be cast into the
conservation forms. Chen et. al. formulated the conser-
vation form for MCT as [43]

∂ρ

∂t
+∇ · (ρ~v) = 0 (25)

∂ρ~v

∂t
+∇ · (~v ⊗ ρ~v) =

−∇p+ (λ+ µ)∇∇ · ~v + (µ+ κ)∇2~v + κ∇× ~v (26)

∂ρj~ω

∂t
+∇ · (~v ⊗ ρj~ω) =

(α+ β)∇∇ · ~ω + γ∇2~ω + κ(∇× ~v − 2~ω) (27)

∂ρE

∂t
+∇ · (~vρE) =

∇ · (t · ~v) +∇ · (m · ~ω)−∇ · ~q (28)

where t is the MCT Cauchy stress, m is the MCT mo-
ment stress and ~q is the MCT heat flux (cf. eq.20).
In addition, E is the MCT total energy defined as the
sum of inernal energy density, translational kinetic en-
ergy density and rotational kinetic energy density as
E = e+ 1

2 (~v · ~v + j~ω · ~ω).
Several researchers have started focusing on numerical

methods for MCT [42–45, 67]. More specifically, three
different numerical schemes are introduced in the past
few years: (1) finite difference method with second order
temporal and spatial accuracy for incompressible flows
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[42]; (2) finite volume method with second order shock
preserving scheme for compressible flows [48]; and (3)
high order spectral difference method for compressible
flows [43]. In this study, the finite volume method with
second order shock preserving scheme is used and sum-
marized as follows.

The finite volume method directly implements a nu-
merical procedure solving the conservation forms of gov-
erning equations. The general form over a control volume
can be expressed as

∂Ψ

∂t
+∇ · (~vΨ)−∇ · (Γ∇Ψ) = SΨ (29)

where Ψ is any physical quantity, ∂Ψ
∂t is the unsteady

term, ∇ · (~vΨ) is the convective term, ∇ · (Γ∇Ψ) is the
diffusion term and SΨ is the source term.

The diffusion term is discretized by the central differ-
ence method and Green-Gauss theorem, i.e.∫

V

∇ · (Γ∇Ψ)dV =

∮
~A

Γ∇Ψ · d ~A

≈
∑
f

Γf ~Af · ∇Ψf (30)

where V is the control volume, ~A is the enclosed surfaces
with normal vectors for the control volume and f indi-
cates each surfaces in the control volume for calculation.

The convective term is discretized by the second order
Lax-Friedrich flux splitting method by Kuganov, Noelle
and Petrova (KNP) [68], i.e.∫

V

∇ · (~vΨ)dV =

∮
~A

~vΨ · d ~A

≈
∑
f

~Af · ~vfΨf

=
∑
f

φfΨf (31)

and∑
f

φfΨf =
∑
f

[αφf+Ψf+

+ (1− α)φf−Ψf− + ωf (Ψf− −Ψf+)] (32)

where α is calculated based on the local speed of sound,
ie.

Ψf+ = max(cf+| ~Af |+ φf+, cf−| ~Af |+ φf−, 0)

Ψf− = max(cf+| ~Af | − φf+, cf−| ~Af | − φf−, 0)

α =
Ψf+

Ψf+ + Ψf−

ωf = α(1− α)(Ψf+ + Ψf−) (33)

The gradient and curl term is also discretized by the
second order Lax-Friedrich flux splitting method, similar

to the convective terms.∫
V

∇ΨdV =

∮
~A

Ψd ~A

=
∑
f

~AfΨf (34)

where the KNP scheme further split the interpolation
procedure into f+ and f− direction, ie.∑

f

~AfΨf =
∑
f

[α ~AΨf+ + (1− α) ~AΨf−] (35)

This second order generalized Lax-Friedrich flux was
implemented in the NS framework. Cheikh and Chen
further demonstrated that this approach also provides a
second order accuracy in space for MCT [48]. If the dis-
cretized equations are solved in a explicit manner, the un-
steady term can be marched with Runge-Kutta method
of any order in temporal accuracy. In this study, a first
order Euler method is chosen for convenience.

IV. NUMERICAL EXAMPLE - TRANSONIC
FLOWS OVER A 3D BUMP

There have been a significant amount of studies on
turbulence simulation and analysis with morphing con-
tinuum theories since the 1970s [33, 35–41, 46–49]. Most
of the published efforts focused on the velocity profile
with analytical means. With the assistance of the in-
troduced finite volume method with shock preserving
scheme in Sect. III, a transonic flow of Ma= 0.6 over a
3D bump is simulated and compared with experimental
measurements [69] and NS-based direct numerical simu-
lation (DNS) results [70].

A. MCT Simulation Compared with DNS and
Experiments

The inlet is specified with a turbulent boundary layer
flow with a thickness of δ = 39 mm and the free stream
velocity of M∞ = 0.6. The corresponding Reδ∗ = 500
while Reδ is 6.5 times of the Reδ∗. The boundary layer
flows over a three dimensional bump with the height of
H = 78 mm. The NS-based DNS (NS-DNS) study on
this problem was reported and presented side by side
with a comparable experiment in 2014 [70]. A MCT-
based DNS (MCT-DNS) is performed following exactly
the same setup reported in the NS-DNS study for the
purpose of comparison. The pressure coefficient from NS-
DNS (dashline) [70], experiment (circle) [69] and MCT-
DNS (solid line) [49] is shown in Figure 1. It can be
seen that the NS-DNS only captures one experimental
data point over the bum and is unable to clearly iden-
tify the normal shock. On the other hand, MCT-DNS
captures most of the experimental data points over the
normal shock and agrees better with the experiment. In
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addition, MCT also has a better prediction than NS on
the pressure coefficient downstream. It should be men-
tioned that the deviation between the experiment and
simulation is caused by the separation point in the flow.
Neither NS nor MCT was able to predict the correct sep-
aration point. This inconsistency is due to the unknown
channel surface properties, such as roughness, and the
fluid properties. The fluid used in the experiment was
kerosene while both NS and MCT simulation focused on
the equivalence of dimensionless parameters comparable
with experiments.

FIG. 1. Pressure coefficient comparison among experiment,
DNS and MCT along the centerline on the bump

The required computational resources between NS and
MCT are also compared. The NS work adopts a high or-
der finite difference method with a mesh number totaling
∼ 54M [70]. On the other hand, MCT was solved with a
second order finite volume method with a shock preserv-
ing scheme and used a mesh number of ∼ 4.5M. With less
than 10% of the cell number required in DNS, MCT was
able to have a better prediction on shock position and
the pressure profile in the downstream turbulence. The
multiscale nature of MCT provides a rigorous framework
coupling one level of motion for macroscale translation
and another one for subscale eddy rotation. Therefore,
there is no need for arbitrary fine mesh in capturing the
subscale motion. In MCT, most of the subscale motions
are captured by the additional degrees of freedom (gyra-
tion) at subscale. Part of these results were reported in
AIAA Aviation 2017 [49]. Unlike the classical Reynolds-
Averaging Numerical Simulation (RANS) or Large Eddy
Simulation (LES), MCT does not require any turbulence
models. The numerical solution of MCT is acquired in
the same fashion of direct numerical simulation for NS
equations. The flow at subscales are resolved by the ad-
ditional degrees of freedom, gyration.

With a successful prediction from MCT, it is necessary
to provide a tool to visualize the classical hairpin eddy
structure in turbulence. However, the classical velocity-
based criteria have been criticized on the inconsistency
and limitation on being only Galilean invariant [19]. The
multiscale MCT can be further developed into a visual-
ization tool with objectivity (or frame-indifference) and

similar physical meanings provided by the classical crite-
ria.

B. Objective Description of Vortex Visualization

Speziale devoted part of his career laying down the
foundamentals of objectivity and investigated the re-
quirment of objectivity over Galilean invariance for tur-
bulence simulation [20–22, 71, 72]. More recently, Haller
showed the inconsistency of vortex identification with
the classical velocity gradient-based approaches and em-
phasized the importance of the objectivity or frame-
indifference for vortex visualization [19]. The classical
Q-criterion under NS framework relies on the second in-
variant of the velocity gradient, eg. 2IIa = vi,ivj,j −
vi,jvj,i = ΩijΩji − SijSji; where vi,j is velocity gradient,
Sij = 1

2 (vi,j + vj,i) and Ωij = 1
2 (vi,j − vj,i). It has been

proven that the symmetric part of velocity gradient, Sij ,
is objective; however the antisymmetric part , Ωij is only
Galilean invariant.

The objectivity or frame-indifference emphasizes the
invariance between two reference frames. Let a rectangu-
lar frame, M , be in relative rigid motion with respect to
another one, M ′. A point with rectangular coordinate xk
at time t in M will have another rectangular coordinate
x′k at time t′ in M ′. Since the reference frames are rigid
motion with respect to each other, the motion between
two frames can be described as x′k(t′) = Qkl(t)xl(t) +
bk(t) where Qkl(t) is the rigid body rotation matrix be-
tween two frames and bk(t) is the translation between two
frames. If the time derivative is performed on motion, it
leads to v′k(t′) = Q̇kl(t)xl(t) + Qkl(t)vl(t) + ḃk(t). The
velocity gradient between two frames can then be found
as v′k,m(t′) = Q̇kl(t)Qml(t) +Qkl(t)Qmp(t)vl,p(t).

Therefore, the symmetric part of the velocity gradient
between two frames is proven to be objective by S′km =
1
2 (v′k,m(t′)+v′m,k(t′)) = Qkl(t)Qmp(t)

1
2 (vl,p(t)+vp,l(t)) =

Qkl(t)Qmp(t)Slp where Q̇kl(t)Qml(t) + Q̇ml(t)Qkl(t) =
d
dtQmlQkl = d

dtδkm = 0.

Nevertheless, the antisymmetric part is found to be
Ω′km = 1

2 (v′k,m(t′) − v′m,k(t′)) = Qkl(t)Qmp(t)Ωl,p +
1
2 (Q̇kl(t)Qml(t) − Q̇ml(t)Qkl(t)). If the rotation matrix

Qkl is no longer time dependent, ie. Q̇kl(t)Qml(t) =

Q̇ml(t)Qkl(t)) = 0, Ωkl is invariant. In other words, the
antisymmetric part is Galilean invariant and only stays
invariant between two frames with translation.

In MCT, the Cauchy stress is related to the velocity
gradient and gyration through an objective strain-rate
tensor, akl = vl,k + elkmωm and a′mn = QmkQnlakl. The
objectivity of akl can be proven through a process similar
to the aforementioned paragraph on velocity gradient.
The orientation of inner structure is described by the
director tensor, χkK (cf. eq. 1). The director and its time
derivative between two frames with rigid body motions
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can be shown as

χ′kK(t′) = Qkm(t)χmK(t)

χ̇′kK = Q̇kmχmK +Qkmχ̇mK (36)

elkmω
′
mχ
′
lK = Q̇kmχmK +QkmeambωbχaK

where χ̇mK = eambωbχaK , ωb is the rotational velocity
of an inner structure. After multiplying another director
tensor on eq. 36 and utilizing the identity in eq. 2, one
can obtain

emkpω
′
p = Q̇kpQmp +QmaQkteatbωb (37)

From the previous paragraph, one can recall the veloc-
ity gradient described in two frames are related as

v′m,k = Q̇mpQkp +QmaQktva,t (38)

Therefore, one can see that

(v′m,k + emkpω
′
p) = QmaQkt(eetbωb + va,t) (39)

since d
dt (QkpQmp) = d

dtδkm = 0. Equation 39 proves the
strain rate tensor, akm, is objective.

As opposed to using the velocity gradient in NS equa-
tions for vortex identifications with Q-criterion, MCT re-
lies on the strain rate tensors. The classical Q-criterion
with the velocity gradient can be found as the second
invariant of the velocity gradient, i.e. Q = 1

2 (vi,ivj,j −
vi,jvj,i) = 1

2 (ΩijΩji−SijSji), where Sij is the symmetric
part and Ωij is the antisymmetric part of the velocity
gradient. Following a similar derivation, the MCT strain
rate tensor can also be divided into a sum of a symmetric
and antisymmetric part.

SMCT
ij =

1

2
(aij + aji) =

1

2
(vj,i + vi,j) (40)

ΩMCT
ij =

1

2
(aij − aji) =

1

2
(vj,i − vi,j + 2ejimωm) (41)

It should be emphasized that since aij is objective, the
addition or subtraction between objective tensors, e.g.
SMCT
ij and ΩMCT

ij , remain objective. As a results, an
objective Q-criterion for MCT is proposed as the second
invariant of the strain rate tensor, aij , ie.

QMCT =
1

2
(aiiajj − aijaji)

=
1

2
(vi,ivj,j − vj,ivi,j − 2vj,ieijmωm + 2ωmωm)

=
1

2
(ΩMCT

ij ΩMCT
ij − SMCT

ij SMCT
ij ) (42)

Using Cartesian Coordinate , the objective Q-criterion
can be written as

QMCT =vx,xvy,y + vx,xvz,z + vy,yvz,z

− (vx,yvy,x + vx,zvz,x + vy,zvz,y)

− (vy,x − vx,y)ωz − (vx,z − vz,x)ωy

− (vz,y − vy,z)ωx + ω2
x + ω2

y + ω2
z (43)

FIG. 2. Hairpin eddy structure identified by the objective
Q-Criterion with MCT

The symmetric part is the same as the one in NS the-
ory showing the normal expansion of the flow behaviors.
However, the physical meaning of the anti-symmetric
part, ΩMCT

ij , should be understood as absolute rotation.
The off-diagonal part of an anti-symmetric matrix can
be represented by a vector. Therefore, one can rewrite
the antisymmetric part as a vector of absolute rotation
(ΩAR

k ), i.e.

ΩAR
k = eijkΩMCT

ij

= eijkvj,i − 2ωk

∼ ∇× ~v − 2~ω (44)

The first half of the ΩAR
k is vorticity (∇× ~v) describing

the relative rotation between two inner structure while
the second half (~ω) is the self-spinning of an inner struc-
ture. In other words, ΩAR

k measures the phase shift or the
rotational speed difference between the relative rotation
and the self-spinning motion. This is the true rotation
between two inner structures in a continuum and it does
not change even when observed from different reference
frames. If ΩAR

k is zero, it implies that the relative revo-
lution between two inner structures is equal to the self-
spinning motion. Therefore, two inner structures always
face each other with the same side, like the Earth and
the Moon. Without a global coordinate, the inner struc-
ture behaves as if there is no motion. Mathematically,
ΩAR
k = 0 reduces MCT back to NS equations [73]. This

mathematical relation implies that if one believes vortic-
ity can completely resolve all possible rotation without
self-spinning gyration, NS theory and MCT are equiva-
lent.

It is noted that Truesdell followed the momumental
work by Grad [26] and derived a balance law of internal
rotation [4, 5]. De Groot and Mazur also discussed a sim-
ilar governing equation in their book [17]. The concept of
the internal rotation is similar to the new degrees of free-
dom, gyration, in MCT. However, De Groot and Mazur
derived the balance law from a mechanics perspective so
the time evolution of the intrinsic rotation is only gov-
erned by the antisymmetric part of Cauchy stress, i.e.
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ekijtij in eq. 9. On the other hand, the constitutive
equation of gyration in MCT was derived from the clas-
sical nonequilibrium thermodynamics. Therefore, there
is an additional moment stress, i.e. mlk,l in eq. 9. Con-
sequently, there is a dissipation or diffusion mechanism
in the balance law of angular momentum, i.e. ωk,ll in
eq. 23. The diffusion of gyration leads to the heat and
eventually the irreversible entropy generation.

Figure 2 shows the iso-surface of the objective Q-
Criterion for the coherent eddy structure in the transonic
flow over a three-dimensional bump. The iso-surface is
colored by the magnitude of the absolute rotation (ΩAR

k ).
The hairpin structure of the eddies are clearly seen with-
out being limited by the Galilean invariance.

V. CONCLUSION

This work reviews the development of morphing con-
tinuum theory from both mathematical and physical per-
spectives. The complete MCT framework is derived un-
der the framework of rational continuum mechanics for
turbulence with subscale eddy structures. A second or-
der finite volume method with second order shock pre-
serving scheme is summarized along with the recent de-
velopments on the numerical methods for MCT.

A case of a transonic turbulence over a three-
dimensional bump is compared among the MCT, NS and

experiments. With less than 10% of the mesh number re-
quired in NS-DNS, MCT-DNS provided a better predic-
tion on the pressure coefficient and the pressure profile
in the downstream turbulence. It shows that the multi-
scale MCT does not require the arbitrary fine mesh to
resolve the subscale eddy motions. Instead, the subscale
eddy motions are captured by the additional degrees of
freedom, eg. gyration.

In addition, MCT allows for an objective or frame-
indifferent G-criterion for eddy or vortex identifications.
The classical NS-based Q-criterion is only Galilean-
invariant. It changes when the reference frames be-
comes time-dependent. The newly proposed MCT-based
Q-criterion does not have this limitation and provides
sounding results for coherent hairpin eddy structure in
the supersonic turbulent flows over a bump.

Future works should be directed at investigating the
energy transfer phenomena, shock structure and other
essential characterizes in highly compressible turbulence
with the multiscale framework of MCT and an affordable
computational resources.

ACKNOWLEDGEMENT

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-17-1-0154.

[1] G. K. Batchelor, An Introduction to Fluid Dynamics
(Cambridge University Press, Cambridge, UK, 1967).

[2] A. C. Eringen, Continuum Physics (Academic Press,
New York, NY, 1971).

[3] A. C. Eringen, Mechanics of Continua (Robert E.
Krieger, Huntington, NY, 1980).

[4] C. Truesdell and K. R. Rajapogal, An Introduction to the
Mechanics of Fluids (Birkhauser, Boston, MA, 1999).

[5] C. Truesdell, Continuum Mechanics I: The Mechanical
Functions of Elasticity and Fluid Dynamics (Science,
New York, NY, 1966).

[6] L. Boltzmann, Lectures on Gas Theory (Dover, New
York, NY, 1964).

[7] K. Huang, Statistical Mechanics (John Wiley & Sons,
New York, NY, 1963).

[8] J. H. Ferziger and H. G. Kaper, Mathematical Theory of
Transport Processes in Gases (North Holland, London,
UK, 1972).

[9] I. Gyarmati, Periodica Polytechnica. Chemical Engineer-
ing 5, 219 (1961).

[10] I. Gyarmati, Periodica Polytechnica. Chemical Engineer-
ing 5, 321 (1961).

[11] J. C. M. Li, Physical Review 127, 1784 (1967).
[12] B. D. Coleman and W. Noll, Archive for Rational Me-

chanics and Analysis 13, 167 (1963).
[13] J. Chen, Acta Mechanica 224, 3153 (2013).
[14] I. Müller and T. Ruggeri, Rational Extended Therdynam-

ics (Springer, 1991).
[15] L. Onsager, Physical Review 37, 405 (1931).

[16] L. Onsager, Physical Review 38, 2265 (1931).
[17] S. R. De Groot and P. Mazur, Non-equilibrium Ther-

modynamics (North-Holland, Amsterdam, Netherlands,
1962).

[18] C. Truesdell, Rational Thermodynamics (Springer-
Verlag, New York, NY, 1984).

[19] G. Haller, Journal of Fluid Mechanics 525, 1 (2005).
[20] C. G. Speziale, Physics of Fluids 22, 1033 (1979).
[21] C. G. Speziale, Physics Review A 36, 4522 (1987).
[22] C. G. Speziale, S. Sarkar, and T. B. Gatski, Journal of

Fluid Mechanics 227, 245 (1991).
[23] X. Zhong and X. Wang, Annual Review of Fluid Mechan-

ics 44, 527 (2012).
[24] E. Cosserat and F. Cosserat, Théorie des Corps
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