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Abstract: We summarize and numerically compare two approaches for modeling and simulating
the dynamics of dry granular matter. The first one, called DEM-P from “discrete element method
via penalty”, is commonly used in the soft matter physics and geomechanics communities; it can
be traced back to the work of Cundall and Strack [1, 2]. The second approach, called DEM-C from
“complementarity”, considers the grains perfectly rigid and enforces non-penetration via comple-
mentarity conditions; it is commonly used in robotics and computer graphics applications and had
two strong promoters in Moreau and Jean [3, 4]. DEM-P and DEM-C are manifestly unlike each
other – they use different (i) approaches to model the frictional contact problem; (ii) sets of model
parameters to capture the physics of interest; and (iii) classes of numerical methods to solve the dif-
ferential equations that govern the dynamics of the granular material. Herein, we report numerical
results for five experiments: shock wave propagation, cone penetration, direct shear, triaxial load-
ing, and hopper flow, which we used to compare the DEM-P and DEM-C solutions. This exercise
helped us reach two conclusions. First, both DEM-P and DEM-C are predictive; i.e., they predict
well the macro-scale emergent behavior by capturing the dynamics at the micro-scale. Second, there
are classes of problems for which one of the methods has an upper hand. Unlike DEM-P, DEM-C
cannot capture shock-wave propagation through granular media. However, DEM-C is proficient at
handling arbitrary grain geometries and solves at large integration step sizes smaller problems; i.e.,
containing thousands of elements, very effectively. The DEM-P vs. DEM-C comparison was carried
out using a public-domain, open-source software package; the models used are available on-line.

PACS numbers: 81.05.Rm

I. DEM-P AND DEM-C: METHOD SUMMARY

The dynamics of articulated systems composed of rigid
and flexible bodies are characterized by a system of
index–3 differential algebraic equations [5, 6]

q̇ = L(q)v , (1a)

g(q, t) = 0 , (1b)

M(q)v̇ = f (t,q,v) + G(q, t)λ̂ . (1c)

The differential equations in (1a) relate the time deriva-
tive of the generalized positions q and velocities v
through a linear transformation defined by L(q). The
presence of articulations; i.e., mechanical joints that re-
strict the relative motion of bodies in the system, leads
in Eq. (1b) to a set of nonlinear kinematic constraint
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equations that must be satisfied by the generalized coor-
dinates q. Finally, the force balance equation in (1c) ties
the inertial forces to the applied and constraint forces,

f (t,q,v) and G(q, t)λ̂, respectively. The expression of
the constraint force projection operator G is dictated by
the nature of the articulations in the system; i.e., expres-
sion of g(q, t) [5].

Granular, or many-body, or discrete element, problems
lead to large sets of generalized coordinates q. For in-
stance, granular flow in a hopper leads to millions to bil-
lions of entries in q. Problems this large are ubiquitous –
after all, as pointed out in [7], more than 50% of the mate-
rials processed in industry come in granular form. Under-
standing their dynamics is relevant in a range of practi-
cal applications such as additive manufacturing, terrame-
chanics, nanoparticle self-assembly, composite materials,
pyroclastic flows, formation of asteroids and planets, me-
teorite cratering; and also in industries such as pharma-
ceuticals, chemical and biological engineering, food pro-
cessing, farming, manufacturing, construction and min-
ing. Note that “granular dynamics” does not occur only
at the micro or meso-scales. Avalanche dynamics and
planet formation involve large bodies yet they qualify
as granular dynamics ones; i.e., problems in which large
collections of bodies mutually interact through friction
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and contact forces and have their motion modulated by
their individual shape. Against this backdrop, the goal
of this contribution is to compare two methods – Discrete
Element Method via Penalty (DEM-P) and Discrete El-
ement Method via Complementarity (DEM-C) – in re-
lation to their performance in the context of solving the
granular dynamics problem.

Mutual contact and ensuing friction can be accounted
for in at least two ways – via a penalty approach, or
within a differential variational framework that invokes
complementarity conditions. In the context of granular
dynamics, we use DEM-P to refer to the class of solution
methods based on the penalty approach; we use DEM-C
to refer to the class of complementarity-based solutions.
DEM-P is a regularization method that relies on a re-
laxation of the rigid-body assumption [1, 2, 8–15]. It
assumes the bodies deform just slightly at the contact
point. Employing the finite element method to charac-
terize this deformation would incur a stiff computational
cost. Therefore, at each time step, a surrogate deforma-
tion of two bodies in mutual contact is generated during
the collision detection stage of the solution by relying
on the amount of interpenetration between bodies and
also their shapes. Although the shapes might be overly
complex, it is customary to combine the surrogate defor-
mation with the Hertzian theory, which is only applicable
for a handful of simple scenarios such as sphere-to-sphere
or sphere-to-plane contact, see for instance [8], in order
to yield a general methodology for computing the nor-
mal (Fn) and tangential (Ft) forces at the contact point.
As an example, a viscoelastic model based on Hertzian
contact theory takes the form

Fn =
√
R̄δn (Knδn − Cnm̄vn) (2a)

Ft =
√
R̄δn (−Ktδt − Ctm̄vt) , (2b)

in normal, n, and tangential, t, directions, respectively.
Herein, δ is the overlap of two interacting bodies; R̄ and
m̄ represent the effective radius of curvature and mass,
respectively; and v is the relative velocity at the contact
point [16]. For the materials in contact, the normal and
tangential stiffness and damping coefficients Kn, Kt, Cn,
and Ct are obtained, through various constitutive laws,
from physically-measurable quantities, such as Young’s
modulus, Poisson ratio, and the coefficient of restitu-
tion [8, 17]. For granular dynamics via DEM-P, the equa-
tions of motion need not be changed. Indeed, Fn and Ft
are treated as any external forces and factored in the mo-
mentum balance of Eq. (1c) via f (t,q,v). The specific
DEM-P implementation used herein is detailed in [18].

DEM-P is used widely in soft-matter physics and ge-
omechanics due to several attractive attributes, e.g.:
large body of literature provides guidance via docu-
mented successful previous use; handling of friction and
contact does not lead to any increase in numerical prob-
lem size; and, algorithm is simple with straightforward
software implementation. DEM-P has several drawbacks,
e.g.: identifying model parameters can be challenging,

particularly for large heterogeneous granular systems; in-
tegration time steps are small owing to large values of the
contact stiffness coefficients; proper friction force evalu-
ation calls for maintaining a history of local tangential
deformation (creep) for each contact, see [18]; and, diffi-
culties in handling contact for bodies of complex shapes,
when the sphere-to-sphere or sphere-to-plane contact as-
sumption that anchors DEM-P is violated and the user
has to fall back on ad-hoc solutions to producing, for
instance, suitable R̄ and m̄ values.

DEM-C takes a different tack – it draws on a com-
plementarity condition that imposes a non-penetration
unilateral constraint, see Eq. (3a). That is, for a po-
tential contact i in the active contact set A(q(t)), ei-
ther the gap Φi between two geometries is zero and con-
sequently the normal contact force γ̂i,n is greater than
zero, or vice-versa. The Coulomb friction model is posed
via a maximum dissipation principle [19], which for con-
tact i involves the friction force components (γ̄i,w, γ̄i,u)
and the relative motion of the two bodies in contact, see
Eq. (3b). The frictional contact force associated with
contact i leads to a set of generalized forces, shown with
an under-bracket in Eq. (3c), which are obtained using
the projectors Di,n, Di,u, and Di,w, see, for instance,
[20]. This leads in Eq. (3) to a so called differential vari-
ational inequality problem [19]

0 ≤ Φi(q) ⊥ γ̂i,n ≥ 0 (3a)

(γ̂i,u, γ̂i,w) = argmin√
γ̄2
i,u+γ̄2

i,w≤µiγ̂i,n

vT (γ̄i,uDi,u + γ̄i,wDi,w)

(3b)

M(q)v̇ = f (t,q,v) + G(q, t)λ̂ (3c)

+
∑

i∈A(q)

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)︸ ︷︷ ︸
ith frictional contact force

.

Equation (3) is augmented with the kinematic differen-
tial equations and the set of bilateral constraint equations
in Eqs. (1a) and (1b), respectively. The numerical solu-
tion of the resulting problem is challenging and continues
to be an area of active research. Several numerical dis-
cretization approaches are discussed in [21–26]. The one
adopted here is introduced in [27], see also [20]. Upon
time discretization followed by a relaxation of the kine-
matic constraints, the numerical problem is posed as a
conically constrained quadratic optimization problem

minq (γ) =
1

2
γTNγ + pT γ (4a)

subject to γi ∈ Υi for i = 1, 2, . . . , nc, (4b)

where nc is the number of active contacts; i.e., the
number of elements in A(q(t)); Υi is the friction cone

of contact i; γ ≡
[
γT1 , γ

T
2 , . . . , γ

T
nc

]T
; and, γi ≡

[hγ̄i,n, hγ̄i,w, hγ̄i,u]T ∈ R3, with h the simulation time
step. The vector p ∈ R3nc and positive semi-definite ma-
trix N ∈ R3nc×3nc change from time step to time step
but do not depend on the Lagrange multipliers γ. The

2
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expressions of p and N, along with a detailed account of
how the differential variational inequality problem stated
in Eq. (3) leads to the conic constraint optimization prob-
lem in Eq. (4) can be found in [20]. We solve the opti-
mization problem in Eq. (4) using Barzilai-Borwein or
Nesterov algorithms [28, 29]. This step represents the
computational bottleneck of DEM-C. Once the frictional
contact forces γ are available, the velocity v(l+1) is ex-
peditiously computed using Eq. (3c). Subsequently, a
half-implicit symplectic Euler scheme updates the posi-
tions at t(l+1): q(l+1) = q(l) + hL(q(l))v(l+1), and the
solution is advanced by a time step h.

The DEM-C solution outlined has several advantages:
it requires a small set of parameters, i.e., friction and
cohesion coefficients; the simulation time step h can be
large since there is no stiffness relied upon in the model;
and, the approach is suitable for handling bodies of arbi-
trary geometry. On the down side, DEM-C: requires at
each time step the solution of an optimization problem;
augments the size of the original problem as it introduces
three additional unknowns (γi,n, γi,w, γi,u) for each active
contact, which might be problematic for granular dynam-
ics problems; and, owing to the positive semi-definite at-
tribute of N, the convex optimization problem does not
have a unique global solution. That is, multiple force
distributions can solve the problem in Eq. (4). For the
frictionless case, it can be proved that any of these dis-
tributions leads to the same particle velocities [27]. A
recent result claims that the presence of friction does not
alter this velocity uniqueness trait [30].

DEM-P and DEM-C are very unlike each other as
proved by their, respectively (i) local vs. global takes
on the frictional contact problem; (ii) deformable vs.
rigid body perspectives; and, (iii) force-acceleration vs.
impulse-momentum formulations. For (i), DEM-C solves
a coupled optimization problem that keeps with the
global, or non-local, nature of the granular dynamics
problem. Indeed, each contact influences all the rest as
demonstrated by the system-level optimization problem
of Eq. (4). Finally, from a numerical method perspec-
tive, the DEM-C “smooths” the discontinuity in forces
and accelerations by operating with their time integrals
– impulses and momenta.

II. NUMERICAL EXPERIMENTS

For the purpose of quantifying the accuracy, robust-
ness, and efficiency of DEM-P and DEM-C we use an
open source simulation infrastructure that implements
both approaches. This simulation engine is called Chrono
[31, 32], and it is used here for a wave propagation ex-
periment, a cone penetration test, a direct shear test, a
triaxial test and a hopper flow analysis. The metrics of
interest in this DEM-P vs. DEM-C comparison are so-
lution accuracy, robustness, and required computational
effort as reflected in simulation run times.

FIG. 1: Snapshot, DEM-P wave propagation in granular
media.

A. Wave propagation in granular material

The propagation of a wave in granular material, see
DEM-P simulation snapshot in Fig. 1, is the result of
inter-particle energy exchange via impact, contact and
adhesion. In the DEM-P results reported herein, these
interactions were captured by the Hertz, Mindlin and
Derjaguin-Muller-Toporov (DMT) models [8, 33]. The
sensitivity of the solution to noise, particularly in non-
linear regimes caused by larger impact velocities, de-
mands a non-dissipative and non-generative numerical
solution. We monitor energy conservation for an experi-
mental setup composed of a collection of n monodisperse
spheres of diameter d = 1.08 µm, which were disposed
in one layer with close packing. The material properties
used were Young’s modulus Y = 78 GPa, Poisson’s ratio
ν = 0.17, and friction coefficient µ = 0.18. In simulation,
we assign an initial velocity to one surface particle and
subsequently monitor the wave propagation.

Numerical experiments were carried out for different
values of bodies nB ∈ [0.4, 120]×103 and impact velocity
v ∈ [0.1, 10] m/s. The DEM-P simulation lasted for one
wave sweep of the domain, which had a 3:4 aspect ratio;
i.e., for instance, for nB = 120 000, the domain’s height
and width were 300 and 400 particles, respectively. Fig-
ure 2 illustrates the variation of the energy components
over time, as well as the variation of the total energy, E,
defined as E = K − U − EI −Wf − EA, where K, U ,
EI , Wf , and EA denote the kinetic, gravity potential, im-
pact energy, work of the shear force, and adhesion energy,
respectively. The solution accuracy metric was the varia-
tion in total energy, e = (Ef−Ei)/Ki, where subscripts f
and i denote the final and initial states. Regardless of nB
and impact velocity v, we noticed that e < 10−6. Note
that combining the complementarity approach with the
rigid body model yields a solution incapable of simulating
wave propagation. As such, there are no DEM-C results
to report. A finite element method take on grain defor-
mation; i.e., relaxing the rigid body assumption, would
address this issue albeit at a steep computational cost.

3
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FIG. 2: DEM-P wave propagation simulation – balance of
total energy E over time. Coulomb friction coefficient

µ = 0.18. Total energy computed as
E = K − U − EI −Wf − EA. Impact, contact and adhesion

represented using the Hertz, Mindlin and
Derjaguin-Muller-Toporov (DMT) models [8, 33].

B. Cone penetration

In this section, we report lab and simulation tests per-
formed for a cone penetration experiment. This geome-
chanics soil characterization method uses a standardized
cone geometry, material, bucket dimension, and granular
material compaction. With few exceptions noted in [34],
the procedure and equipment used in this test were as in
the British and Swedish standards [35]. The cones, which
had apex angles of 30◦ and 60◦ in line with the British
and Swedish standards, respectively, have the geometric
and mechanical properties provided in Tab. I.

The cones were dropped from three heights: from a
height equal to the cone’s length (L30◦ = 34.36 mm,
L60◦ = 22.10 mm), a half-cone height (1

2L30◦ = 17.18

mm, 1
2L60◦ = 11.05 mm), followed by a zero height,

where cone was placed right above the specimens surface,
see Fig. 4. The cones were attached to brass adapters
to facilitate connection to a Linear Variable Differential
Transformer (LVDT) rod, see Fig. 3c, which was used
to measure the displacement of the cones during pene-
tration. The falling cones were attached to an adjustable

TABLE I: Properties of cones.

Property
Cone

30◦ 60◦

Length, L [mm] 34.36 22.10
Width, W [mm] 9.21 19.86
total mass with

141.1 135.7
LVDT attached, m [g]

Young’s modulus, Y [GPa] 193
Poisson’s ratio, ν 0.3 - 0.31

(a) (b)

(c) (d)

FIG. 3: Empirical and numerical cone penetration setups:
(a) cone placed over the settled specimen; (b) cone

penetrating the granular material; (c) fall cones with LVDT
connectors; (d) view of assembled apparatus: 1.fall cone and

adapter; 2. LVDT; 3. adjustable vertical stand.

FIG. 4: Schematic a cone drop experiment, with drop
height (H), cone height (L) and cone width (W).

4
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FIG. 5: The evolution of system’s kinetic energy (on
lin–log scale) during the first; i.e., settling, stage of the

simulation.

vertical stand as illustrated in Fig. 3d. The vertical
stand had a range of 0.4 m that allowed the LVDT rod
and fall cones to drop into the center of 4 or 6 inch proc-
tor molds, as specified in the ASTM D698 standard. The
granular material used was monodisperse glass beads. A
size characterization using the MATLAB R©’s image pro-
cessing toolbox was conducted to quantify bead shape.
The bead’s average diameter and standard deviation were
measured as 2.849 mm and 0.0417 mm, respectively.

Two material compactions were considered – one loose
and one dense. In the lab, the loose compaction was
generated by placing the material in accordance with
ASTM D5254. For dense compaction, the material was
placed in lifts. After each lift, an extrusion plate was
placed onto the material. The center of the extrusion
plate was then hit with a standard proctor hammer ten
times. This was repeated for a total of four lifts. On
the simulation side, the granular material at rest was
generated by pouring particles into the container with
and without friction to generate the loose and dense se-
tups, respectively. For DEM-P, the following parameters
were used for the grains and container: Young’s modu-
lus Y = 108 Pa (the material was softer than in reality
to allow for large step sizes h); Poisson’s ratio ν = 0.3;
beads’ density % = 2500 kg/m3. For both DEM-P and
DEM-C, µp-p = µc-p = 0.7, where “c” stands for cone
and “p” for particle (bead). These µ values are within
the range recommended in the literature, see discussion
in [36]. Given the nature of the material considered, we
used the same µ value also for the direct shear test in
§II C, and the hopper experiment in §II E. Loose and
dense compaction densities obtained are provided in Ta-
bles II and III.

With the exception of Young’s modulus Y , all parame-
ter values were lifted from literature based on the materi-
als involved in the experiment. However, we had to per-
form one calibration step that complemented the choice

TABLE II: Void ratios at rest.

Void Ratios Experiment
Simulation (Rel. Error [%])

DEM-P DEM-C

Container of 4-in diameter
Loose Case 0.66 0.72 (9.50) 0.75 (13.79)
Dense Case 0.53 0.55 (3.85) 0.57 (6.61)

Container of 6-in diameter
Loose Case 0.66 0.71 (7.15) 0.74 (12.43)
Dense Case 0.53 0.55 (3.46) 0.56 (5.23)

TABLE III: Densities at rest.

Densities
[

kg
m3

]
Exp.

Simulation (Rel. Error [%] )
DEM-P DEM-C

Container of 4-in diameter
Loose Case 1504.29 1449.50 (3.64) 1426.00 (5.20)
Dense Case 1630.34 1608.79 (1.32) 1593.69 (2.25)

Container of 6-in diameter
Loose Case 1504.32 1462.70 (2.77) 1433.39 (4.72)
Dense Case 1630.35 1610.93 (1.19) 1601.22 (1.79)

of parameter values. The motion of the LVDT rod was
modeled in Chrono by a perfect; i.e., frictionless, transla-
tional joint that constrained the cone to move only in the
vertical direction. This amounted to the presence of five
kinematic constraints, see Eq. (1b). We performed lab
fall tests in the absence of granular material to quantify
the actual friction between the fall cone and the adapter.
We measured that the friction in the lab apparatus led to
free fall speeds at impact that would require [0.65, 0.94] g
[34], where g = 9.81 m/s2. The outcome of this cali-
bration phase was that in simulation, we used a gravita-
tional acceleration of 0.79g to account for the net effect
of friction in the apparatus, friction which was otherwise
neglected by the Chrono–idealized translational joint.

The cone penetration simulations consisted of two
stages. In the first stage (settling), granular material
was dropped into the container. Although this stage was
1.0 second long, a suitable “rest state”, as measured by
the value of kinetic energy associated with the movement
of all elements, was reached after approximately 0.5 sec-
onds, see Fig. 5. In the second stage (cone-falling), the
cone dropped and penetrated the granular material over
0.4 seconds. The vertical displacement of the cones as
a function of time is presented in Fig. 6. Four different
scenarios are shown for 4 and 6 inch-wide containers; 30◦

and 60◦ fall cones; and loose and dense compaction.

Overall, the DEM-P and DEM-C results are very com-
parable and the methods are deemed predictive. Gen-
erally, the DEM-P and DEM-C simulation penetration
depths were within 12% of lab measurements in all sce-
narios, see Table IV. DEM-P produced more accurate
results for the settling phase; for the penetration phase,
DEM-C produced slightly more accurate results for the
loose case. On average, when using Chrono, DEM-C was
about 1.6 times slower than DEM-P, see Table V. The
table reports run-time ratios TDEM C/TDEM P for times

5
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TABLE IV: Cone penetration results related to plots in
Fig. 6. Four different scenarios were classified by
container diameter (φ), cone apex angle (ψ) and
material compaction (C). Triple (φ, ψ, C) values:

(a) (6 in, 30◦, D); (b) (6 in, 30◦, L); (c) (4 in, 30◦, L);
(d) (6 in, 60◦, D). L and D stand for “loose” and

“dense” compaction, respectively.

Scenario Initial Height
Depth [cm]

(Relative error [%])
Lab DEM-P DEM-C

(a)

0
5.01 4.90 4.73

(2.34) (3.31)

1
2
L30◦

5.49 5.42 5.11
(1.35) (5.62)

L30◦
5.86 5.92 5.44

(1.09) (8.17)

(b)

0
6.25 6.56 6.84

(4.84) (4.34)

1
2
L30◦

6.79 7.17 7.29
(5.59) (1.62)

L30◦
7.17 7.63 7.73

(6.34) (1.33)

(c)

0
6.43 6.45 6.57

(0.19) (1.95)

1
2
L30◦

7.04 7.01 7.01
(0.32) (0.10)

L30◦
7.30 7.38 7.52

(1.08) (1.92)

(d)

0
3.29 3.28 3.11

(0.36) (4.96)

1
2
L60◦

3.59 3.56 3.40
(0.63) (4.61)

L60◦
3.44 3.85 3.64

(11.80) (5.49)

TABLE V: Run-time ratios TDEM C/TDEM P and
number of elements in the cylinder. In the heading, “4”
and “6” represent the cylinder diameter in inches, while

“L” and “D” stand for loose and dense packing,
respectively.

4L 4D 6L 6D
Settle 1.54 1.67 1.46 1.44
Penetr. 1.64 1.76 1.78 1.71
Total 1.56 1.69 1.58 1.55
Elems. 48864 53296 110786 120860

required to complete the cone penetration simulations.
In the heading, “4” and “6” represent the cylinder di-
ameter in inches, while “L” and “D” stand for loose and
dense packing, respectively. In the first column: Settle,
Penetr. and Total refer to the stages of the simulation:
settling phase, material penetration phase, and total run
time. The very last row reports the number of elements
used to fill the container in each scenario. As expected,
the dense-packing cases have more elements compared to
the loose-packing cases. Further numerical results are
available in [36].

(a) Cone 30◦ in apex angle. Container with a
6-inches-wide diameter. Dense packing.

(b) Cone 30◦ in apex angle. Container with a
6-inches-wide diameter. Loose packing.

(c) Cone 30◦ in apex angle. Container with a
4-inches-wide diameter. Loose packing.

(d) Cone 60◦ in apex angle. Container with a
6-inches-wide diameter. Dense packing.

FIG. 6: Cone depth vs. time plots obtained from
simulation and lab experiments. Black lines indicate
experimental data; blue is used for DEM-P results;

orange for DEM-C results. In several cases the blue line
is right behind the orange line.

C. Direct shear test with particle image
velocimetry

The direct shear test for granular materials is often
used in geomechanics to infer friction angles. The shear
box, which is divided horizontally, is filled with material
at a desired density. A normal force is applied to the
top of the sheared material; a tightly controlled motion

6
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FIG. 7: Shear apparatus: 1. Sliding portion of shear
box; 2. Fixed portion of shear box; 3. Load cell.

causes half of the shear box to slide laterally causing shear
forces to develop in the sample. This setup was modified
to allow the tracking of individual grains via particle im-
age velocimetry (PIV) as enabled by the GeoPIV soft-
ware [37]. To this end, the shear box had a transparent
front wall for capturing the glass beads movement with
a digital camera. The moving portion of the shear box
was displaced at a constant rate using a GeoTAC Geo-
Jac stepper motor controlled with the GeoTAC Sigma-1
loading software. The forces required to move the box
and sample were measured using an Interface ULC Ul-
tra Low Capacity Load Cell model ULC-2N. The motor
frame and shear box are shown in Fig. 7, see also [38].

The material and parts were dry; two shear rates were
considered separately: 0.5 mm/min and 1.0 mm/min.
The normal force on the shear plane was controlled by
inclining the shear apparatus and adding, in a tightly
controlled fashion, a supplemental mass on top of the
material. The apparatus was inclined at 18◦ with no
supplemental mass; 24◦ with 8.01 g of additional mass;
and, for 30◦, 53.64 g for 1.0 mm/min and 66.64 g for 0.5
mm/min. The tests were conducted using granular ma-
terial in two different compactions – loose and dense. In
the dense case between 1303 and 1310 elements were ar-
ranged in one layer via hexagonally close packing. In the
loose case the shear box was filled out with 1174 to 1214
elements under arbitrary packing, see Fig. 8. The sim-
ulations consisted of 1311 (dense) and 1154 (loose case)
glass spheres of diameter 2.84 mm. For DEM-P: density,
% = 2500 kg/m

3
, Young’s modulus, Y = 50 GPa, Pois-

son’s Ratio, ν = 0.3, coefficient of restitution, cr = 0.66,
and inter-sphere coefficient of friction µ = 0.7. DEM-C
used only the aforementioned density and friction values.
The shear box was 101.96-mm-wide; the depth of its fixed
half was 50.58 mm. The distance between the front and
back panels was 3.3 mm.

Insofar as the simulation experiments were concerned,
a sensitivity analysis was first conducted with respect to
the shearing speed Vsh. The shear speeds in the lab were
low and led to lengthy experiments that needed to be
duplicated in simulation. We ran one pilot DEM-C sim-
ulation in Chrono using the actual lab shearing speed.
When using one thread on an i5-4300M CPU @ 2.0 GHz
processor, the simulation finished after 23 days. DEM-P
would have required close to 54 days. The purpose of the

sensitivity analysis was to understand whether increas-
ing shear speed in simulation would significantly alter
the results. A thorough account of this study is provided
in [38]. Both DEM-P and DEM-C show little sensitivity
to shearing speed. Due to the long execution times, the
DEM-P simulations run had Vsh,sim ≥ 4 mm/min; i.e., at
least four times faster than experiment. The trajectories
obtained from those simulations were very similar to each
other, see Fig. 9. The DEM-C simulations were two to
six times faster than DEM-P simulations; all were car-
ried out in Chrono. Different values of Vsh did not lead to
consequential changes in numerical values reported. Sur-
prisingly, we observed a slightly better match of DEM-C
numerical and experimental results for higher shearing
velocities, an artifact that might be related to the par-
ticular solution approach used in Chrono [29, 39, 40].

Particle arrangements at the end of the lab and simu-
lation tests are shown in Fig. 8. The lab PIV and simu-
lation trajectories are juxtaposed in Fig. 9. The spheres
marked on the plots show the positions of the monitored
particles at the beginning of the test. Six experiments
– three different incline angles × two shearing speeds –
were run for loose and then dense compaction for a total
of 12 scenarios. Except for a small number of scenarios in
the closed-packed configurations, the results are in good
agreement for the duration of the motion. We observed
that in the lab dense packed scenarios, generating a per-
fectly closed initial configuration was almost impossible
due to the presence of small voids caused by particle im-
perfection and shear box dimensional tolerances. The ex-
istence of clearances in the loose case initial configuration
was noted for significantly influencing particle motion.

Note that it was not possible to exactly match the ini-
tial locations of the experiment vs. simulation spheres.
Indeed, at time t = 0, the physical experiment and nu-
merical simulation rest configurations were slightly differ-
ent. This difference in initial conditions was reconciled by
comparing the trajectories of six “reference” spheres in
the physical experiment to those of six simulation spheres
that were closest to the reference spheres at the onset of
the shearing process [38]. The simulation spheres moni-
tored are marked in red in Fig. 8. This sphere selection
process was followed to generate all results reported in
Fig. 9.

D. Triaxial test

For the standard triaxial test (STT), we summarize
the comparison of DEM-P and DEM-C results against
experimental data reported in [41]. This discussion draws
on simulation setup information and results provided in
[42].

The experiment was conducted using a cylinder with
diameter of 101 mm and height of 203 mm. Two speci-
men types were used. In the monodisperse case we used
spheres of 5 mm diameter; in the polydisperse case we
used a uniform mixture of spheres with diameters of

7



UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. #28960

(a) Granular material packed loosely; incline angle of
18◦; shearing speed of 1.0 mm/min.

(b) Granular material packed densely; incline angle of
24◦; shearing speed of 0.5 mm/min.

FIG. 8: Particle arrangement comparison, end of shear test: experiment (top); simulation (bottom); random loose
packing (left); hexagonal closed packing (right). Six particles, marked in red, were selected for analyzes via PIV.

4, 5 and 6 mm. The beads were made of Grade 25
Chrome Steel; the confining pressure was 8 × 104 Pa;
the sample was compressed at an axial strain rate of
0.0083 % s−1. In simulation, the following values were
used by DEM-P: density % = 7800kg/m3, Young’s mod-
ulus Y = 2 × 108 Pa, Poisson ratio ν = 0.28, and co-
efficient of restitution cr = 0.6. The same values were
used for the container’s walls. The particle-to-particle
and particle-to-wall friction coefficients were measured
in [43, 44]: 0.096 and 0.28, respectively. The confining
pressure was set to 8 × 104 Pa. DEM-C did not need
values for Y , ν, and cr.

There were two caveats in simulating STT. Just like
for the shear test, lab shearing speeds were too low to
be matched in simulation, which was carried out after
a three orders of magnitude increase in strain rate to
10 % s−1. Secondly, the material was softened by three
orders of magnitude to allow for a larger DEM-P time
step h. A sensitivity analysis suggests that the relaxation
of test parameters changed neither the qualitative nor the
quantitative outcomes of the study [42].

The simulations consisted of two stages. In the settling
stage, the specimen was poured into the container and
the confining pressure was applied to its top and side
walls to bring the sample to rest, see Fig. 10. In the
second stage, the confining pressure of 8 × 104 Pa was
maintained on the side walls and the axial strain rate

TABLE VI: Number of spheres used and void ratios
obtained after the settling part. Mono. - monodisperse

case; Poly. - polydisperse case

Number of Void Ratio
Spheres (Relative Error Range [%])

Lab. Exp. [15382, 15420] [0.615, 0.612]

Mono.
DEM-P

15918

0.641
([4.06, 4.52])

DEM-C
0.611

([0.65, 0.16])

Poly.
DEM-P

15740

0.660
([6.82, 7.27])

DEM-C
0.626

([1.76, 2.24])

was applied to the top wall. The bottom wall was fixed in
both stages. The compressed specimen after the settling
stage and after STT is shown in Fig. 11.

The lab tests used between 15382 and 15420 spheres
yielding void ratios of 0.615 and 0.612, respectively.
DEM-P and DEM-C used 15918 spheres in the monodis-
perse and 15740 in the polydisperse case. The simula-
tion void ratios at rest ranged from 0.611 to 0.660, see
Table VI.

To simulate the settling and the STT stages it took

8
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(a) Particles packed densely and the shear box
inclined at 18◦.

(b) Particles packed loosely and the shear box
inclined at 18◦.

(c) Particles packed densely and the shear box
inclined at 24◦.

(d) Particles packed loosely and the shear box
inclined at 24◦.

(e) Particles packed densely and the box shear
inclined at 30◦.

(f) Particles packed loosely and the shear box
inclined at 30◦.

FIG. 9: Trajectories for selected particles obtained from simulation and lab experiments. Two plots are provided in
sub-figures (a) through (f); the left and right plots correspond to Vsh = 0.5 mm/min and Vsh = 1.0 mm/min,

respectively. Two sets of trajectories obtained in simulations are shown. The first set presents the results with
shearing velocity 500 times larger than the one used in laboratory (Vsh,sim = Vsh× 500); these simulations are shown
with dotted lines, which are always orange for DEM-C and blue for DEM-P. The second set of results, shown with

solid line, is obtained for shearing speeds closer to experiment; i.e., the speedup factors α for Vsh = 0.5 mm/min and
β for Vsh = 1.0 mm/min are both significantly less than 500. Since DEM-P was slower, the slowest shearing
velocities we simulated with were 4 mm/min, which gives Vsh,sim = Vsh0.5 × 8 and Vsh,sim = Vsh1.0 × 4; i.e.,

(α = 8, β = 4). For DEM-C, no shearing speed up was needed in simulation; i.e., α = β = 1.

DEM-P an average of 1 hour 25 minutes and 4 hours
and 55 minutes, respectively. DEM-C took 9 hours 21
minutes for settling and 44 hours and 14 minutes for the
STT stage. Simulations were run using 10 threads on an
Intel i5-4300M CPU @ 2.0 GHz.

A comparison of lab, DEM-P, and DEM-C results is
provided in Fig. 12, in which the variation in stress ra-
tio (σ1 − σ3)/(σ1 + σ3) is plotted as a function of axial
strain. The reference data is from [41]. Both DEM-P
and DEM-C match experimental data, particularly so at
high axial strains. DEM-C, which attempts to enforce
the rigid-body abstraction, leads to a specimen that is

perceived as stiffer thus causing a steeper initial slop.
DEM-P provides a good approximation of the lab data
at every stage of the experiment.

E. Flow sensitivity with respect to element shape

A hopper experiment provides an opportunity to scru-
tinize via fully-resolved, microscale simulation emerging
macroscale attributes such as flow rate, funnel flow, arch-
ing, interlocking, jamming, etc. We reported in [45] the
outcome of a DEM-C sensitivity analysis of hopper flow

9
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FIG. 10: Evolution of system’s kinetic energy during the
standard triaxial test settling stage.

(a) (b)

FIG. 11: Granular material simulation snapshot, end of: (a)
settling stage; and, (b) standard triaxial test stage.

rate with respect to friction coefficient. The hopper,
which consisted of one 45o inclined and three vertical
walls, was filled with approximately 40 000 glass disrup-
tor beads with 500 microns diameter. The same hopper
setup is used herein, see Fig. 14. The material properties
for the glass beads are those from the cone penetration
and PIV tests; i.e., a single value of friction coefficient,
µ = 0.7, was assumed for all contact events. Except for
transitions at the onset and conclusion of the flow, we

TABLE VII: Standard triaxial test: summary of
execution times.

Approach
Length of Average

Time Simulated [s] Exec. Time [s]

DEM-P
Settling: ≈ 0.5 1 h 25 min

STT: 1.5 4 h 55 min
Total: ≈ 2.0 6 h 20 min

DEM-C
Settling: ≈ 0.5 9 h 21 min

STT: 1.5 44 h 14 min
Total: ≈ 2.0 53 h 35 min

(a) Monodisperse specimen.

(b) Polydisperse specimen.

FIG. 12: Lab vs. simulation results: standard triaxial test.

confirm the hour-glass principle that a monodisperse dry
spherical-granular material flows uniformly throughout
the entire process, see Table VIII. To obtain these val-
ues, if the duration of the granular flow through hopper
was Tf , we split the time interval [0.3, 0.9]Tf into ten
equal-size subintervals. The average flow rate for each
sub-interval was calculated based on a linear regression
of the flow-time data in that sub-interval, yielding ten
flow rates. The table reports flow rate average, ṁ, stan-
dard deviation, SD, and normalized standard deviation,
ζ = SD/ṁ, obtained using these ten values.

The results in Table IX answer the following question:
how sensitive are the simulation results to decreasing Y
in order to reduce simulation times via larger integration
step sizes h? It turns out that for the hopper experiment,
one can reduce Y substantially without compromising the
simulation results. In our experience, the extent to which
one can reduce Y is problem dependent.

The DEM-P method, shown in section §II A to suc-
cessfully capture nonlinear wave propagation, builds on

10
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TABLE VIII: Comparison of hopper flow rates for
different gap sizes (in mm); ṁ and SD denote flow rate
and standard deviation measured in g/s, respectively; ψ
denotes the normalized standard deviation, ζ = SD/ṁ.

ṁ (SD, 100 × ζ)
Gap Size Exp. DEM-P DEM-C

1.5 1.42 1.50 (0.10, 6.5) 1.48 (0.10, 6.7)
2.0 2.69 2.71 (0.09, 3.3) 2.80 (0.15, 5.3)
2.5 4.23 4.20 (0.08, 2.0) 4.28 (0.12, 2.7)

TABLE IX: DEM-P: sensitivity analysis with respect to
modulus of elasticity Y, measured in Pa; ṁ and SD
denote flow rate and standard deviation measured in

g/s, respectively; w, measured mm.

ṁ (SD)
Y w = 1.5 w = 2.0 w = 2.5

6.0e6 1.48 (0.03) 2.72 (0.12) 4.22 (0.09)
2.5e7 1.49 (0.09) 2.72 (0.12) 4.21 (0.13)
1.0e8 1.53 (0.11) 2.71 (0.12) 4.18 (0.15)
4.0e8 1.46 (0.09) 2.74 (0.09) 4.21 (0.13)
1.6e9 1.50 (0.07) 2.75 (0.08) 4.24 (0.14)

the assumption that the contact scenarios encountered
are of simple types such as sphere-to-sphere or sphere-
to-plane. Then, insofar as the normal contact force is
concerned, an analytical solution can be produced [8, 46–
48] in terms of quantities such as the effective radius
of curvature R̄, effective mass m̄, and contact stiffness
and damping parameters – see Eq. (2). Note that these
sphere-to-sphere or sphere-to-plane contact geometries,
which come into play when defining, for instance, R̄ and
m̄, allow also for a clean tracking of the contact history
that comes into play in the computation of the DEM-P
forces [18]. Yet, practical applications often times lead
to edge-to-edge, corner-to-plane, edge-to-plane, etc., con-
tact scenarios that bring together complex geometries of
arbitrary size ratios and/or relative orientations. How
should DEM-P handle these cases? Various computa-
tional geometry heuristics exist for producing surrogates
for the contact point, normal contact direction, and rela-
tive penetration speed, see, for instance, [49–51]. Against
this backdrop, one can regard DEM-P as either an ap-
proach that considers elastic deformation and no pene-
tration, with the frictional contact force modulated by
geometric (R̄ and m̄) and material (Kn, Kt, Cn, Ct) pa-
rameters – see Eq. (2) [8]; or, an ad-hoc approach not
concerned with the local elastic deformation but rather
with the mutual penetration, in which case a penetra-
tion metric, e.g., the intersection volume for the two ge-
ometries in contact, and additional empirical parameters,
dictate the frictional contact force [49–51]. At the price
of not being able to handle arbitrary geometries, we em-
brace the elastic deformation “orthodoxy” for DEM-P
and root the frictional contact force computation in an
analytical argument as done in the Herzian contact the-

ory [8]. How well an empirical penetration-based DEM-P
solution manages to capture nonlinear phenomena such
as in §II A, and, at the same time, handle complex ge-
ometries falls outside the scope of this contribution.

DEM-C does not face this conundrum; i.e., how com-
plex geometry should be handled – as it always falls back
on a unilateral (non-penetration) kinematic constraint
grafted onto the rigid body model. For low strain sce-
narios, such as hopper flow, the rigid body assumption
captures well the flow of the material, see results in Table
VIII. This was the rationale for employing DEM-C in a
study that sought to quantify how shape dictates hopper
flow. To this end, we considered six scenarios. In four
cases, the granular material was composed of prolate el-
lipsoids. The elongation α was defined as the ratio of
the larger to the smaller semi-axis. Figure 13 illustrates
the hopper flow of prolate ellipsoids with α = 3.4. In
the fifth scenario, the granular material was composed
of cubes. The sixth scenario included in equal amounts
elements of four types: sphere, cube, cylinder with equal
height and diameter, and prolate ellipsoid with α = 2.0
(see Fig. 14). Each particle’s volume was equal to that of
a 500 microns diameter sphere. In all cases, the flow of
granular material was approximately constant but differ-
ent from case to case, see Table X. Unsurprisingly, the
more “needle-like” the prolate ellipsoids, the lower their
flow rate. The cubes’ flow rate was low; “lubrication”
via other geometries improved the granular mixture flow
rate. No jamming was observed; nonetheless, compared
to the spherical particles, the flow of non-spherical par-
ticles was more unpredictable – see standard deviation
values. We also report the value of SD/ṁ in Table XI.
This ratio, which can be interpreted as a “propensity to
jam” coefficient, increases with the size of the particle to
gap-size ratio, and, where applicable, with the value of α.
No experimental data was available to back this observa-
tion. When simulating heterogeneous granular material,
the Chrono DEM-P implementation came short on accu-
racy and/or robustness grounds, which explains the lack
of DEM-P results.

Finally, the small difference between the DEM-C flow
rates for spheres (α = 1.0) in Tables VIII and X provides
an opportunity to reflect on the importance of collision
detection. Indeed, in the former case, the collision de-
tection is of sphere-to-sphere type, which has an easy-to-
find, analytical solution. For the latter case, the colli-
sion detection is of ellipsoid-to-ellipsoid type, a scenario
that calls for the solution of an optimization problem
[52]. This is despite of the two ellipsoids in contact being
spheres; i.e., ellipsoids with identical semi-axes. Since the
optimization problem does not have an analytical solu-
tion, the collision detection is only solved approximately,
which ultimately influences the simulation results.
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FIG. 13: Flow of prolate ellipsoid through a hopper,
α = 3.4.

FIG. 14: A heterogeneous granular flow through a hopper.
The material is composed of equal fraction of spheres,

ellipsoids (α = 2), box, and cylinders.

III. CONCLUSIONS

The one salient conclusion of this study is that both
DEM-P and DEM-C are predictive. It is reassuring
that two discrete element methods produce similar re-
sults despite being vastly different both in their model-
ing and numerical solution approaches. Second, there
is no clear winner insofar as handling granular dynamics
is concerned. For very large collections of monodisperse
spheres in experiments that lead to high internal stress,
DEM-P has the upper hand – it is faster than DEM-
C and apt at capturing both the micro and macroscale
response of the material. DEM-P runs into difficulties
when handling complex geometries owing to its (i) ad-
hoc approach to producing the friction and contact forces
under these circumstances; and, (ii) sensitivity to con-
tact information; i.e., the geometrical or collision detec-

TABLE X: DEM-C flow rate in hopper for different
mixtures and gap size, w (mm). The flow rate ṁ and

standard deviation SD are measured in g/s.

ṁ (SD)
Granular composition w = 1.5 w = 2.0 w = 2.5

Sphere (α = 1.0) 1.60 (0.09) 2.87 (0.10) 4.42 (0.09)
Prolate Ellips. (α = 2.0) 1.45 (0.10) 2.54 (0.14) 4.07 (0.21)
Prolate Ellips. (α = 3.0) 1.00 (0.19) 2.20 (0.21) 3.33 (0.22)
Prolate Ellips. (α = 4.0) 0.49 (0.11) 1.46 (0.33) 2.49 (0.26)

Cube 0.58 (0.11) 1.96 (0.34) 3.28 (0.25)
Mixture 1.14 (0.19) 2.25 (0.18) 3.59 (0.20)

TABLE XI: Flow rate standard deviation (SD)
normalized by the flow rate ṁ, ζ = SD/ṁ, for different

compositions and gap sizes w (mm). DEM-C results.

100 × ζ
Granular composition w = 1.5 w = 2.0 w = 2.5

Sphere (α = 1.0) 5.6 3.6 2.1
Prolate Ellipsoid (α = 2.0) 6.7 5.7 5.2
Prolate Ellipsoid (α = 3.0) 19.5 9.6 6.5
Prolate Ellipsoid (α = 4.0) 21.5 22.7 10.6

Cube 19.6 17.2 7.5
Mixture 16.3 8.1 5.6

tion component, when small variations in contact infor-
mation lead to sizable changes in forces. To a point,
we found DEM-P insensitive to shearing rates, which
could be increased, and to contact stiffness, which could
be decreased, both by orders of magnitude. This lack
of sensitivity can be traded for larger simulation step-
sizes that led in some experiments, e.g., STT, to signifi-
cant speedups over DEM-C. The latter was very apt at
handling granular material with complex element geome-
tries when the experiment did not lead to high internal
stresses. Hopper flows are very suitable, less so triaxial
or other high-load shear tests. DEM-C had two short-
comings: (a) its emphatic embrace of the rigid body ab-
straction; and, (b) its coupled system-level solution pro-
cess, which is computationally taxing. Because of (a),
DEM-C is incapable of capturing wave propagation in
granular material and struggles with STT as it cannot
employ the local particle deformation mechanism that
facilitates and modulates shearing in granular material.
This limitation can be addressed by reverting to a Fi-
nite Element Method to account for grain deformation.
Computationally, this is prohibitively expensive. In re-
lation to (b), large granular dynamics problems are go-
ing to stymie DEM-C. Moreover, DEM-C forfeits one of
its strong points since the ability to use large steps h
becomes a non-factor given the spatial and time scales
on which granular dynamics takes place. DEM-C is an-
ticipated to be competitive in fluidized bed, particulate
flow, and robotics problems in which the size of the op-
timization problem is small and/or the simulation can
advance with large h. We found DEM-C to be robust,
which makes it permissive and forgiving. Indeed, stop-
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ping the DEM-C solution after few iterations, long be-
fore convergence, produces macroscale results that are
acceptable yet not highly accurate. This is handy in En-
gineering applications when the microscale behavior is of
secondary interest. For instance, when designing a piece
of equipment that pushes a pile of granular material, ac-
curately resolving the microscale response of the granular
material is perhaps of little concern. Instead, the prior-
ity is in producing a good overall load history that the
implement acting on the granular material experiences
during a work cycle. A similar situation is encountered
in ground vehicle mobility analysis where, as the vehi-
cle operates over granular terrain, the interest might be
in the macroscale response only, with little concern for
grain level dynamics. On a final note, it was surprising
how computationally intensive both DEM-P and DEM-C
were. We had to demand tight numerical solution accu-
racy levels for the simulation results to come in line with
experimental data. Tight accuracy translated into simu-
lation times that were significantly longer than what we
had anticipated. As a corollary, simulation results that
look plausible in an animation might be far from faith-
fully capturing the physics at the microscale.

There are compelling reasons to believe that in the im-
mediate future, fully resolved DEM simulation will facili-

tate a significantly better understanding of complex phe-
nomena in soft matter physics. First, the software infras-
tructure to carry out these simulations is predictive and
becoming ubiquitous. Second, both DEM-P and DEM-
C are poised to benefit from recent substantial gains in
compute power.
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