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We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface
of a binary melt under rapid solidification conditions near two absolute stability limits. The first
of these involves the complete stabilization of the system to cellular instabilities as a result of large
enough surface energy. We derive nonlinear evolution equations in several limits in this scenario
and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In
contrast to the morphological stability problem in equilibrium, in which only cellular instabilities
appear and only one absolute stability boundary exists, in disequilibrium the system is prone to os-
cillatory instabilities and a second absolute stability boundary involving attachment kinetics arises.
Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolu-
tion equation to describe the nonlinear development of the solid-liquid interface near this oscillatory
absolute stability limit. We find that strong asymmetries develop with time. For uniform oscil-
lations, the evolution equation for the interface reduces to the simple form f ′′ + (βf ′)2 + f = 0,
where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both
absolute stability limits in which the system is prone to both cellular and oscillatory instabilities
and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit.
Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the
solid-liquid interface with greater departures from equilibrium and larger morphological numbers.
The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the
interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial am-
plitudes and their frequency depends on a single combination of physical parameters, including the
morphological number, as well as the amplitude. The critical amplitude, at which solutions loose
periodicity, depends on a single combination of parameters independent of the morphological num-
ber that indicate that non-periodic growth is most commonly present for moderate disequilibrium
parameters. The spatial distribution of the interface develops deepening roots at late times. Simi-
lar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes
are close to absolute stability, and the roots deepen with larger departures from the two absolute
stability boundaries.

I. INTRODUCTION

The directional solidification of binary alloys involves
an interface between a solid and a liquid, which may be-
come unstable. The mechanism of instability has been
explained using linear stability theory by Mullins & Sek-
erka [1]. Coriell & McFadden [2] provide many gener-
alisations of the model, which they have analysed. The
first weakly nonlinear theory of the development of the
disturbances was developed by Wollkind & Segel [3]. It
has been found that this instability can be suppressed
if the surface energy is large enough, and the neighbor-
hood of the critical value of the surface energy is referred
to as a region of absolute stability. Brattkus & Davis
[4] derived a strongly nonlinear evolution equation that
describes the nonlinear dynamics of cellular modes in a
neighborhood of the absolute stability boundary. These
works involve systems at interfacial thermodynamic equi-
librium.
For large solidification rates, the interface is no longer

at thermodynamic equlibrium and one has to introduce
generalisations to the phase diagram. Thermodynami-

∗ katarzyna.kowal@northwestern.edu

cally consistent generalisations have been developed by
Baker & Cahn [5]; Jackson et al. [6]; Aziz [7]; Boet-
tinger & Perepezko [8]; Boettinger & Coriell [9]; Kurz &
Fisher [10] to include departures from equilibrium such
as kinetic undercooling and solute trapping, which be-
come important at high solidification rates. Coriell &
Sekerka [11] used these generalisations in a linear stabil-
ity theory model of interfacial disequilibrium and found
that oscillatory instabilities may occur under rapid solid-
ification conditions. Merchant & Davis [12] documented
the whole state diagram for both modes - the cellular
and the oscillatory modes. The latter are present only
under interfacial disequilibrium. It has also been found
that there is an absolute stability boundary for the os-
cillatory mode when attachment kinetics are taken to be
large enough.

These works involve the linearised theory of systems
exhibiting interfacial disequilibrium. A weakly nonlinear
bifurcation analysis for the oscillatory mode under dise-
quilibrium has been carried out by Braun & Davis [13],
while a stongly nonlinear analysis of the oscillatory mode
in the limit of small and large departure from equilibrium
solute rejection has been conducted by Merchant et al.
[14]. The weakly nonlinear interaction between the os-
cillatory and the cellular modes near their simultaneous
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FIG. 1. Regime diagram in (∆Γ,∆µT ) space, where ∆Γ =
Γs − Γ and ∆µT = µTS − µT .

onset has been examined by Braun et al. [15].
It is the purpose of the present paper to investigate the

effect of disequilibrium on the nonlinear evolution of the
solid-liquid interface near the cellular absolute stability
boundary and the nonlinear development of long waves
near the oscillatory absolute stability boundary for any
level of disequilibrium. There are several limits that arise
and we treat these separately, depending on the values
of the surface energy Γ and attachment kinetics µT pa-
rameters and their closeness to their critical values Γs

and µTS . A regime diagram depicting regions of param-
eter space close to the critical values is depicted in Fig.
1. The dynamics are intricately determined by the close
interplay between the two absolute stability boundaries
displayed in Fig. 1.
The first of these regimes, Regime I, is one in which

Γ− Γs = O(ǫ) and µT − µTS = O(1) as ǫ → 0, involving
cellular growth near the cellular absolute stability bound-
ary. The dynamics near absolute stability in this regime
are dominated by the departure from critical attachment
kinetics, specifically, by whether or not the system ad-
mits oscillatory instabilities. The larger the influence of
disequilibrium and attachment kinetics, the deeper are
the deformations and the larger are the asymmetries be-
tween root and tip regions. Similar behaviour is seen as
the morphological number increases.
Regime II involves the region of parameter space that

is close to the oscillatory absolute stability boundary.
Specifically, Γ − Γs = O(1) and µT − µTS = O(ǫ) as
ǫ → 0. This regime has been been studied in the lim-
its of small and large disequilibrium parameter by Mer-
chant et al. [14]. For general disequilibrium parameters
in this regime, we find that the dynamics involves both
periodic oscillations and monotonic growth, depending
on the level of disequilbrium and the initial amplitude.
In the limit of zero disequilibrium, all solutions are peri-
odic in time for all amplitudes. Solutions are periodic in

time only for small enough amplitudes once the disequi-
librium parameter β is nonzero. Small amplitudes lead
to near-sinusoidal solutions, which become more sharply
rooted as the amplitude increases. Uniform oscillations
are simply governed by the reduced evolution equation
f ′′ + (βf ′)2 + f = 0, where f is a scaled interfacial po-
sition. The frequency of the oscillations depends on the
amplitude as well as on a single combination of physical
parameters, including the morphological number. Once
the initial amplitude exceeds a critical value, the solu-
tions become non-periodic in time. The critical ampli-
tude depends on a single combination of parameters and
is smallest for β = O(1), and grows unboundedly for
β → 0 and β → ∞. Non-periodic behaviour in time is,
therefore, most frequently present for β = O(1). The
value of the morphological number influences only the
period of the oscillations; it does not affect the criti-
cal amplitude. The spatial distribution of the distur-
bances develops strong asymmetries and sharply deep-
ening troughs with time. Amplitudes near the troughs
grow faster than near the peaks, leading to the strong
asymmetry that develops with time.
Regime III is one in which both the cellular and os-

cillatory modes are close to absolute stability. We first
derive an evolution equation for the amplitude when
µT = µTS and Γ close to Γs (depicted as the bold line in
the figure), and then extend it to a distinguished limit in
which both µTS − µT and Γs − Γ are small and nonzero.
The dynamics are qualitatively similar to those of Brat-
tkus & Davis [4], and reduce to Brattkus & Davis [4] in
the limit of zero disequilibrium and zero attachment ki-
netics. Disequilibrium, departures from the two absolute
stability boundaries, as well as increasing morphological
numbers are seen to more strongly break symmetry and
result in deepening roots in the resulting disturbances to
the solid-liquid interface.
In each of these scenarios, we derive nonlinear evolu-

tion equations and solve them numerically. A common
characteristic among all scenarios involves the appear-
ance of stronger asymmetries with increasing disequilib-
rium and morphological numbers.
We begin by introducing the governing equations in

Sec. II, we discuss the linear stability theory in Sec. III,
and discuss the two absolute stability boundaries in Sec.
IV. We then proceed by performing nonlinear stability
analyses for cellular growth away from the oscillatory ab-
solute stability boundary in Sec. VA, for cellular growth
at critical attachment kinetics in Sec. VB, for oscillatory
growth away from the cellular absolute stability bound-
ary in Sec. VI, and for a distinguished limit near both of
the absolute stability boundaries in Sec. VII. We finalise
with conclusions in Sec. VIII.

II. THEORETICAL DEVELOPMENT

We consider the directional solidification of a dilute
binary alloy under rapid solidification rates. Assump-
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tions of local equilibrium at the solid-liquid interface no
longer hold for large pulling speeds and disequilibrium
effects such as kinetic undercooling and solute trapping
become important. Departures from equilibrium result in
alterations to the local interfacial temperature and solute
concentrations derived from the phase diagram. These
departures are formulated in the non-equilibrium model
developed by Baker & Cahn [5]; Boettinger & Perepezko
[8]; Boettinger & Coriell [9]; Kurz & Fisher [10].
We consider an infinite one-sided model, in the sense

that the solute diffusivity in the solid phase is much
smaller than that of the liquid phase. We adopt the
frozen temperature approximation and assume that the
solid and liquid phases have equal thermal properties,
that the effects of latent heat are negligible.
We nondimensionalise the governing model based on

solute diffusion so that the spatial and temporal variables
as well as the solutal and temperature fields scale as

x̃ =
D
V
x, t̃ =

D
V 2

t, (1a, b)

C =
C̃ − C∞/kE

C∞(kE − 1)/kE
, T =

T̃ − T0

GD/V
, (2a, b)

(the quantities denoted by tildes are dimensional). We
also nondimensionalize the normal velocity as

Vn = Ṽn/V. (3)

Here, D is the solute diffusivity in the liquid, V is the
pulling speed, C∞ is the far-field solute concentration,
T0 is a reference temperature, G is the imposed thermal
gradient and kE is the equilibrium segregation coefficient.
The dimensionless parameters that appear are the surface
energy Γ, the attachment kinetics parameter µT , the dis-
equilibrium parameter β, and the morphological number
M. Explicitly,

Γ =
TM γ̃V kE

LνDmE(kE − 1)C∞

, (4)

µT =
V kE

(kE − 1)2C∞V0
, (5)

β = β0V, M =
mE(kE − 1)C∞V

DGkE
, (6a, b)

where TM is the equilibrium melting temperature of the
pure material, γ̃ is the surface energy, Lν is the latent
heat per unit volume and mE is the equilibrium liquidus
slope.
The local solute concentration satisfies

∂C

∂t
− ∂C

∂z
= ∇2C, (7)

FIG. 2. Neutral stability curve, M
−1 versus α. The solid

curve denotes the cellular branch, whereas the dashed curve
denotes the oscillatory branch.

and is subject to the boundary conditions

T = M
[

m(Vn)

(

C − 1

1− kE

)

+
1

1− kE

]

+ 2HMΓ−MµTVn, (8)

[

C(1 − k(Vn))−
1

1 + βVn

]

Vn =

(

∂C

∂x

∂h

∂x
+

∂C

∂y

∂h

∂y
− ∂C

∂z

)

(1 + |∇h|2)−1/2, (9)

at z = h and the far field condition

C → 1 as z → ∞. (10)

The first of these boundary conditions is the Gibbs-
Thomson relation modified to incorporate kinetic under-
cooling, which may be important at large speeds (see,
e.g., Merchant & Davis [12] and Davis [16]). The second
of these reflects a local solute balance at the solid-liquid
interface. In disequilibrium, the dimensionless segrega-
tion coefficient varies with the pulling speed and is given
by

k(Vn) =
kE + βVn

1 + βVn
, (11)

in the disequilibrium model proposed by Jackson et al.
[6] and Aziz [7]. The segregation coefficient approaches
unity at high pulling speeds, in which case solute becomes
trapped into the solid. At low pulling speeds, the segrega-
tion coefficient approaches its equilibrium value kE . For
consistency, it is necessary for the change in liquidus slope
to vary in Vn, via the segregation coefficient (see Baker
& Cahn [5]; Boettinger & Perepezko [8]; Boettinger &
Coriell [9]). A thermodynamically-consistent expression
for the dimensionless change in liquidus slope as a result
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of non-equilibrium segragation is given by

m(Ṽn) = mE

{

1− 1

kE − 1

(

kE

− k(Vn)

[

1− ln
k(Vn)

kE

])}

, (12)

(see Boettinger & Perepezko [8] and Boettinger & Coriell
[9]).
Noting that the temperature is permanently of the

form

T = z +Mγ, (13)

where

γ = − kE
(1− kE)2

L+
β

(1− kE)(β + kE)
− µT , (14)

and

L = ln(k̄/kE), k̄ =
kE + β

1 + β
, (15a, b)

we note that boundary condition (8) reduces to

h+Mγ = M
[

m(Vn)

(

C − 1

1− kE

)

+
1

1− kE

]

+ 2HMΓ−MµTVn (16)

involving the solutal field and position of the solid-liquid
interface.

III. BASIC STATE AND LINEAR STABILITY

The basic state is given by a planar interface and ex-
ponential solutal field

h0 = 0, C0 = 1− δe−z, (17a, b)

where δ = kE/(kE + β). Perturbing about this solution
and searching for normal modes of the form

h =h0 + ǫh1e
iα·x+σt,

C =C0(z) + ǫC1(z)e
iα·x+σt, (18)

where

α = (α1, α2) (19)

is the wavevector, α = |α| and x = (x, y), yields the
characteristic equation

M−1 =
δ(L(β + kE) + (1− kE))

(β + 1)(1− kE)
·

·
(

1− 2(β + kE + σ)

(β + 1)λ1 + β + 2kE − 1

)

− α2Γ− σµT − δβσL
(β + 1)(1− kE)

, (20)

(a)

(b)

FIG. 3. Critical wavenumber αc and M
−1

c as a function of Γ
for the steady mode. The absolute stability boundary Γ = Γs

is shown as a dashed line.

derived by Merchant & Davis [12], where

λ1 =
√

4α2 + 4σ + 1. (21)

The neutral stability curve is presented in Fig. 2. Two
types of instabilities emerge: cellular instabilities and
oscillatory instabilities. In disequilibrium, the neutral
stability curve is composed of two branches: a cellular
branch and an oscillatory branch. These lead to two ab-
solute stability boundaries, one in Γ and one in µT .

IV. ABSOLUTE STABILITY BOUNDARIES

The characteristic equation gives rise to a band of un-
stable wavenumbers, with a finite-wavenumber cutoff at
α = αs for the cellular mode. Disturbances with α > αs

are stabilised by surface energy. The critical wavenumber
α = αc that corresponds to the maximal inverse morpho-
logical number M−1

c is shown in Fig. 3. For large enough
surface energy Γ, the system is completely stable to cel-
lular instabilities. Specifically, this occurs for Γ > Γs,
where

Γs = kE
(1 − kE) + (kE + β)L
(1− kE)(β + kE)2

(22)
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as derived by Merchant & Davis [12]. The locus Γ = Γs

is one of the absolute stability boundaries inherent to the
morphological stability problem in disequilibrium. The
strongly nonlinear analysis of Brattkus & Davis [4] re-
veals the strongly nonlinear structure of the disturbances
near this absolute stability boundary in interfacial equi-
librium. We wish to generalize this to include the effects
of disequilibrium, as well as to investigate the the nonlin-
ear evolution of disturbances near the oscillatory absolute
stability boundary, which appears only in disequilibrium.
The oscillatory absolute stability boundary involves at-

tachment kinetics. For large enough kinetics parameter
µT , the system is completely stable to oscillatory insta-
bilities for all wavenumbers. This occurs for µT > µTS ,
where

µTS =
βkE

(β + 1)(β + kE)2
, (23)

(see Merchant & Davis [12]). Oscillatory instabilities
are possible for µT < µTS within a band of unstable
wavenumbers given by α < αoc. A representative plot of
αoc and the corresponding inverse morphological number
M−1

oc as a function of the attachment kinetics parameter
is shown in Fig. 4.
There are several different scenarios that may arise

near the various absolute stability boundaries in param-
eter space. We begin by conducting a nonlinear analysis
near the cellular absolute stability boundary Γ = Γs,
which closely depends on µT . We divide our analysis
into subsections, that depend on the closeness of µT to
the oscillatory absolute stability boundary.

V. NONLINEAR CELLULAR GROWTH -

REGIME I

A. Cellular growth away from critical attachment

kinetics

In this section, we investigate the nonlinear evolution
of the deformed solid-liquid interface near the cellular
absolute stability boundary Γ = Γs, such that µT−µTS =
O(1) as Γ → Γs.
If we define the difference between Γ and Γs by a small

parameter ǫ, then the appropriate scalings near the ab-
solute cellular stability boundary for µT 6= µTS are

Γ = Γs − ǫ, α = ǫ1/2ᾱ,

σ =ǫ2σ̄, M−1 =ǫ2M̄−1, (24 a− d)

under which, the dispersion relation becomes

M̄−1 = ᾱ2 − Γs (2β + kE + 1)

β + kE
ᾱ4 + (µTS − µT )σ̄, (25)

at leading order. The scaling is consistent with that used
by Brattkus & Davis [4] apart from the scaling for σ,
chosen in order to balance the effects of disequilibrium.

(a)

(b)

FIG. 4. Critical wavenumber αoc and inverse morphological
number M−1

oc as a function of the attachment kinetics param-
eter. The absolute stability boundary µT = µTS is shown as
a dashed line.

Specifically, if σ is scaled as in [4], then there is an im-
balance at order ǫ, unless µT is chosen to be exactly its
critical value µTS . This special case (µT = µTS) is exam-
ined in Sec. VB and corresponds directly to the results
of Brattkus & Davis [4].

To examine the nonlinear growth near this absolute
stability boundary (where µT − µTS = O(1) as Γ → Γs),
we define

τ = ǫ2t, (ξ, η) = ǫ1/2(x, y), ζ = z − h. (26a − c)

The last substitution aids in applying boundary condi-
tions at the deformed interface z = h. Under this trans-
formation, the governing equations become

ǫ2
(

∂C

∂τ
− ∂h

∂τ

∂C

∂ζ

)

=ǫ

(

∂2C

∂ζ2
|∇(h)|2 − 2∇h · ∂∇C

∂ζ

− ∂C

∂ζ
∇2h+∇2C

)

+

+
∂2C

∂ζ2
+

∂C

∂ζ
(27)



6

for ζ > 0, and

hǫ2M̄−1 + γ = m

(

C +
1

kE − 1

)

+ 2H (Γs − ǫ)

− 1

kE − 1
− µTVn, (28)

Vn

(

C(1− k)− 1

βVn + 1

)

=

ǫ (∇C − Cζ∇h) · ∇h− Cζ√
ǫ∇h · ∇h+ 1

(29)

at ζ = 0, and

C → 1 as ζ → ∞. (30)

where the normal velocity and mean curvature are given
by

Vn =
1 + ǫ2hτ

√

1 + ǫ|∇h|2
, (31)

and

H̄ =

[

ǫhξξ

(

1 + ǫh2
η

)

− 2ǫ2hηhξhξη+

+ ǫhηη

(

1 + ǫh2
ξ

)

]

·
[

1 + ǫ|∇h|2
]−3/2

, (32)

respectively.
We expand in the small parameter ǫ as follows

C = C0 + ǫC1 + ǫ2C2 + · · · ,
h = h0 + ǫh1 + ǫ2h2 + · · · , (33)

with the normal velocity

Vn = V0 + ǫV1 + ǫ2V2 + · · · , (34)

and the mean curvature

2H̄ = 2H̄1ǫ+ 2H̄2ǫ
2 + · · · , (35)

where

V0 = 1, V1 = −1

2
|∇h0| 2,

V2 = h0τ +
3

8
|∇h0| 4 −∇h0.∇h1, (35a− c)

and

2H̄1 = ∇2h0,

2H̄2 = ∇2h1 −
1

2
|∇h0| 2∇2h0

− 1

2
∇h0.∇ |∇h0| 2. (36a, b)

The segregation coefficient becomes

k(Vn) =
kE + βVn

1 + βVn
= k0 + ǫk1 + ǫ2k2 + · · · , (37)

where

k0 =
kE + β

1 + β
, k1 =

(1− kE)β

(1 + β)2
V1,

k2 =
(1− kE)β

(1 + β)3
(

(1 + β)V2 − βV 2
1

)

, (38a− c)

and the liquidus slope becomes

m(Vn) = m0 + ǫm1 + ǫ2m2 + · · · , (39)

where

m0 =
k0(1− L)− 1

kE − 1
, (40)

m1 =
Lk1

1− kE
, (41)

m2 =
k21 + 2Lk0k2
2k0(1− kE)

. (42)

1. Zeroth order

At zeroth order in ǫ, the system becomes

C0ζ + C0ζζ = 0, (43)

subject to the boundary conditions

γ = C0m0 +
m0

kE − 1
− 1

kE − 1
− µT (44)

and

− 1

β + 1
+ C0 (1− k0) = −C0ζ (45)

at ζ = 0, and

C0 → 1 as ζ → ∞. (46)

The solution is

C0 = 1− δe−ζ . (47)

2. First order

At order ǫ, the system reduces to

C1ζ + C1ζζ = ∇2h0C0,ζ − C0ζζ |∇h0| 2

+ 2∇h0 · ∇C0,ζ −∇2C0, (48)

for ζ > 0, subject to

2H̄1Γs + C1m0 + C0m1 +
m1

kE − 1
− µTV1 = 0, (49)



7

and

−C1,ζ −
1

2
δ |∇h0| 2 = C1 (1− k0)− (1− δ)k1+

−V1

[

(1− δ) (k0 − 1) +
1

(β + 1)2

]

, (50)

at ζ = 0, and

C1 → 0 as ζ → ∞. (51)

Solutions exist only if

h0 = const and C1 = 0. (52)

3. Second order

At order ǫ2, the system reduces to

C2ζ + C2ζζ = (δ∇2h1)e
−ζ (53)

for ζ > 0, subject to

h0M̄−1 = 2H̄2Γs − 2H̄1 + C2m0 + C1m1

+C0m2 +
m2

kE − 1
− µTV2, (54)

and

−C2ζ = C2 (1− k0)− (1− δ)k2

− V2

(

(1 − δ) (k0 − 1) +
1

(β + 1)2

)

, (55)

at ζ = 0, and the decay condition

C2 → 0 as ζ → ∞. (56)

The solution is given by

C2 = −δ

(

ζ +
1

k0

)

e−ζ∇2h1. (57)

4. Third order

Finally, at order ǫ3, the system reduces to

C3ζ + C3ζζ = δe−ζ∇2h2 + δe−ζ |∇h1| 2

− δe−ζh1τ −∇2C2, (58)

for ζ > 0,

h1M̄−1 = 2H̄3Γs − 2H̄2 + C3m0 + C2m1

+ C1m2 + C0k3 +
k3

kE − 1
− µTV3, (59)

and

−C3,ζ −
1

2
δ |∇h1| 2 = C3 (1− k0)− (1− δ)k3

− V3

(

(β + 1)2(1− δ) (k0 − 1) + 1
)

(β + 1)2
, (60)

at ζ = 0, and

C3 → 0 as ζ → ∞. (61)

Solutions exist only if the system obeys the following or-
thogonality condition:

h1M̄−1 = (µT − µTS)

(

1

2
|∇h1|2 −

∂h1

∂τ

)

−∇2h1 −
(

2 +
1− kE
kE + β

)

Γs∇4h1. (62)

This is an evolution for the cellular growth of the solid-
liquid interface near absolute stability. In contrast to the
long-wave evolution equation presented by Brattkus &
Davis [4], here the departure from critical attachment ki-
netics is significant and determines the long-time dynam-
ics. Spatially uniform disturbances grow exponentially if
µT < µTS and decay if µT > µTS . That is, the long-time
behavior of uniform disturbances depends on whether the
system admits oscillatory modes.
The steady, spatially independent version of this equa-

tion is given by

h1M̄−1 =
1

2
(µT − µTS) (h

′

1)
2 − h′′

1

−
(

2 +
1− kE
kE + β

)

Γsh
′′′′

1 , (63)

the solution of which is shown in Fig. 5 for various values
of β, M̄, and µT at the critical wavelength ξ = ξa. Here,
we have imposed periodic boundary conditions. Large β,
M̄, and µT give rise to deeper deformations and stronger
asymmetries.
We note that unlike in equilibrium, the full time- and

space-dependent evolution equation does not involve in-
terfacial acceleration, which, instead, appears at higher
orders because the effects of attachment kinetics are more
significant, unless |µT − µTS | is small. Second-order
derivatives in time appear closer to the oscillatory abso-
lute stability boundary, that is, in the special case when
µT = µTS and in a distinguished limit in which both
Γ − Γs and µT − µTS are small. The evolution equa-
tion in the case in which µT = µTS , examined in Sec.
VB, exhibits interfacial acceleration, and is more closely
linked to the results of Brattkus & Davis [4]. Keeping this
higher-order contribution results in the following modifi-
cation to the evolution equation

h1M̄−1 = (µT − µTS)

(

1

2
|∇h1|2 −

∂h1

∂τ

)

−∇2h1 −
(

2 +
1− kE
kE + β

)

Γs∇4h1

− ǫ2Γs
kE + 2β

kE + β
h1ττ + r(h1, h2, ǫ), (64)

where r(h1, h2, ǫ) is a residual function independent of
h1ττ . The spatially uniform version of this equation for
negligible r gives oscillatory solutions, indicating that
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(a)

(b)

(c)

FIG. 5. The steady deformation of the solid-liquid interface in
one horizontal dimension near the cellular absolute stability
limit Γ = Γs, when µT is bounded away from its critical value
µTS , for varying (a) β, (b) M̄, and (c) µT . The horizontal
axis is normalized by the critical wavelength ξa (which varies
as a function of the physical parameters) Here, kE = 0.8,
and Γ = 1. In (b) and (c), β = 0.9 is fixed. In (a) and (b)
µT = 0.05 is fixed. In (a) and (c), M̄ = 5 is fixed.

the amplitude of the solutions h1 evolves additionally on
a slow time scale as a result of the oscillatory instabilities
still present in this regime.

B. Cellular growth at critical attachment kinetics

When the attachment kinetics parameter reaches its
critical value µT = µTS , the oscillatory instability no
longer appears and there are fundamentally different dy-
namics of the cellular branch near absolute stability. In
particular, the scalings

Γ = Γs − ǫ, α = ǫ1/2ᾱ, σ = ǫσ̄,

M−1 = ǫ2M̄−1, µT = µTS , (64a− e)

used by Brattkus & Davis [4] are appropriate in this case.
We define the transformation

τ = ǫt, (ξ, η) = ǫ1/2(x, y), ζ = z − h, (65a − c)

under which the system reduces to

ǫ (Cτ − Cζhτ ) = ǫ

(

Cζζ |∇h|2 − Cζ∇2h− 2∇h.∇Cζ

+∇2C

)

+ Cζ + Cζζ , (66)

for ζ > 0, subject to

ǫ2hM̄−1 + γ = 2H̄ (Γs − ǫ)− µTSV̄n − 1

kE − 1

+m

(

C +
1

kE − 1

)

, (67)

and

(

C(1− k)− 1

βV̄n + 1

)

V̄n =

[

ǫ (∇C − Cζ∇h) .∇h− Cζ

][

1 + ǫ |∇h|2
]

−1/2

, (68)

at ζ = 0, and

C → 1 as ζ → ∞, (69)

where

V̄n =
ǫhτ + 1

√

ǫ |∇h|2 + 1
, (70)

and

2H̄ =
[

ǫhξξ

(

ǫh2
η + 1

)

− 2ǫ2hηhξhξη

+ ǫhηη

(

ǫh2
ξ + 1

)

] [

ǫ |∇h|2 + 1
]

−3/2

. (71)

We expand in powers of ǫ as

C = C0 + ǫC1 + ǫ2C2 + · · · ,
h = h0 + ǫh1 + ǫ2h2 + · · · . (72a, b)
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FIG. 6. Steady deflection of the solid-liquid interface in one
horizontal dimension for various values of β, when µT = µTS

and Γs−Γ = ǫ ≪ 1. The solution for β = 0 obtained by Brat-
tkus & Davis [4] is shown as a dashed curve. The horizontal
axis is normalized by the critical wavelength ra.

1. Zeroth order

At zeroth order in ǫ, the system reduces to

C0ζ + C0ζζ = 0, (73)

for ζ > 0,

γ = C0m0 +
m0

kE − 1
− 1

kE − 1
− µTS , (74)

and

− 1

β + 1
+ C0 (1− k0) = −C0ζ , (75)

at ζ = 0, and

C0 → 1 as ζ → ∞, (76)

which has the solution

C0 = 1− δe−ζ , (77)

as before.

2. First order

At first order in ǫ, the system reduces to

−δe−ζh0τ = C1ζ+C1ζζ−δe−ζ∇2h0−δe−ζ |∇h0| 2, (78)

for ζ > 0,

0 = 2H̄1Γs + C1m0 + C0m1 +
m1

kE − 1
− V1µTS , (79)

and

−C1ζ −
1

2
δ |∇h0| 2 = C1 (1− k0)− (1− δ)k1

−V1

(

(1− δ) (k0 − 1) +
1

(β + 1)2

)

, (80)

at ζ = 0, and

C1 → 0 as ζ → ∞, (81)

which has the solution

C1 = e−ζ
[

a− δζ
(

−h0,τ +∇2 (h0) + |∇h0| 2
)]

, (82)

where

a =
kE

2 (β + kE) 2

(

2βh0τ − 2(β + 1)∇2h0

− β |∇h0| 2
)

. (83)

3. Second order

At second order in ǫ, the system reduces to

−C1ζh0τ − C0ζh1τ + C1τ = C2ζ + C2ζζ − C1ζ∇2h0

− C0ζ∇2h1 + C1ζζ |∇h0| 2 − 2∇h0 · ∇C1ζ

− 2∇h1 · ∇C0ζ + 2C0ζζ∇h0 · ∇h1 +∇2C1, (84)

for ζ > 0,

h0M̄−1 = 2H̄2Γs − 2H̄1 + am1 −
bm0

2

+
m2

kE − 1
+ (1− δ)m2 − V2µTS , (85)

and

−C0k2 − V2

(

C0 (k0 − 1) +
1

(β + 1)2

)

+ C2(1 − k0)

−C1k1 + V1

(

C1 (1− k0)− C0k1

)

+
βV 2

1

(β + 1)3
=

1

2
|∇h0| 2

(

C1,ζ −∇h0 · ∇(C0 − h0C0,ζ)
)

− C2,ζ +∇h1 · ∇(C0 − h0C0,ζ)

+∇h0 · ∇(C1 − h0C1,ζ − h1C0,ζ)

+ C0,ζ

(

∇h0 · ∇h1 −
3

8
|∇h0| 4

)

, (86)

at ζ = 0, and

C2 → 0 as ζ → ∞. (87)

Solutions exist only when the amplitude h0 satisfies
the following evolution equation
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h0M̄−1(kE + β) = −(1 + β)Γs∇h0 · ∇(∇2h0)−
(

1

2
kE + β

)

Γs∇h0 · ∇
(

|∇h0|2
)

+
µTSβ(2 + kE + 3β)

2(1 + β)

∂h0

∂τ
|∇h0|2

− µTSβ(2 + kE + 3β)

2(1 + β)

(

∂h0

∂τ

)2

− (kE + 2β)Γs

(

∂2h0

∂τ2
− ∂

∂τ

(

|∇h0|2
)

)

− (kE + β)∇2h0

+
(

(1− kE)µTS + (kE + 2β)Γs

)

(

∂h0

∂τ
− 1

2
|∇h0|2

)

∇2h0 − (1 + β)Γs(∇2h0)
2 − µTSβ(2 + kE + 3β)

8(1 + β)
|∇h0|4

+ (1 + 2kE + 4β)Γs∇2

(

∂h0

∂τ

)

− (1 + kE + 2β)Γs∇4h0 −
(

kE +
3

2
β

)

Γs∇2
(

|∇h0|2
)

. (88)

This evolution equation reduces to the one obtained by
Brattkus & Davis [4] in the case of interfacial equilibrium
(β = 0, µTS = 0). A direct comparison against the equi-
librium results of Brattkus & Davis [4] is shown in Fig. 6,
where disequilibrium effects are seen to favor deep-rooted
solutions.

VI. NONLINEAR OSCILLATORY GROWTH -

REGIME II

The other absolute stability boundary involves attach-
ment kinetics, which acts to suppress oscillatory insta-
bilities. This branch is present only in disequilibrium
(β 6= 0). The appropriate scaling is given by

µT = µTS − ǫ2, α = ǫᾱ,

σ = ǫσ̄, M−1 = ǫ2M̄−1, (89a− d)

under which, the dispersion relation reduces to

M̄−1 = −σ̄2Γs
(2β + kE)

β + kE
+ ᾱ2 (Γs − Γ) . (90)

We use the transformation

τ = ǫt, (ξ, η) = ǫ1/2(x, y), ζ = z − h, (91a − c)

under which, the rescaled governing equations are given
by

ǫ (Cτ − Cζhτ ) = ǫ2
(

Cζζ |∇h|2 − 2∇h · ∇Cζ

− Cζ∇2h+∇2C

)

+ Cζ + Cζζ , (92)

for ζ > 0,

hǫ2M̄−1 + γ = 2ΓH̄ − V̄n

(

µTS − ǫ2
)

− 1

kE − 1

+m

(

C +
1

kE − 1

)

, (93)

and

V̄n

(

C(1− k)− 1

βV̄n + 1

)

=
[

ǫ2 (∇C − Cζ∇h) .∇h

−Cζ

][

ǫ2 |∇h|2 + 1
]

−1/2

,

(94)

at ζ = 0, and the decay condition

C → ∞ as ζ → ∞. (95)

The normal velocity rescales to

V̄n =
ǫhτ + 1

√

ǫ2 |∇h|2 + 1
, (96)

and the rescaled mean curvature is given by

2H̄ =
[

ǫ2hξξ

(

ǫ2h2
η + 1

)

− 2ǫ4hηhξhξη

+ ǫ2hηη

(

ǫ2h2
ξ + 1

)

][

ǫ2 |∇h|2 + 1
]

−3/2

. (97)

We seek solutions in powers of ǫ as follows

C = C0 + ǫC1 + ǫ2C2 + · · · ,
h = h0 + ǫh1 + ǫ2h2 + · · · . (98a, b)

Expansions for the normal velocity and mean curvature
are given by

V̄n = V0 + V1ǫ+ V2ǫ
2 + · · · , (99)

2H̄ = 2H1ǫ+ 2H2ǫ
2 + · · · , (100)

where

V0 = 1, V1 = h0τ ,

V2 = h1τ − 1

2
|∇h0| 2, (101a− c)

and

2H1 = 0, 2H2 = ∇2h0. (102a, b)
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A. Zeroth order

At zeroth order in ǫ, the problem becomes

C0ζ + C0ζζ = 0 (103)

for ζ > 0,

γ0 = C0m0 +
m0

kE − 1
− 1

kE − 1
− µTS (104)

at ζ = 0, where γ0 is determined by

γ = γ0 + ǫ2γ2, (105)

that is,

γ0 =
β

(1− kE) (β + kE)
− kEL

(kE − 1) 2
− µTS ,

γ2 = 1, (106a, b)

and the remaining two boundary conditions as before.
The solution is given by

C0 = 1− δe−ζ . (107)

B. First order

At first order in ǫ, the problem becomes

C1ζ + C1ζζ = −δe−ζh0,τ , (108)

for ζ > 0,

2ΓH̄1 + C1m0 + C0m1 +
m1

kE − 1
− V1µTS = 0, (109)

and

−C1ζ =− V1

(

C0 (k0 − 1) +
1

(β + 1)2

)

+ C1 (1− k0)− C0k1, (110)

at ζ = 0, as well as the usual decay condition. The
solution is given by

C1 =

(

δζ +
βkE

(β + kE) 2

)

h0τe
−ζ . (111)

C. Second order

At second order in ǫ, the problem reduces to

C2ζ + C2ζζ = e−ζ

[

δ∇2h0 + δ |∇h0| 2 − δh1τ

+ h2
0τ

(

δζ − δ +
βkE

(β + kE) 2

)

+ h0ττ

(

δζ +
βkE

(β + kE) 2

)]

, (112)

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

5

ξ

h
0

τ increasing

FIG. 7. The time-dependent position of the solid-liquid inter-
face near the oscillatory absolute stability limit for β = 0.5
for several points in time, normalized by the wavelength. The
solutions were obtained by numerically solving the time- and
space-dependent evolution equation corresponding to the os-
cillatory absolute stability limit.

for ζ > 0,

h0

M̄ = 2ΓH̄2 +m2

(

C0 +
1

kE − 1

)

+ C2m0 + C1m1 − V2µTS, (113)

and

−C2,ζ = h0,τ

(

− βk1kE
(β + kE) 2

− β (k0 − 1)kEV1

(β + kE) 2

)

+ C2 (1− k0) + (δ − 1)k2 +
1

2
δ |∇h0| 2

− V2

(

1− (β + 1)2(δ − 1) (k0 − 1)
)

(β + 1)2

+ (δ − 1)k1V1 +
βV 2

1

(β + 1)3
, (114)

at ζ = 0, and

C2 → 0 as ζ → ∞. (115)

Solutions exist only when the amplitude h0 obeys the
evolution equation

h0M̄−1 =− kEβ
2(2 + kE + 3β)

2(1 + β)2(kE + β)3

(

∂h0

∂τ

)2

− Γs
kE + 2β

kE + β

(

∂2h0

∂τ2

)

+ (Γ− Γs)∇2h0. (116)

The steady, one dimensional version of this equation
reduces to

h0 = −M̄(Γs − Γ)h′′

0 , (117)

which has sinusoidal solutions of wavelength

2π/
√

M̄(Γs − Γ) for Γ < Γs. For Γ > Γs, cellular
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(a)

(b)

FIG. 8. (a) Solutions to (120) for varying values of A. The
limiting solution for A = 0.5 is shown as a dashed curve. The
associated frequencies as a function of A are shown in panel
(b).

FIG. 9. Phase diagram for uniform oscillations for varying
values of A.

instabilities are completely suppressed and no periodic
solutions exist.

The time-dependence introduces nonlinearity into the
problem; as time progresses nonlinear effects become sig-
nificant. Numerical solutions to the time-dependent par-

tial differential equation for the progression of the de-
flection of the solid-liquid interface are shown in Fig. 8,
where this effect is clearly seen. Strong asymmetries are
seen to develop with time between the root and tip re-
gions. The troughs sharply deepen with time.
This behavior can be understood by considering the

spacially uniform version of the oscillatory evolution
equation. Rescaling as

h0 = hsf(T ), T = Tsτ, (118a, b)

where

hs =
2(β + 1) (2β + kE) Γs

β (3β + kE + 2)µTS
,

Ts =

(

β + kE
(kE + 2β)M̄Γs

)1/2

, (119a, b)

leads to

d2f

dT 2
+

(

df

dT

)2

+ f = 0, (120)

As it is always positive, the nonlinear term increases the
amplitude of the oscillations for f ′ < 0 and decreases it
for f ′ > 0. Solutions, therefore, sharpen near troughs.
This is reflected in the time- and space-dependent solu-
tions of the full oscillatory evolution equation. Ampli-
tudes near the troughs grow faster than near the peaks,
leading to the strong asymmetry that develops with time.
Writing u = f , v = df/dT , we note that (120) reduces

to the simple form

(

1

2

d

du
+ 1

)

v2 + u = 0. (121)

Integrating once and reverting to the original variables
gives the first order differential equation

(

df

dT

)2

=

(

A− 1

2

)

e2(A−f) −
(

f − 1

2

)

, (122)

where A is a constant.
The system (120) has one equilibrium point, f = 0,

which is marginally stable. Small displacements lead to
oscillatory motion. Figure 8a shows solutions to (120)
subject to the initial conditions f(0) = A, f ′(0) = 0,
for varying values of A. The frequency of the oscilla-
tions is amplitude dependent. Larger amplitudes lead to
deeper roots and smaller frequencies as seen in Fig. 8b.
Small amplitudes lead to sinusoidal disturbances of pe-
riod 2π. Solutions are periodic for A < 0.5, non-periodic
for A ≥ 0.5 and converge towards the limiting solution
f(T ) = 1/2 − T 2/4 (shown as a dashed curve in Fig.
8a) as A → 0.5. This can be used in practice to tune
the appearance of bands by tuning the initial system to
a certain amplitude. Then, periodic bands will persist,
with a size specified by the initial amplitude of the dis-
turbance. Sample phase-plane trajectories are shown in
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FIG. 10. hs as a function of β for various values of kE.

Fig. 9. Small amplitude oscillations correspond to cir-
cular trajectories centered at the origin in the phase di-
agram. On the other hand, large amplitude oscillations
are no longer well approximated by linearised theory and
favor deepening troughs.
The value of M̄ influences only the period of the os-

cillations, as seen by the scaling (123b). The period in-
creases with increasing M̄. The value of M̄ does not
affect the critical amplitude, which depends only on β
and kE through the scaling (123a) for hs, shown in Fig.
10. The critical amplitude is smallest for β = O(1), and
becomes large for small and large β. Nonperiodic be-
haviour is therefore most likely to occur for β = O(1).
In contrast, in the equilibrium limit (β = 0), the critical
amplitude is infinite, which corresponds to periodic be-
haviour for all amplitudes. More precisely, if we rescale
to an appropriate form for small β as

h0 = h̄sf̄(T ), T = Tsτ, (123a, b)

where

h̄s = β2hs, (124)

then h̄s = O(1) as β → 0 and the spacially uniform
version of the oscillatory evolution equation becomes

d2f̄

dT 2
+

(

β
df̄

dT

)2

+ f̄ = 0. (125)

In the limit β = 0, this equation yields periodic solu-
tions with unit angular frequency, for all amplitudes as
expected.

VII. A DISTINGUISHED LIMIT - REGIME III

A distinguished limit arises in which both Γs − Γ and
µTS − µT are small. The same scalings as in Sec. VB
are used, except that µT = µTS − ǫν and Γ = Γs − ǫρ
where ν, ρ = O(1) as ǫ → 0, in this scenario. Explicitly,

Γ = Γs − ǫρ, α = ǫ1/2ᾱ, σ = ǫσ̄,

M−1 = ǫ2M̄−1, µT = µTS − ǫν, (126a− e)

under which, the dispersion relation becomes

M̄−1 = ᾱ2σ̄

(

2kE − 1

β + kE
− 4

)

Γs + ρᾱ2

+ ᾱ4

(

kE − 1

β + kE
− 2

)

Γs

+ σ̄2

(

kE
β + kE

− 2

)

Γs + σ̄ν, (127)

at leading order. The governing equations remain un-
changed except for the boundary condition (8), which
becomes

hǫ2

M̄ + γ0 + γ1ǫ = 2H̄ (Γs − ǫρ)− V̄n (µTS − ǫν)

+m

(

C +
1

kE − 1

)

− 1

kE − 1
, (128)

where γ0 remains as before but γ1 = ν. The difference
occurs at second order in ǫ. The boundary condition
reduces to

h0M̄−1 = 2H̄2Γs − 2ρH̄1 + C2m0 + C1m1

+ C0m2 +
m2

kE − 1
− V2µTS + V1ν. (129)

Following the details laid out in Sec. VB, we find that the
solid-liquid interface must satisfy the following evolution
equation

h0M̄−1(kE + β) = −(1 + β)Γs∇h0 · ∇
(

∇2h0

)

−
(

1

2
kE + β

)

Γs∇h0 · ∇
(

|∇h0|2
)

+
µTSβ(2 + kE + 3β)

2(1 + β)

∂h0

∂τ
|∇h0|2

− µTSβ(2 + kE + 3β)

2(1 + β)

(

∂h0

∂τ

)2

− (kE + 2β)Γs

(

∂2h0

∂τ2
− ∂

∂τ

(

|∇h0|2
)

)

+ ν (β + kE)

(

∂h0

∂τ
− 1

2
|∇h0| 2

)

+
(

(1− kE)µTS + (kE + 2β)Γs

)

(

∂h0

∂τ
− 1

2
|∇h0|2

)

∇2h0 − (1 + β)Γs(∇2h0)
2 − µTSβ(2 + kE + 3β)

8(1 + β)
|∇h0|4

+ (1 + 2kE + 4β)Γs∇2

(

∂h0

∂τ

)

− (1 + kE + 2β)Γs∇4h0 −
(

kE +
3

2
β

)

Γs∇2
(

|∇h0|2
)

− (kE + β)∇2h0. (130)
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(a)

(b)

FIG. 11. Steady deflection of the solid-liquid interface in one
horizontal dimension for various values of (a) R and (b) θ in
the distinguished limit, in which both Γs − Γ and µTS − µT

are small. The horizontal axis is normalized by the critical
wavelength.

This evolution equation reduces to the one presented in
Sec. VB in the limit ν → 0.
The steady, one-dimensional version of this equation

reduces to

(β + kE)
(

h0M̄−1 +
ν

2
(h′

0)
2 + ρh′′

0

)

+ (2β + kE + 1)Γsh0
(4)

+
1

2

(

3 (2β + kE) Γs + (1− kE)µTS

)

(h′

0)
2h′′

0

+
β (3β + kE + 2)

8(β + 1)
µTS(h

′

0)
4

+ (4β + 2kE + 1)Γs

(

h0
(3)h′

0 + (h′′

0)
2
)

= 0. (131)

We adopt the scalings

f =
1

2kE + 1
H0, r =

k
3/2
E

2kE + 1
ξ, (132a, b)

and transformation

ν̄ =
1

1 + 2kE
, µ̄−1 =

(2kE + 1)2

k3E
M̄−1, (133a, b)

FIG. 12. Steady deflection of the solid-liquid interface in one
horizontal dimension for various values of µ̄ in the distin-
guished limit, in which both Γs − Γ and µTS − µT are small.
The horizontal axis is normalized by the wavelength.

used by Brattkus & Davis [4]. Equation (131) then be-
comes

f

µ̄
+R cos θfrr+Γ̄S

(

f2
rr + frfrrr

)

+
R sin θ

2ν̄
f2
r − µ̄TSf

4
r

+
ν̄ (4βν̄ + ν̄ + 1)

8βν̄ + 2
Γ̄Sfrrrr +

(

3

4

(

1

ν̄
− 1

4βν̄ + 1

)

Γ̄S

− 4ν̄(β + 1) (3ν̄ − 1)

β ((6β + 3)ν̄ + 1)
µ̄TS

)

f2
r frr = 0, (134)

where

Γ̄S =
k3E (4β + 2kE + 1)Γs

(2kE + 1) (β + kE)
,

µ̄TS = −βk3E (2kE + 1) (3β + kE + 2)µTS

8(β + 1) (β + kE)
, (135a, b)

and

R =
√

ρ2 + ν2, θ = tan−1

(

ν

ρ

)

, (135a, b)

(see Fig. 1). Its solution is shown in Figs. 6, 11 and
12 for various values of β, R, θ and µ̄. Here, we have
imposed periodic boundary conditions using the critical
wavelength r = ra. Increasing β, R, θ and µ̄ is seen to
give deeper rooted solutions.

VIII. CONCLUSIONS

We have conducted long-wave nonlinear stability anal-
yses near two absolute stability boundaries in five sce-
narios that appear depending on the surface energy and
attachment kinetics. In each of these scenarios, we de-
rive corresponding nonlinear evolution equations that de-
scribe the large deformations of solid-liquid interfaces
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at disequilibrium and solve them numerically for vari-
ous disequilibrium conditions. The two absolute stabil-
ity boundaries involve the appearance of either cellular
or oscillatory modes.

An interesting aspect that we observe in our numeri-
cal solutions stems from the appearance of the oscillatory
absolute stability boundary and its intricate interaction
with the cellular dynamics. The coupling between these
two branches lead to a breadth of different scenarios. A
common theme between all of these is the sharpening of
asymmetries between peaks and troughs for larger dis-
equilibrium and larger morphological numbers, charac-
terised by deepening troughs.

The first regime that we study, Regime I, involves the
appearance of cellular modes near the cellular absolute
stability boundary Γ = Γs. The dynamics in this regime
are dominated by the departure from critical attachment
kinetics. In particular, the dynamics depend on whether
or not the oscillatory modes are present.

We have also examined nonlinear dynamics near the
oscillatory absolute stability boundary. This region is re-
ferred to as Regime II. We find that both oscillations
and monotonic growth may emerge and that there is a
single combination of parameters as well as the value of
the initial amplitude that determines which one of these
occurs. Interestingly, the asymmetries near the oscilla-
tory absolute stability boundary rapidly sharpen with
time and feature sharply deepening troughs.

Finally, Regime III, involves states close to both ab-
solute stability boundaries, and may admit both cellular

and oscillatory growth. For this regime, we first derive
an evolution equation when µT = µTS and Γ−Γs small,
and then generalise it to a distinguished limit in which
both µT − µTS and Γ− Γs are nonzero and small. This
regime is one in which the dynamics are qualitatively
similar to those reported by Brattkus & Davis [4] and
our nonlinear evolution equations in these two scenar-
ios reduce to that of the equilibrium study of [4] exactly
in the limit of zero disequilibrium and zero attachment
kinetics. We find that the effects of disequilibrium intro-
duce stronger asymmetries in the disturbances, including
deepening roots.
Physically, the effects of disequilibrium and attach-

ment kinetics may be seen to give rise to spatial struc-
ture and speed up the transition to dendritic growth.
All of the regimes depicted in Fig. 1 are characterised
by a sharpening of the disturbances and the appearance
of time-dependence, which is an expected feature of the
solidification process. The dynamics depend on the re-
gion of parameter space and the interplay between the
two modes of instability. The cellular modes of Regime I
sharpen and spatial structure emerges in the solute bands
of Regime II. A combination of these is observed for the
disturbances of Regime III, close to both absolute sta-
bility boundaries.
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