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A thermal colloid suspended in a liquid will transition from a short time ballistic motion to a
long time diffusive motion. However, the transition between ballistic and diffusive motion is highly
dependent on the properties and structure of the particular liquid. We directly observe a free floating
tracer particle’s ballistic motion and its transition to the long time regime in both a Newtonian fluid
and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid
and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in
a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide
direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the
motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical
asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe
a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.

I. INTRODUCTION

At very short time and length scales the diffusive mo-
tion of a Brownian particle breaks down into a series of
individual ballistic flights. The functional form of this
transition is controlled by the microscopic structure and
behavior of the fluid. The microscopic time and length
scales for the ballistic motion are so small that direct
measurements have only recently become possible [1–4].
These experiments have used optical traps to confine a
test particle within a harmonic well, allowing a high pre-
cision measurement of the short time motion but at the
cost of a loss of information about the crossover to longer
time behavior that is indicative of the microscopic struc-
ture of the fluid. Furthermore, laser traps by their nature
create a harmonic potential energy well for the motion
of the particle and thus function similarly to an elastic
term in a viscoelastic fluid. As such, it can be difficult
to deconvolve the effect of the trap from the effects of
the elastic component of the fluid. Indeed, all studies of
viscoelastic fluids known to the authors don’t address the
ballistic regime. Here we avoid the limitations and con-
taminations caused by the use of a laser trap and present
direct measurements of the full transition away from bal-
listic motion for a freely moving colloid suspended in sim-
ple Newtonian and viscoelastic Maxwell fluids. These
measurements are achieved in an interaction free man-
ner using a high speed camera, intense illumination, and
an accurate tracking algorithm [5]. These measurements
allows us to unambiguously distinguish between micro-
scopic models for dense fluid thermal motion [6–15] and
provide a hithertofore impossible glimpse into the fun-
damental behavior of thermal fluids. In a simple New-
tonian fluid, our measurement is in close correspondence
with analytic predictions. By fitting our data we can di-
rectly measure the constants of motion as well as a first
principles measurement of the temperature of the fluid.
Having proven the validity of this method, we experimen-
tally examine the motion of a single particle in a Maxwell
fluid as it transitions from ballistic to elastically trapped

to diffusive motion, the first observation of this kind. We
compare these results to existing microscopic models for
Maxwell fluids [12, 15–17], and find significant discrep-
ancies between the model predictions and the observed
behavior.

An early effort to model the balistic diffusive transition
was performed with the ideal gas approximation [6, 7]
given by:
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Here γ is the Stokes value (6πrη), kB the Boltzman con-
stant, T the temperature, η the viscosity, r the tracer
radius and m is the mass of the colloid. A more ac-
curate model for dense fluids, motivated by early com-
puter simulations [18, 19], was achieved by adding an
effective mass term and a memory term to the ideal gas
model [8, 10]. The effective mass term models the fric-
tionally bound fluid that is attached to the particle and
the memory term models the inertial interaction of the
particle with nearby moving fluid [20]. At sufficiently
short timescales and close to the speed of sound in the
fluid this model breaks down and is replaced with the
simple ideal gas model. The memory term in the dense
fluid model, comes from the entrained fluid in a dense
sytem which slows the change of direction.

These modifications to the Langevin equation were an-
alytically solved [11] under the assumptions that the fluid
is viscous and incompressible, the Reynolds number is
low, and the test particle is a hard sphere [9, 21]. The
predicted MSD is given by:
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For simplicity’s sake we define constants z, a, and b as

z = 6πr2
√
ρη (3a)

a =
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where M is the effective mass which is m+ 1
2mf , where

mf = 4
3πr

3ρ is the the mass of the fluid displaced by
the colloid, and ρ is the density of the fluid. A sample
MSD is plotted in figure 2. The dense fluid model and
the ideal gas model both share similar asymptotic forms.
At short times, known as the ballistic regime, the MSD
asymptotes to (2kBT/M)t2. At long times, the diffusive
regime, the MSD scales as (4kBT/γ)t. The dense fluid
MSD differs from the ideal gas MSD in two salient ways:
1) It gives rise to a slower ballistic velocity, caused by the
increased effective mass of the particle. 2) It has a much
gentler crossover between ballistic and diffusive motion,
caused by the inertial memory of the liquid.

Non-Newtonian fluids, however, have much more com-
plicated Langevin equations [12, 15] which have not been
explored as intensely due to the lack of experimental data
at the shortest length and time scales. One of the sim-
plest non-Newtonian fluids is a Maxwell fluid, character-
ized by a single terminal relaxation time between spring
like and viscous like behavior. This requires the addition
of a decaying spring term to the Langevin equation. This
additional term results in an intermediate plateau regime
in the MSD corresponding to the behavior of a ther-
mal spring. While analytical solutions for the Maxwell
fluid are lacking, predictions have been made about the
asymptotic behavior in the three regimes: ballistic mo-
tion, elastically trapped motion, and finally diffusive mo-
tion. The short-time ballistic behavior is predicted to
asymptote to (4kBT/m)t2, the elastic trap should have a
constant MSD of 2kBT/πrG0, and the long-time diffusive
motion is predicted to have an asymptote of (4kBT/γ)t
[12]. Here G0 is the plateau modulus, a commonly mea-
sured rheological value which measures the amplitude of
the storage and loss modulii [22]. We use our technique
to test the rheological predictions when applied to a sin-
gle unconstrained particle in such a fluid moving between
ballistic and diffusive regimes.

II. METHODS

In this experiment, we used polystyrene hard spheres
with a radius of 21.8 µm as our tracer particle.
Polystyrene was chosen because it is easily density
matched to water using NaCl with only minimal, and
known, changes to the viscosity. The size of the parti-
cle, larger than those in optical trap experiments, was
chosen because the tracking precision as well as the ideal
gas transition time and length increase with increasing
radius. We chose to use water as our experimental liquid
because of its ubiquity in experiments and its relatively
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FIG. 1. A single colloid suspended in water viewed through
the microscope. The path the particle travels for the next 2
seconds is shown in blue.

low viscosity. For our setup, the Reynolds number is
2.4 × 10−9. This system fulfills all of the underlying as-
sumptions required by the dense fluid equation. When
selecting a Maxwell fluid we chose to use a solution of
Cetyltrimethylammonium chloride (CTAC) mixed with
water. This mixture has been found to exhibit a Maxwell
fluid behavior caused by worm-like micelles [13, 23] and is
a commonly studied Maxwell fluid. The micelles formed
produce a network within the fluid. This network, acting
together, changes the properties of the supporting fluid.
Because the test particle we use is larger than the mic-
celles it will probe the properties of the complex fluid
rather than solely those of the intervening fluid.

Test particles were placed into a deionized water mix-
ture at 5×10−3 % w/v of colloid. The colloids are slightly
denser than water, so NaCl was added to density match
the system at a measured value of 1.06× 103 kg/m3. Af-
ter sonicating and degassing the colloid-water solution,
it was placed in a Fastwell silicon spacer cavity between
a slide and a cover slip. The chamber was sealed with
vacuum grease to ensure that air bubbles did not form.
The silicon spacer had a width of 2.4 mm and circular
void with a radius of 5 mm allowing the colloids to be
imaged far from wall effects. The slides were cleaned
with piranha solution and dried with nitrogen gas, which
removed any coatings on the slides.

We created a Maxwell fluid using a solution of CTAC
at 1% by weight with water with the addition of 0.12
M of NaSal to facilitate the formation of micelles. We
directly measured the plateau modulus of this solution
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to be 5.72 Pa using an angular frequency sweep from 62
- 0.062 rad/s at a constant displacement of 0.18 mrad
(TA Instruments AR-2000ex rheometer, with a 60mm
1.025◦ cone plate). Our fluid had a density of 1.055×103

kg/m3, slightly lower than the average density of the
beads. However, the density is close enough that beads
did not fall out of suspension until well after all the mea-
surements were complete. The same test particles were
added at a concentration of 2.5 × 10−3 % w/v. When
preparing samples, we used a process almost identical
to the one for water. The major difference was that
the sample was not sonicated ahead of being added to
the Fastwell because the fluid solidified when exposed to
high frequency agitation. Instead, the sample was slowly
mixed using a low frequency mixer.

All data was collected on a Nikon TE2000s micro-
scope on a floating stage optical table in a climate con-
trolled room. Illumination was provided by a 500mW red
LED (Thorlabs LED635L) shining through the micro-
scope condenser. In between the LED and sample a neu-
tral density filter on a swivel mount was added to allow
initial setup to be done without excessive local heating
of the sample. The sample was encased in a small card-
board box for isolation from acoustic vibrations. Images
were gathered through a 50x lens (Nikon LU plan ELWD
50x/0.55 B inf/0 WD 10.1) using a Phantom M310 high
speed camera. Videos were taken at 40,000 fps (T = 25
µs) with an image size of 192x192 pixels and a magnifi-
cation of 0.4µm/pix. When filming a particle all motor-
ized elements on the microscope and camera were turned
off to eliminate small vibrations. Once a particle was
found, filming lasted 2.84 s (113,600 frames) after which
the LED was immediately shut off and the ND filter re-
placed.

We used a radial center tracking algorithm[5] to find
the center of the colloids in progressive frames of the
video. Using a combination of simulations and tracking
test particles which were stuck to the slide, we found that
the algorithm did not exhibit a preferred direction. We
found that the mean position error was about 1.5 nm in
each frame. A representative trace with the first video
frame is shown in figure 1.

Because of the very large number of frames, the preci-
sion of the individual measurement is only a significant
source of error for small measurements. In addition to
the measurement error, the finite nature of our sample
size introduces additional errors for long times. The total
error is at each lag-time τ is calculated as:

σV (τ) =

√
8σ2

pVar(τ)

N(τ)
+

16σ4
p

N(τ)
+

Var(τ)2

Nind(τ)
, (4)

where σV is the standard deviation (STD) of the vari-
ance, σp the STD of the position, N the total number
displacements measured given by (Γ− τ)× f with Γ the
total time and f the frequency, and Nind the number of
independent steps (Γ− τ)/τ .

III. RESULTS

We calculate the mean squared displacement (MSD)
from our measured data as MSD(τ) = 〈‖~x(t+τ)−~x(t)‖2〉
where ~x(t) is the measured position of the particle at time
t, τ is the lag-time between position measurements, and
angle brackets denote a time average. The MSD for a
representative particle is plotted as green squares in fig-
ure 2. This MSD exhibits a small drift at long times,
past about 0.1 s, and a noise floor at very short times.
The drift is likely the result of convective flows within our
sample chamber, driven, perhaps, by local heating of the
sample. However, this drift can be easily removed by cal-
culating the variance of particle position as a function of
lag time as Var(τ) = MSD(τ)−‖〈~x(t+ τ)−~x(t)〉2‖. The
noise floor is caused by photon shot noise in our camera
contributing to uncertainty in the localization of a par-
ticle. We can directly measure this noise by tracking a
particle fixed to a slide and find it to be independent and
identically distributed Gaussian noise with a variance of
approximately 2× 10−18 m2 (inset to figure 2). The pre-
cise value of this noise variance changes from run to run
due to variations in particle size and particle focus (due
to changes in z-position). Because this noise is indepen-
dent and identically distributed for a given measurement
we can simply subtract the noise floor from our measure-
ment to find the true variance of our particle, plotted as
black circles in figure 2.

The plotted variance clearly shows a ballistic regime
below about 10−3 to 10−4 s, a crossover regime up till
about 10−2 s, and a diffusive regime for longer times.
The measured variance fits the dense fluid model exceed-
ingly well over the entire range of measured lag-times as
shown in figure 2. The model depends on four physical
parameters: 1) temperature, 2) particle radius, 3) fluid
density, and 4) fluid viscosity. Of these, we independently
measure the fluid density prior to observation. The fluid
viscosity of salt water is a known function of density and
the temperature [24]. Therefore, we have only two in-
dependent fitting parameters: temperature and particle
radius. To this, we add a third fitting parameter to de-
scribe the magnitude of the noise floor.

We independently fit 18 measurements using 18 differ-
ent particles, shown in figure 3. On average, the particle
radius was found to be 20.5 ± 0.8 µm, within tolerance
of the manufacturer’s quoted radius. The average tem-
perature measured by our fitting was found to be slightly
higher (297 ± 4.5 K) than the measured room tempera-
ture (293 ± 2 K), likely the result of local heating from
the intense illumination. The noise floors for the mea-
surement were found to range from 1.2 × 10−18 m2 to
2.4× 10−18 m2. Thus fit, the dense fluid functional form
is indistinguishable from the data over much of our mea-
sured range. To characterize the agreement, we plot the
residual percentages, and find them to be unbiased and
with error less than 5% over at least two decades of lag
time, as shown in figure 3. At longer times, where drift
and sampling errors increase, the percent error increases
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FIG. 2. The variance of the colloid’s trace, shown in figure 1.
The green squares show the mean squared displacement. The
black dots with the error bars show the variance with the
noise floor subtracted, in this case 2.34 × 10−18 m2. In red is
the fitted Clercx-Schram theoretical prediction for the MSD.
The best fit value for Temperature is 302 K, and for radius 21
µm. We propagate the localization error of the position mea-
surement as well as sampling error through our calculation to
obtain error bars for the plot as described in the supplemen-
tary material. Inset: A histogram of measured positions for
a stranded particle.

as well.

We perform similar experiments in a Maxwell fluid cre-
ated with a solution of CTAC and water as described
above. As in the case with water, we see a minimum
noise floor at short times and a long time drift in the
MSD. The drift in the measurement is removed by us-
ing the variance as described above and the noise floor is
estimated and subtracted as shown in Figure 4 for a rep-
resentative trial. In total 30 independent measurements
were made with this Maxwell fluid.

The plotted variance for a Maxwell fluid has two no-
table features. 1) At short times the motion is clearly
ballistic. The best fit prefactor for the asymptote is how-
ever considerably lower than the one predicted by either
the ideal gas or dense fluid models, corresponding to an
effective mass six times larger than the particles mass or
an entrained region with a radius 39.6µm, compared to
the reported radius of 21.8µm. This increased effective
size of the particle can perhaps be understood as a result
of the fact that the surrounding fluid contains a network
of worm-like micelles. The test particle impinges upon
the network of intertwined micelles and pulls some of
them along thus increasing the particle’s effective mass.
Alternatively, the surface of the particle may actually at-
tract the micelles which would increase the effective mass
as well. However, due to the presence of salt in this solu-
tion any interaction between the particle and the micelles
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FIG. 3. Top: The noise floor adjusted variance for 18 differ-
ent videos. Inset: The fitted temperature, test particle radius,
and noise floor for the different trials. The black line shows the
mean values with a gray standard deviation. Bottom: Resid-
ual percentages showing by what percent the measurement
deviates from the individual fits for each of the corresponding
variance’s shown above.

must neccessarily be small. 2) The variance shows a clear
secondary plateau which is independent of the noise floor.
This plateau is characteristic of thermally damped mo-
tion consistent with a Maxwell fluid’s predicted behavior
for high frequencies. Examining the best fit asymptotes
to the plateau regime, we find an average plateau modu-
lus over all measurements of 16 ± 2 Pa. This is almost a
factor of 3 larger than the rheometer measured value of
5.7 Pa.

The Cole-Cole plot (inset to Figure 4) for this fluid
shows it to be a perfect Maxwell fluid when measured
on a conventional rheometer, however this deviates from
the observed microscopic behavior. These results demon-
strate that at the short time and length scales that our
technique probes, the physics governing this fluid are in
fact significantly more complicated than those of a sim-
ple Maxwell fluid model. The displacement scales probed
with our technique are just under 4 orders of magnitude
smaller than those accessible to a rheometer and the time
scales are two orders of magnitude smaller.
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FIG. 4. The MSD and adjusted variance for a particle mov-
ing in a Maxwell fluid. The black dots show the noise floor
subtracted variance. In this figure the noise floor used is
2.2883 × 10−18 m2. The red lines show the predicted the-
oretical asymptotes [12] for the ballistic (solid) and plateau
(dashed) regimes. The blue lines show the observed asymp-
totes for the ballistic (solid) and plateau (dashed) regimes.
Inset: The Cole-Cole plot for CTAC as measured with a con-
ventional rheometer. The red curve is a fit to the Maxwell
function demonstrating a measured plateau modulus of 5.72
Pa.

IV. CONCLUSIONS

In this experiment, we resolve the functional form of
the ballistic crossover, revealing the fundamental length
and time scales between individual and collective interac-
tions in both Newtonian and Maxwell fluids. In so doing
we have created a microscale first-principles thermome-
ter based on the kinetic theory definition of temperature.
We have demonstrated the validity of this approach by

the extremely precise agreement between our results and
theoretical models for motion in dense Newtonian fluids.
We have experimentally tested the accuracy of Maxwell
fluid Langevin equation solutions and found them to be
wanting in accurately describing real materials. Asymp-
totically, we see a clear need for the addition of an ef-
fective mass term. More troublingly, the plateau val-
ues as measured with this method are markedly different
from those found with a conventional rheometer. This
difference may be a sign of a shift in behavior between
the microscale addressed by our measurement and the
macroscale measurement performed with a rheometer,
suggesting that materials which appear Maxwell at large
length scales may be more complicated at small length-
scales. Alternatively, this result could be indicative that
the assumptions used in deriving the asymptotic behavior
of the model need to be further modified. Our technique
provides an independent method for testing models for
the microscopic structure of fluids and the accompanying
macroscopic fluid constants. In the future, this method
promises to be useful in measuring multiple transitions
between motion regimes in viscoelastic materials, an area
where laser traps have difficulty because of the effects of
confinement [17]. This method will also enable detailed
studies of the influence of long range interactions, such as
wall effects, in an interaction free manner [25]. As such,
high speed single particle tracking promises to become an
important tool in the study of the fundamental behavior
of liquids.
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