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Understanding the mechanisms governing population extinctions is of key importance to many
problems in ecology and evolution. Stochastic factors are known to play a central role in extinction,
but the interactions between a population’s demographic stochasticity and environmental noise
remain poorly understood. Here, we model environmental forcing as a stochastic fluctuation between
two states, one with a higher death rate than the other. We find that in general there exists a rate of
fluctuations that minimizes the mean time to extinction, a phenomenon previously dubbed “resonant
activation.” We develop a heuristic description of the phenomenon, together with a criterion for the
existence of resonant activation. Specifically the minimum extinction time arises as a result of the
system approaching a scenario wherein the severity of rare events is balanced by the time interval
between them. We discuss our findings within the context of more general forms of environmental
noise, and suggest potential applications to evolutionary models.

I. INTRODUCTION

The extinction of populations, and of entire species,
has played a critical role in shaping global biodiversity [1,
2]. In more recent times, human impacts upon extinction
risks are being felt at an increased rate [3]. Accordingly,
in order to better understand the history of life and to
reliably forecast future ecological crises, it is crucial to
understand the mechanisms governing extinction.

Some of the earliest attempts to quantitatively model
biological populations treated the number of individuals
as a continuous variable, evolving deterministically as the
difference between prescribed birth rates and death rates
[4]. The “carrying capacity” K was typically defined as
the population size at which births and deaths are equal.
Deterministic approaches have proved beneficial in un-
derstanding numerous qualitative features of population
sizes. However, in order to predict the time over which a
population is likely to go extinct, a stochastic treatment
is required [5–7].

The mean extinction times of populations under the
action of various forms of stochasticity have been exten-
sively studied in the literature [6–8]. One of the most
fundamental forms of stochasticity is demographic, where
the probability of a birth (or death) occurring within a
given time interval is drawn from a probability distribu-
tion, rather than simply occurring at a predetermined
rate. The carrying capacity in this context is then de-
fined as the number of individuals at which births and
deaths are equal to each other in the mean-field limit
(when the number of individuals is large). In general,

the mean time to extinction of a population experiencing
demographic stochasticity alone increases exponentially
with K [6, 9, 10], meaning that large populations only
rarely go extinct due to demographic stochasticity alone.

A second form of stochasticity is that due to a varying
environment. Environmental stochasticity may take a
vast array of different forms, giving rise to a similarly
diverse array of mathematical approaches [8]. Perhaps
the most general model is to suppose that environmental
stochasticity causes the population size to vary according
to white or Ornstein-Uhlenbeck noise. As opposed to
an exponential relationship, the mean time to extinction
here increases roughly geometrically with K [6, 9].

Whereas an Ornstein-Uhlenbeck process is mathe-
matically tractable in the case of large populations, it
is more difficult to analyse in a birth-death model with
discrete numbers of individuals. Furthermore, its influ-
ence upon population numbers is less physically intu-
itive than some other forms of environmental stochastic-
ity. One more physical prescription is the “catastrophe”
model [11], whereby catastrophes arrive at random inter-
vals and remove a probabilistically-determined fraction
of the existing population. Though intuitively appeal-
ing, such a catastrophe model suffers from the unrealis-
tic assumption that catastrophes lasts an infinitesimally
short amount of time, removing information regarding
the population’s trajectory shortly before extinction.

In this work, we investigate environmental stochastic-
ity that lies somewhere in between the white noise and
the catastrophe limits. Specifically, we suppose that the
environment switches randomly between two states, a
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“good” state, and a “bad state,” where the latter is de-
fined as having an enhanced death rate. Each state lasts
a length of time that is drawn from an exponential distri-
bution, i.e., the switching constitutes a Telegraph Process
[12]. We note that similar scenarios have been considered
previously in terms of the impact of a single bad event
[13] (where instead of an enhanced death rate, a drop
in birth rate was used), or under the assumption of a
stationary probability distribution [14].

Our physical set-up is reminiscent of a classical prob-
lem in physics - Brownian diffusion of a particle within
a potential well [15, 16]. Given enough time, the par-
ticle will eventually escape its potential well, where the
mean time of escape may be computed using standard
methods of stochastic calculus [12, 17]. In this work, the
population size represents the particle’s position and the
potential well represents the mean drift of the population
(i.e., its evolution in the mean-field limit). Stochastic
fluctuations in death rate between good and bad states
are analogous to switching the depth and location of the
potential well.

Despite its simplicity, an analysis of the particle prob-
lem led to the discovery of a new phenomenon - “reso-
nant activation” - whereby the mean time of escape is
minimized for a particular barrier fluctuation rate [16].
Follow-up work sought to determine the generality of res-
onant activation [18, 19] and numerous studies have res-
urrected the conceptual result. For example it has been
demonstrated that there exists an optimum migration
rate between isolated biological populations that maxi-
mizes the mean extinction time of the metapopulation
[20]. Within the context of cell biology, noise of a critical
autocorrelation time minimizes the mean time of switch-
ing between two cellular phenotypes [21]. In addition to
its theoretical robustness, resonant activation has been
demonstrated experimentally [22, 23].

A key finding we will present in this work is that our
environmental fluctuation model displays resonant acti-
vation and that the model set-up facilitates an heuris-
tic explanation of the process that the authors are not
aware has appeared in the literature previously (but see
ref. [20] for an explanation within the context of the
migration model mentioned above). In what follows, we
describe our methods for computing the extinction times
and provide an heuristic explanation for the results, be-
fore briefly discussing implications of our findings.

II. MODEL DESCRIPTION

Throughout this work we treat the population as a
stochastic birth-death process, utilizing the Verhulst pop-
ulation model [6, 24] with density-dependent death rates.
Similar conclusions may be expected within the frame-
work of other models, such as the SIS model. Our analyt-
ical methods will require the introduction of a population
ceiling, which is defined as the population size n = Nmax

at which the birth rate vanishes [17, 25]. The birth rate

βn and death rate δn take the functional forms

βn =

{
an, if n < Nmax

0, if n = Nmax

δn = arn

(
1 +

n

n′

)
(1)

where a is the per capita birth rate (and 1/a may be
conceptualized as a characteristic generation turnover
timescale), r is the low-density ratio of death rate to
birth rate and n′ parameterizes the degree of density-
dependence. In the mean field limit with a steady envi-
ronment, the above birth and death rates yield an ODE
for the number of individuals N

dN

dt
= aN(1− r)

(
1− N

K

)
, (2)

where K is typically referred to as the carrying capacity,
and constitutes the equilibrium, or stationary, population
size in the mean field limit (for r < 1). Its value is related
to n′ by

K =
(1− r)
r

n′. (3)

In the model we study here, the death rate is allowed
to stochastically fluctuate between a high (“bad”) state
and a low (“good”) state. Specifically, the value of r in
the definition of δn above evolves as a Telegraph Process
[12] taking one of two values

r → r0, “good” state

r → Ar0, “bad” state. (4)

Such environmental switching may be thought of as a
stochastic fluctuation between states with two different
carrying capacities, the good state with K+ and the bad
state with K−, following equation 3. In all cases dis-
cussed below, we will maintain the same parameters for
the good state, choosing n′ = 20 and K+ = 40, cor-
responding to r0 = 1/3. Given a carrying capacity in
the good state of 40 individuals, a sufficiently high pop-
ulation ceiling is chosen as Nmax = 100, which we verify
using numerical simulations (see for example Figure (1)),
for which a population ceiling need not be specified.

The switching rate from the good state to the bad state
is denoted α+ ≡ αε, and the rate of switching from bad
to good is α− ≡ α, where the case ε � 1 corresponds
to a population subject to the influence of short-lived,
catastrophic events. In this work, we only consider
cases where ε ≤ 1, and will vary A, ε and α in our
analysis below.

III. COMPUTING MEAN EXTINCTION TIMES

A. Fluctuating Environment

Our goal in this work is to compute the mean time
to extinction Tn for a population of n individuals as a
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FIG. 1. A typical realization of the population size as a function of time (red line), computed using direct simulations
as described in the text. The environment undergoes stochastic switching between two states (grey line) - the “good” state
with carrying capacity of K+ = 40 and the bad state possesses K− = 30. For illustration, we chose parameters α = a/5, ε = 1,
r0 = 1/3 and A = 1.2.

function of the environmental switching parameters. We
will mostly restrict attention to scenarios beginning in
the good state, the extinction time in which case being
denoted with a “+” in the superscript T +

n . However, the
extinction time may be computed without knowledge of
the initial environmental state (T̄n) by marginalizing over
the fluctuations, such that

T̄n =
T +
n + ε T −n

1 + ε
. (5)

For the cases examined in this work (T +
n � T −n and

ε ≤ 1) T̄n behaves similarly to T +
n (see Figure 2) and so

our conclusions regarding the latter inform the former.
However, it is worth noting that T −n exhibits qualitatively
different behaviour than T +

n , discussed briefly below.
There exist multiple techniques for computing T +

n (see
e.g. [1, 6, 12, 17]). We choose the method of averaging
along immediate sample paths. Specifically, suppose that
the population has n individuals and the environment is
in the good state. The mean time to extinction is then
equal to the expected time before an event occurs, plus
the mean of the extinction times after any one of the three
possible events occurs (i.e., birth, death or environmental

switch). Specifically,

T +
n =

1

β+
n + δ+n + α+

+
β+
n

β+
n + δ+n + α+

T +
n+1

+
δ+n

β+
n + δ+n + α+

T +
n−1 +

α+

β+
n + δ+n + α+

T −n

T −n =
1

β−n + δ−n + α−
+

β−n
β−n + δ−n + α−

T −n+1

+
δ−n

β−n + δ−n + α−
T −n−1 +

α−

β−n + δ−n + α−
T +
n (6)

which upon rearranging, become the governing equations

−1 =β+
n T +

n+1 + δ+n T +
n−1 + T −n α+

− T +
n (β+

n + δ+n + α+)

−1 =β−n T −n+1 + δ−n T −n−1 + T +
n α
−

− T −n (β−n + δ−n + α−). (7)

We may write equations 7 as one matrix equation

−1 = MT, (8)
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where the first Nmax elements of the vector T consist of
T +
n and the rest consist of T −n . The above matrix equa-

tion is to be solved subject to the boundary conditions

T +/−
0 = 0 and βNmax

= 0.

B. Static Environment

A vast literature exists pertaining to the analysis of
extinction times in static environments [6]. We take
advantage of this analytical understanding by express-
ing extinction times within the switching environment in
terms of extinction times corresponding to 3 well-defined
constant environmental states. These 3 states consist of
the bad state, (mean extinction time τ−n ), the good state
(τ+n ) and the “mean” state (τ̄n), the latter of which we de-
fine as the extinction time in the limit where α→∞. In
the mean state, the population evolves as if it were sub-
ject to time-independent “mean” death and birth rates
(derived below).

Using similar arguments as in the fluctuating environ-
ment, one can show that in the static environment,

−1 = βnτn+1 + δnτn−1 − τn(βn + δn). (9)

where we obtain the equations for any one of the 3 static
cases by adding superscripts ‘+′, ‘−′ or an overbar. Once
again rewriting in matrix form we have that

−1 = M+τ+

−1 = M−τ−

−1 = M̄ τ̄ , (10)

where each of M+, M− and M̄ denote Nmax by Nmax

matrices encoding the birth and death rates in the good,
bad and mean states respectively.

In order to compute the appropriate birth and death
rates for the mean state, we take the limit where α→∞
in equations 7, from which we extract that

T +
n

∣∣
α→∞ ≈ T

−
n

∣∣
α→∞ = τ̄n, (11)

and, upon convert Equation 7 into a form similar to ex-
pression 9,

−1 = β̄nτ̄n+1 + δ̄nτ̄n−1 − τ̄n(β̄n + δ̄n), (12)

where we arrive at the mean birth and death rates

β̄n ≡
β+
n + εβ−n
1 + ε

= an

δ̄n ≡
δ+n + εδ−n

1 + ε
= an r0Ā

(
1 +

n

n′

)
. (13)

The mean value for the environmental parameter is

Ā ≡ 1 + εA

1 + ε
. (14)

If we consider the mean-field evolution of a population
in the regime where α→∞, it will possess an stationary
number of individuals, or carrying capacity given by

K∞ ≡ 1− r0Ā
r0Ā

n′. (15)

It should be noted that all extinction times computed
above are sensitive to the number of individuals. However
the ratio TNmax/T1 is never more than a factor of ∼ 2−4
(at least in the cases considered here). This can be seen
most readily with respect to the static environments. In
particular, suppose that we are only interested in cases

where τ+/− � 1/(β
+/−
n + δ

+/−
n ) (i.e., r < 1) and n small

enough such that the death rate is linear n� n′. In this
case equation 9 becomes

τ+/−n ≈ 1

1 + r
τ
+/−
n+1 +

r

1 + r
τ
+/−
n−1 , (16)

which may be solved to obtain

τ+/−n ≈ τ+/−Nmax
(1− rn), (17)

an expression which is equivalent to that derived in the
large population limit in reference [6] (their eq. (20)).
The factor τ+Nmax

/τ+1 ≈ 1/(1 − r) = 3/2, where we have
used the value r = r0 = 1/3 for the “good state”. In the
bad state, r = r0A which may exceed unity, suggesting
a negative extinction time by equation 17, however this
would break the initial assumption that the extinction
time is significantly longer than the typical time between
events.

The dependence of extinction time upon the initial
population size may be important when one considers
situations where populations are initiated at very low
densities of individuals, such as island colonization [1],
however it is not crucial to consider here. When quoting
the extinction times throughout the paper, unless other-
wise stated, we choose n to be the carrying capacity in
the good state (n = K+ = 40). Accordingly, for ease of
presentation, we define

τ+ ≡ τ+K+

τ− ≡ τ−K+ . (18)

The calculations outlined in this section introduce 3
states that are simpler to understand, both conceptually
and mathematically, than the full fluctuating problem.

C. Direct Simulation

The time evolution of the population number n may
be computed numerically in order to check the solutions
obtained through our analytic methods. Specifically, at
each time step, two random numbers are drawn, R1 and
R2 each uniformly distributed between 0 and 1. The first
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random number R1 is used to determine the wait time
before an event occurring

∆t = − lnR1

γ+/−
, (19)

where we define the sum of rates

γ+/− ≡ β+/−
n + β+/−

n + α+/−. (20)

The second random number R2 is used to determine
which event occurs (birth, death or environment switch),
following the prescription:

n+/− → (n+ 1)+/− if R1 < β+/−
n /γ+/−

n+/− → (n− 1)+/− if

R1 > β+/−
n /β & R1 < (β+/−

n + δ+/−n )/γ+/−

n+/− → n−/+ if R1 > (β+/−
n + δ+/−n )/γ+/−. (21)

Each time we quote a mean extinction time using direct
simulation, we use the above algorithm to compute 100
trajectories, beginning with n = K+ = 40 individuals
in the good state, and average the extinction times. For
illustrative purposes, a typical realization of the popula-
tion number is presented in Figure 1, with α = a/5, ε = 1
and A = 1.2. Note that the direct simulation does not
require a population ceiling, and our choice of ceiling at
n = Nmax = 100 in the analytic techniques was informed
by the rarity with which n reaches 100 individuals.

IV. RESULTS & ANALYSIS

A. Case where α+ = α−

The first case we explore is a system that spends, on
average, equal amounts of time in the good state as the
bad state (α+ = α−; ε = 1). Let us suppose that in
the good state, the carrying capacity K(≡ K+) = 40
but it drops to K(≡ K−) = 30 in the bad state. Using
equations (3, 4), this may be modelled by choosing A =
1.2, r0 = 1/3 and n′ = 20. With these numerical values,
the mean state (α/a → ∞) is described with Ā = 1.1
and a carrying capacity of K∞ = 34.5 (equs (14,15)).

In Figure 2, we illustrate the mean extinction times be-
ginning in the good state T +, the bad state T − and the
average of these two T̄ as a function of the environmen-
tal switching parameter α, where all times are computed
with n = K+. For small α/a, all three curves are flat,
with T + ≈ τ+ and T − ≈ τ−. When the population
begins in the bad state, the extinction time rises mono-
tonically with α (red curve), essentially owing to the fact
that as α is increased, the system beginning in the bad
state becomes more likely to survive into the next good
state, lengthening its persistence. In contrast, the curve
of T + falls initially, but begins to rise again after reach-
ing a minimum value. As expected, all curves approach
τ̄ in the limit where α/a→∞.
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FIG. 2. The mean extinction time as function of environmen-
tal switching rate. The black curve correspond to an initial
condition of the good state, the red curve corresponds to be-
ginning in the bad state and the blue curve represents the ex-
tinction time averaged over both initial conditions following
equation 5. Here, ε = 1, n′ = 20 and the carrying capacities
in the good and bad states are K+ = 40 and K− = 30 respec-
tively. We denote, with horizontal lines, the mean extinction
times (τ+ and τ−; computed using Equation 9) correspond-
ing to these two states, along with a third line representing
the extinction time in the mean state τ̄ . The numbers in
parentheses are referred to in the text.

In this work, we are most interested in the occurrence
of a minimum in the extinction curves of T̄ and T +.
Furthermore, owing to our consideration of ε ≤ 1, we do
not discuss in detail the curve of T −. However the logic
acquired from our discussion of T + may be easily applied
to T −.

The existence of a minimum in the extinction time is a
signature of resonant activation [16]. For the parameters
chosen here, the minimum remains flat across roughly 3
orders of magnitude in α/a from −4 . log10(α/a) . −1.
This result says that the population will typically go
extinct fastest when subject to environmental perturba-
tions acting once every 10-10,000 generations.

B. Heuristic Explanation

Multiple previous scenarios demonstrating resonant
activation have been studied, but the heuristic mecha-
nism responsible has often not been identified. In this
section, we discuss the mechanism from a qualitative
point of view in order to better understand why resonant
activation occurs in this system.

Beginning in the limit α/a → 0, both states (good
and bad) last such a long time that the extinction time
in the fluctuating environment approaches that of the
initial state, i.e. τ+ if the system begins in a good state
and τ− if it begins in the bad state (“1” in Figure 2). As
α is increased, populations beginning in the good state
will typically experience an environmental switch before
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going extinct, but the following bad state still lasts long
enough to almost ensure extinction. When α enters this
regime (at αε ≈ 1/τ+ = 10−7.5a) the graph steepens to
a slope of roughy 1/αε (“2” in Figure 2).

Eventually, as α increases further, the mean extinction
time in the bad state (τ−) becomes longer than the aver-
age duration of a single bad state (1/α). Consequently,
the population gets “saved” before going extinct as
the environment switches back to the good state. At
this point, the extinction time in the fluctuating prob-
lem flattens again (“3” in Figure 2). From figure 2, we
see that the bad state has a mean extinction time of
τ− ≈ 104.9/a and so the turnoff into a minimum occurs
at the expected (τ−)−1 = log10(α/a) ≈ −4.9.

In the limit where α → ∞, the mean extinction time
becomes equivalent to that of a state where the death rate
is described by the mean value of A (“4” in Figure 2).
For the parameters chosen here, the mean state is char-
acterized by a mean extinction time τ̄ which is greater
than the magnitude of T + at the point where α ≈ 1/τ−

and thus the minimum exists and resonant activation is
observed. Later on, we discuss the criteria under which
the graph does not display a minimum.

C. Catastrophe case

In the previous section we considered a case where the
system spends on average equal amounts of time in the
two different states, where the states differ in carrying ca-
pacity by 10. We now examine a more general scenario.
Specifically, the bad state lasts a shorter time on
average than the good state, but its severity A
is increased such as to maintain a constant mean
state Ā = 1.1, allowing comparison to the previous sec-
tion.

The situation thus described is more similar to a catas-
trophic event [10, 13]. In Figure 3, we compare the mean
extinction times for 3 different values of A and ε that
maintain equivalent Ā. Specifically, we choose A = 1.2,
ε = 1 as before, but include two examples of catastrophes;
A = 1.6, ε = 0.2, and A = 11.1, ε = 0.01. Once again
a minimum is observed in these two additional cases,
though their minima are sharper than for ε = 1.

In addition, we perform direct numerical simulations at
multiple values of α, where as mentioned above we aver-
age the extinction times of 100 paths. The resulting mean
extinction times are plotted as crosses on Figure 3. The
excellent agreement between the solid lines and crosses
validates both our matrix solution (equation 8) and
the choice of Nmax = 100.

Using the intuition gained from the previous section,
we would expect the mean extinction time curves to
change slope at αε ≈ 1/τ+ and then again at α ≈ 1/τ−.
For ε = 0.2, these two values correspond to log10(α/a) =
{−6.8, −2.4}, and for ε = 0.01, they correspond to
log10(α/a) = {−5.5, 0}. By inspection of Figure 3, we
see that the turning points match well with these values,

validating an equivalent physical interpretation between
the catastrophe and equal-time cases.

For illustration, in Figure 4, we provide example tra-
jectories for populations going extinct under switching
rates near the minimum of the ε = 0.01 curve and on
either side of the minimum. Specifically, at α = 0.1a
(top panel) the bad events last long enough to lead to
extinction most of the time and so the curve drops to
zero individuals soon after the environment switches. At
α = a (middle panel) the system exhibits its mini-
mum extinction time, where the catastrophic events are
occurring both frequently and with a significant chance
of extinction. For more frequent catastrophes α = 10a
(bottom panel) the bad events are more frequent, but
too short to lead to extinction in most cases. Here extinc-
tion is caused by chance clustering of bad events and/or
negative excursions in the good state.

D. Value of the minimum

Given the regime changes in T + as a function of α com-
puted above, it is possible to derive an expression ap-
proximating the extinction time curve for α � a.
In particular, we want an expression that approaches τ+

for α → 0. Then, when αε & (τ+)−1 the curve becomes
approximately equal to the typical switching time. The
two criteria above are matched by supposing that

T
∣∣
1,α�a ≈ τ

+

(
1

1 + αετ+

)
(22)

The approximation is improved by noting that as α in-
creases further, T

∣∣
1,α�a approaches zero and so must

be corrected at larger α. We match the turnover at
α ≈ (τ−)−1 by adding to the numerator ατ− such that
a better approximation becomes

T
∣∣
2,α�a ≈ τ

+

(
1 + ατ−

1 + αετ+

)
(α . a). (23)

We plot the above approximation in Figure 3, show-
ing that, simply using the heuristic arguments outlined
above, we approximate the curve well up until the mini-
mum is encountered. More rigorous mathematical tech-
niques may indeed yield an expression such as 23, but a
detailed proof is beyond the scope of this work.

Given that expression 23 closely matches the extinction
time until the slope changes at α ∼ 1/τ+ in the exact
solution, the minimum extinction time for the switching
problem T + may be approximated by substituting α =
1/τ− into the expression 23. The estimate thus obtained
for the minimum extinction time is

Tmin ≈
2τ+τ−

ετ+ + τ−
(24)

We include horizontal lines on Figure 3 at the extinction
times predicted by this expression. Furthermore, we test
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but too short to lead to extinction in most cases.
Here extinction is caused by chance co-occurrence
of bad events and/or negative excursions in the
good state.

Value of the minimum

Given the regime changes in T + as a function
of ↵ computed above, it is possible to write de-
rive an excellent, analytic approximation to the
extinction time curve for ↵ . a. In particular, we
want an expression that approaches ⌧+ for ↵ ! 0.
Then, when ↵✏ & (⌧+)�1 the curve becomes ap-
proximately equal to the typical switching time.
The two criteria above are matched by supposing
that

T
��
1,↵⌧a

⇡ ⌧+

 
1

1 + ↵✏⌧+

!
(24)

The approximation is improved by noting that as ↵ in-
creases further, T

��
1,↵⌧a

approaches zero and so must

be corrected at larger ↵. We match the turnover at
↵ ⇡ (⌧�)�1 by adding to the numerator ↵⌧� such that
the mean extinction time is well approximated by

T
��
2,↵⌧a

⇡ ⌧+

 
1 + ↵⌧�

1 + ↵✏⌧+

!
(↵ . a). (25)

We plot the above approximation in Figure 3,
showing that, simply using the heuristic argu-
ments outlined above, we approximate the curve
well up until the minimum is encountered. More
rigorous mathematical techniques may indeed
yield an expression such as 25, but a detailed
proof is beyond the scope of this work.

Given that the approximation 25 matches approxi-
mately until the minimum is encountered at ↵ ⇠ 1/⌧+

in the exact solution, the minimum extinction time for
the switching problem T + may be approximated by sub-
stituting ↵ = 1/⌧� into the expression 25, obtaining an
approximation for the minimum extinction time

Tmin ⇡ 2⌧+⌧�

✏⌧+ + ⌧�

(26)

We include horizontal lines on Figure 3 at the extinc-
tion times predicted by this expression. They agree well
with the actual minima, where as discussed above we
have used a value of ⌧� as computed for a population
with K+ = 40 individuals. Note that the expression
for Tmin yields an order of magnitude estimate that may
be quickly competed for general cases. In specific cases,
more rigorous techniques are required to compute the
minimum time to a higher degree of precision.

Criterion for the existence of a minimum

It is not guaranteed that expression 26 for Tmin will be
less than the mean extinction time in the mean state (⌧̄ ;
↵ ! 1). Accordingly the extinction time T + will only
exhibit resonant activation if the inequality

Tmin . ⌧̄ , (27)

is satisfied.
In order to illustrate the above criteria, we compute

the mean extinction times for 4 cases where ✏ is grad-
ually increased (choosing ✏ = {10�3, 10�2, 0.03, 0.1}),
thus decreasing T̄ until the no minimum is present in the
extinction time curve. In order to remove the minimum,
the mean state must exhibit a fairly short extinction time
and so we define a bad state with A = 60, chosen simply
to ensure that a minimum exists for values of ✏ < 1. We
illustrate these cases in Figure 5.

As can be seen, the high-↵ part of the graph drops and
eventually the entire graph takes the form of a monotonic
decline in mean extinction time from small to larger ↵.
For each case, we quote the ratio

R0 ⌘ Tmin

⌧̄
(28)

which we predict to be less than unity when a minimum
exists, with that minimum occurring at ↵min ⇠ 1/T�.
The numerical results plotted in Figure 5 agree well with
our analytic expectations.

The above criteria contain within them numer-
ous approximations, and analytical expressions
for the various extinction times are only known in
limited cases. Consequently, we now seek a more
robust criterion for the existence of a minimum in
the extinction curve by performing an expansion
of the system about large ↵. If a minimum exists,
then the gradient with respect to ↵ at larger ↵
must be positive.

Large ↵ expansion.

After some algebra, the solution to the matrix equa-
tion 9 may be written in closed form as

T + =


I � 1

↵+ + ↵� M̄�1M�M+

��1

⇥

I � 1

↵+ + ↵� M̄�1M�M̄

�
⌧̄ , (29)

where the various matrices take on the forms introduced
in equations 12. Expanding to first order in a/↵ we ob-
tain the approximations

T + ⇡

I +

1

↵+ + ↵� M̄�1M�(M+ � M̄)

�
⌧̄ (30)
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but too short to lead to extinction in most cases.
Here extinction is caused by chance co-occurrence
of bad events and/or negative excursions in the
good state.

Value of the minimum

Given the regime changes in T + as a function
of ↵ computed above, it is possible to write de-
rive an excellent, analytic approximation to the
extinction time curve for ↵ . a. In particular, we
want an expression that approaches ⌧+ for ↵ ! 0.
Then, when ↵✏ & (⌧+)�1 the curve becomes ap-
proximately equal to the typical switching time.
The two criteria above are matched by supposing
that

T
��
1,↵⌧a

⇡ ⌧+

 
1

1 + ↵✏⌧+

!
(24)

The approximation is improved by noting that as ↵ in-
creases further, T

��
1,↵⌧a

approaches zero and so must

be corrected at larger ↵. We match the turnover at
↵ ⇡ (⌧�)�1 by adding to the numerator ↵⌧� such that
the mean extinction time is well approximated by

T
��
2,↵⌧a

⇡ ⌧+

 
1 + ↵⌧�

1 + ↵✏⌧+

!
(↵ . a). (25)

We plot the above approximation in Figure 3,
showing that, simply using the heuristic argu-
ments outlined above, we approximate the curve
well up until the minimum is encountered. More
rigorous mathematical techniques may indeed
yield an expression such as 25, but a detailed
proof is beyond the scope of this work.

Given that the approximation 25 matches approxi-
mately until the minimum is encountered at ↵ ⇠ 1/⌧+

in the exact solution, the minimum extinction time for
the switching problem T + may be approximated by sub-
stituting ↵ = 1/⌧� into the expression 25, obtaining an
approximation for the minimum extinction time

Tmin ⇡ 2⌧+⌧�

✏⌧+ + ⌧�

(26)

We include horizontal lines on Figure 3 at the extinc-
tion times predicted by this expression. They agree well
with the actual minima, where as discussed above we
have used a value of ⌧� as computed for a population
with K+ = 40 individuals. Note that the expression
for Tmin yields an order of magnitude estimate that may
be quickly competed for general cases. In specific cases,
more rigorous techniques are required to compute the
minimum time to a higher degree of precision.

Criterion for the existence of a minimum

It is not guaranteed that expression 26 for Tmin will be
less than the mean extinction time in the mean state (⌧̄ ;
↵ ! 1). Accordingly the extinction time T + will only
exhibit resonant activation if the inequality

Tmin . ⌧̄ , (27)

is satisfied.
In order to illustrate the above criteria, we compute

the mean extinction times for 4 cases where ✏ is grad-
ually increased (choosing ✏ = {10�3, 10�2, 0.03, 0.1}),
thus decreasing T̄ until the no minimum is present in the
extinction time curve. In order to remove the minimum,
the mean state must exhibit a fairly short extinction time
and so we define a bad state with A = 60, chosen simply
to ensure that a minimum exists for values of ✏ < 1. We
illustrate these cases in Figure 5.

As can be seen, the high-↵ part of the graph drops and
eventually the entire graph takes the form of a monotonic
decline in mean extinction time from small to larger ↵.
For each case, we quote the ratio

R0 ⌘ Tmin

⌧̄
(28)

which we predict to be less than unity when a minimum
exists, with that minimum occurring at ↵min ⇠ 1/T�.
The numerical results plotted in Figure 5 agree well with
our analytic expectations.

The above criteria contain within them numer-
ous approximations, and analytical expressions
for the various extinction times are only known in
limited cases. Consequently, we now seek a more
robust criterion for the existence of a minimum in
the extinction curve by performing an expansion
of the system about large ↵. If a minimum exists,
then the gradient with respect to ↵ at larger ↵
must be positive.

Large ↵ expansion.

After some algebra, the solution to the matrix equa-
tion 9 may be written in closed form as

T + =


I � 1

↵+ + ↵� M̄�1M�M+

��1

⇥

I � 1

↵+ + ↵� M̄�1M�M̄

�
⌧̄ , (29)

where the various matrices take on the forms introduced
in equations 12. Expanding to first order in a/↵ we ob-
tain the approximations

T + ⇡

I +

1

↵+ + ↵� M̄�1M�(M+ � M̄)

�
⌧̄ (30)

(equation 24)

FIG. 3. The mean extinction time as a function of α for 3 different choices of ε=(1, black; 0.2, blue; 0.01, red), all possessing
equivalent α→∞ extinction times (τ̄). Four metrics are plotted: crosses denote the mean extinction time computed using direct
simulations, solid lines were computed using the matrix equation 8, dotted lines depict our heursitcally-derived approximation
in the regime where α � a (equation 23) and the dashed line denotes the expected minimum extinction time (equation 24)
using the arguments in the text. As expected, red and blue graphs turn off into the minimum at of 1/α roughly corresponding
to the extinction time in the bad state log10(α/a) = −2.4 for A = 1.6 and log10(α/a) = 0 for A = 11.1.

the validity of approximation 24 by plotting the true min-
imum extinction time against K− for a range of values
of ε and A, alongside the approximation Tmin (Figure 5).
We include a plot of Tmin ≈ 2τ−/ε, i.e., the limit of Tmin

where ετ+ � τ−. Both approximations provide good
estimates for the true minimum extinction time, though
some disagreement arises owing to the qualitative nature
of the derivation.

E. Criterion for the existence of a minimum

It is not guaranteed that expression 24 for Tmin will
be less than the mean extinction time in the mean state.
Accordingly the extinction time T + will only exhibit res-
onant activation if the inequality

Tmin . τ̄ , (25)

is satisfied. In order to illustrate the above crite-
rion, we compute the mean extinction times for 4
cases where ε is gradually increased (choosing ε =
{10−3, 10−2, 0.03, 0.1}), thus decreasing τ̄ until no min-
imum is present in the extinction time curve. In order
to remove the minimum, the mean state must exhibit a
fairly short extinction time and so we define a bad state
with A = 60, chosen simply to ensure that a minimum
exists for values of ε < 1. We illustrate these cases in
Figure 6.

As can be seen, the high-α part of the graph drops and
eventually the entire graph takes the form of a monotonic
decline in mean extinction time from small to larger α.
For each case, we quote the ratio

R0 ≡
Tmin
τ̄

(26)

which we predict to be less than unity when a minimum
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FIG. 4. Typical realizations of populations going extinct for 3 values of α = 0.1a (top panel), a (middle panel) and 10a (bottom
panel). All cases have ε = 0.01 and possess bad events with A = 11.1, for which K− = −14.6 < 0, such that the blue curve,
reflecting the time evolution of the carrying capacities, transitions from K+ = 40 to the below the y-axis each time a bad event
occurs. These parameters are the same as those used to generate the red curve in Figure 3 and the 3 values of α are chosen to
lie below, close to and above the value of α at which the minimum extinction time occurs, in order to illustrate the difference
in the path to extinction within the 3 cases.
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line) were varied (such that a minimum existed in all cases). We see that the approximation derived from heuristic arguments
provides in general a slight over-estimate of the mean extinction time, but a close match overall.

exists, with that minimum occurring at αmin ∼ 1/T−.
The numerical results plotted in Figure 6 agree well with
our analytic expectations.

1. Large α expansion.

Criterion 25 provides a useful inequality for determin-
ing the existence of resonant activation based on qualita-
tive arguments. However, one may obtain a more quan-
titative criterion for the existence of a minimum. Specifi-
cally, we perform an expansion of the system about large
α. If a minimum exists, then the gradient with respect
to α at large α must be positive.

After some algebra, the solution to the matrix equa-
tion 8 may be written in closed form as

T + =

[
I− 1

α+ + α−
M̄−1M−M+

]−1

×
[
I− 1

α+ + α−
M̄−1M−M̄

]
τ̄ , (27)

where the various matrices take on the forms introduced
in equations 10. Expanding to first order in a/α we ob-
tain the expression

T + ≈
[
I +

1

α+ + α−
M̄−1M−(M+ − M̄)

]
τ̄ (28)

Accordingly, the sign of the first order correction term

T+,0 ≡
[
M̄−1M−(M+ − M̄)

]
τ̄ , (29)

constitutes a test for the existence of resonant activation,
where negative T+,0 corresponds to resonant activation
occurring.

In the left panel of Figure 7 we compute T+,0 for
four cases. In each case, A is held fixed whilst ε var-
ied. Upon plotting T+,0 against the resulting K∞, we
see that T+,0 changes sign at values of K∞ ≈ 1, with the
transition occurring closer to K∞ = 0 as A is increased
(Figure 7, right panel). Generally speaking, these re-
sults suggest that resonant activation will only occur if
the mean state possess a sufficiently long extinction time
(either by lowering A or ε).
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FIG. 7. Left: The first order correction term T 0,+

K+ (Equ. 29) to the extinction time as α → ∞. When T 0,+

K+ < 0 the system
exhibits resonant activation (i.e., a minimum extinction time). Right: The critical value of the carrying capacity in the mean
state K∞, above which the system exhibits resonant activation as a function of A (i.e., a minimum exists if K∞ > K∞crit).
As the bad state gets worse (A increases), the critical carrying capacity crosses K∞crit = 1, below which the mean state possess
no stable stationary number of individuals in the mean-field limit.

V. DISCUSSION

In this work, we have computed the mean time to ex-
tinction of a stochastic birth-death process subject to

environmental forcing. Such forcing was modelled as a
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random fluctuation in the death rate, with characteris-
tic frequency α, between two states. We demonstrated,
through both analytical techniques and numerical simu-
lation that this system exhibits “resonant activation” [16]
whereby there exists a fluctuation timescale that mini-
mizes the mean time to extinction.

A key contribution of our work has been to provide a
heuristic explanation for the emergence of resonant acti-
vation. However, it is not immediately obvious whether
the results are specific to our chosen form of environ-
mental forcing, i.e. where bad states typically last a time
interval of 1/αε and the good states last 1/α, with ε ≤ 1.
Environmental noise is unlikely to behave in this manner
identically, but our framework ensures that rare events
are more likely to cause extinction (because they last
longer). At small α the bad states last long enough to
almost ensure extinction and so the mean extinction time
decreases with α. When 1/αε begins to exceed the mean
extinction time within the bad state, more than one bad
event is required for extinction and so the mean extinc-
tion time begins to rise again, hence the minimum in the
extinction time curve.

Regardless of the exact form of forcing, the under-
standing acquired in our specific model may be applied
to more general systems. For example reference [21]
examined a system forced by noise parameterized as
an Ornstein-Uhlenbeck process with autocorrelation
time, analogous to our fluctuation timescale 1/α. They
too found that the mean escape time was minimized at a
given autocorrelation time. Using our qualitative under-
standing we may similarly conclude that the minimum
arises owing to the system reaching a point that is bal-
ancing the severity of rare events with the time interval
between them.

We emphasize that all of our timescales are scaled by
1/a, and so the minimum in extinction time should be
interpreted as a minimum number of generations before
extinction. A focus on generation number naturally leads
to a discussion of how the picture might alter in the pres-
ence of biological evolution. In particular, we may con-
sider two values of α sharing the same T + (i.e., on either
side of the minimum). As illustrated in Figure 4, the ex-
act mechanism of extinction differs between the higher α
and lower α regimes. At lower α extinction occurs dur-
ing one long-lived bad event. In contrast, at larger α
the population survives numerous short-lived bad events,
with extinction occurring as a result of unfortunate clus-
tering of events.

With no evolution, the population typically goes ex-
tinct after the same number of generations in both cases.
In reality the population in the faster switching environ-
ment will have encountered the bad state before, giving
it the opportunity to adapt (essentially decreasing A) be-
fore finally going extinct. We thus speculate that evolu-
tionary adaptation may extend the extinction time at α
larger than the “resonant” value, perhaps sharpening the
minimum in real populations - species adapt more eas-
ily to the events that occur more frequently. The topic

would benefit from future work that examines more gen-
erally the importance of adaptation within the context
of resonant activation.

Although our model has been conceptualized thus far
as pertaining to births and deaths of individuals within a
population, a potential consequence to evolution emerges
if we apply it instead to specific alleles in a population. In
particular, suppose a population possesses two alleles for
one gene, but the species’ fitness optimum sits at some
non-zero ratio between the 2 alleles (a form of fitness
landscape [26, 27]). If the fitness optimum is fluctuating,
then the mean time to fixation of one allele will depend
upon the timescale of fluctuations. Resonant activation
within this picture would manifest as a minimum fixa-
tion time of one of the alleles, essentially maximizing the
evolutionary rate.

Though qualitative, the above argument suggests that
stochastic timescales may have important influences
upon evolutionary rates. Indeed, it is interested to high-
light recent work demonstrating the importance of en-
vironmental fluctuation rate to fixation probabilities of
one population over another [28, 29]. This scenario is
conceptually similar to the case of two alleles, lending
credence to the potential for noise timescales to influ-
ence evolutionary rates. More work is needed to examine
this further.

A separate interpretation of our model, aside from
births and deaths of individuals, is the originations and
extinctions of different taxa within a lineage [1, 30]. In
this case the per-taxa speciation timescale 1/a could be
as large as hundreds of thousands to millions of years
[31], with the kinds of environmental fluctuations lead-
ing to resonant activation scaling accordingly. A major
difference between the taxon-level and individual cases
however is that a could vary significantly within lineages,
which is beyond the scope of the model presented here.

The greater physical understanding of resonant activa-
tion developed here has facilitated simplified expressions
for the extinction time to be derived from a heuristic
perspective. Furthermore, a criterion for the exis-
tence of resonant activation is derived, indicating
a dependence upon the chosen numerical param-
eters. Accordingly, we anticipate that the phe-
nomenon may yet emerge within a broader range
of dynamical systems than previously reported.
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R. M. Pringle, and T. M. Palmer, Science Advances 1,
e1400253 (2015).

[4] A. J. Lotka, Proceedings of the National Academy of Sci-
ences 6, 410 (1920).

[5] D. G. Kendall, Journal of the Royal Statistical Society.
Series B (Methodological) 11, 230 (1949).

[6] C. R. Doering, K. V. Sargsyan, and L. M. Sander, Mul-
tiscale Modeling & Simulation 3, 283 (2005).

[7] B. A. Melbourne and A. Hastings, Nature 454, 100
(2008).

[8] O. Ovaskainen and B. Meerson, Trends in Ecology & Evo-
lution 25, 643 (2010).

[9] E. G. Leigh, Journal of Theoretical Biology 90, 213
(1981).

[10] R. Lande, The American Naturalist 142, 911 (1993).
[11] M. Mangel and C. Tier, Theoretical Population Biology

44, 1 (1993).
[12] C. W. Gardiner, Stochastic methods (Springer-Verlag,

Berlin–Heidelberg–New York–Tokyo, 1985).
[13] M. Assaf, A. Kamenev, and B. Meerson, Physical Review

E 79, 011127 (2009).
[14] P. G. Hufton, Y. T. Lin, T. Galla, and A. J. McKane,

Physical Review E 93, 052119 (2016).

[15] H. A. Kramers, Physica 7, 284 (1940).
[16] C. R. Doering and J. C. Gadoua, Physical Review Letters

69, 2318 (1992).
[17] M. Mangel, The theoretical biologist’s toolbox: quantita-

tive methods for ecology and evolutionary biology (Cam-
bridge University Press, 2006).

[18] C. Van den Broeck, Physical Review E 47, 4579 (1993).
[19] J. Iwaniszewski, Physical Review E 68, 027105 (2003).
[20] M. Khasin, B. Meerson, E. Khain, and L. M. Sander,

Physical Review Letters 109, 138104 (2012).
[21] M. Assaf, E. Roberts, Z. Luthey-Schulten, and N. Gold-

enfeld, Physical Review Letters 111, 058102 (2013).
[22] R. N. Mantegna and B. Spagnolo, Physical Review Let-

ters 84, 3025 (2000).
[23] V. N. Chizhevsky, Physical Review E 80, 061139 (2009).
[24] I. N̊asell, Journal of Theoretical Biology 211, 11 (2001).
[25] B. Cairns, J. Ross, and T. Taimre, ecological modelling

201, 19 (2007).
[26] S. Wright, The roles of mutation, inbreeding, crossbreed-

ing, and selection in evolution, Vol. 1 (na, 1932).
[27] K. J. Niklas, Proceedings of the National Academy of

Sciences 91, 6772 (1994).
[28] P. Ashcroft, P. M. Altrock, and T. Galla, Journal of The

Royal Society Interface 11, 20140663 (2014).
[29] A. Melbinger and M. Vergassola, Scientific reports 5

(2015).
[30] J. J. Sepkoski, Paleobiology 10, 246 (1984).
[31] J. T. Weir and D. Schluter, Science 315, 1574 (2007).


	Resonant Activation of Population Extinctions
	Abstract
	Introduction
	Model Description
	Computing mean extinction times
	Fluctuating Environment
	Static Environment
	Direct Simulation

	Results & Analysis
	Case where +=-
	Heuristic Explanation
	Catastrophe case
	Value of the minimum
	Criterion for the existence of a minimum
	Large  expansion.


	Discussion
	Acknowledgements
	References


