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We report on the existence of stable, completely delocalized response regimes in a nonlinear
defective periodic structure. In this state of complete delocalization, despite the presence of the
defect, the system exhibits in-phase oscillation of all units with the same amplitude. This elimination
of defect-borne localization may occur in both the free and forced responses of the system. In the
absence of external driving, the localized defect mode becomes completely delocalized at a certain
energy level. In the case of a damped-driven system, complete delocalization may be realized if the
driving amplitude is beyond a certain threshold. We demonstrate this phenomenon numerically in
a linear periodic structure with one and two defective units possessing a nonlinear restoring force.
We derive closed-form analytical expressions for the onset of complete delocalization and discuss
the necessary conditions for its occurrence.

I. INTRODUCTION

The dynamic response of periodic structures (lattices)
is prone to localization phenomena through different sce-
narios. For linear systems, localization occurs most read-
ily as a result of breaking the periodicity of the system, in
defective or disordered lattices. In a defective system, at
least one unit cell of the lattice is different from the oth-
ers in its inertial or elastic properties and the response
localizes to the defective unit [1]. In a disordered sys-
tem, all unit cells deviate randomly from the reference
unit cell and localization occurs in an ensemble-average
sense [2–4]. For perfectly symmetric lattices, localiza-
tion may still occur if the lattice is nonlinear, resulting
in time-periodic solutions of the system that are local-
ized in space – these are called discrete breathers (DB)
or intrinsic localized modes (ILM). This nonlinear local-
ization phenomena may occur in both free and forced
(externally driven) lattices, as well as infinite or finite lat-
tices [5–7]. Even in a linear lattice, existence of spatially
localized states have been reported in perfectly symmet-
ric systems [8, 9]. These localized states are generated
by manipulating the geometry of the unit cell and corre-
spond to non-dispersive portions of the dispersion rela-
tion known as flat bands; see [10] for more details.
The focus of this work is on the dynamics of one-

dimensional defective lattices. A key characteristic of
defective lattices is the spatial localization of response
amplitude to the defective unit [1]. This localization cor-
responds to existence of a spatially localized mode shape
with a natural frequency that lies outside the phonon
spectrum (pass band) of the system. Defective lattices
have been the subject of various investigations due to
their interesting nonlinear wave dynamics. Examples in-
clude, among many others, stability and bifurcation anal-
ysis of nonlinear defect modes [11], interaction of soli-
tons with defects in photonics [12, 13], breather modes
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in defective granular chains [14–16], nonlinear wave char-
acteristics in defective systems [17], non-destructive de-
fect identification in granular media [18], mechanical sys-
tems with tunable stiffness [19], exploiting the supra-
transmission phenomenon ([20, 21]) in a defective sys-
tem to construct an all-mechanical switch [22], and au-
tonomous magnetomechanical frequency converters [23].
A dynamic response with a spatially localized profile is
the centerpiece in all these examples.
In the present paper, we demonstrate that defect-

borne localization may be completely eliminated by care-
ful placement of a nonlinear element within the periodic
structure. The ensuing delocalized state is stable and has
a spatially uniform profile with all units moving in phase
with each other. We refer to this as the state of complete
delocalization.
As the first step, to introduce the concept of complete

delocalization and the key ingredients, we consider the
simplest defective periodic system that can exhibit this
phenomenon. This is a linear periodic system with a
single nonlinear defect. The mathematical model of this
system is presented in Section II, along with the localiza-
tion norm used in this study. We present the complete
delocalization phenomenon in Section III using numerical
results. In Section IV, we develop closed-form analytical
expression for predicting the onset of complete delocal-
ization and obtain the required necessary conditions in
terms of system parameters. We show in Section V that
complete delocalization may occur in systems with more
than one defects. While the majority of the paper deals
with damped-driven systems, we show in Section VI that
complete delocalization may also be observed in the free
response of the system. We discuss generalizations and
summarize our findings in Sections VII and VIII.

II. MATHEMATICAL MODEL

We consider a one-dimensional periodic structure (lat-
tice) that is subject to uniform, harmonic excitation at all
units. Experimentally, this can be achieved, for example,
via excitation of the base in mechanical structures [24]
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or optically driving a lattice of charges by a harmonic
electric field [25]. We further assume that the periodic
structure is lightly damped and has a finite length (N
units). Although the assumption of finite length is not
a necessary ingredient for realizing complete delocaliza-
tion, it makes the results more readily applicable. Except
for the defective unit, all units are assumed to be linear
and identical. The defect is represented by a nonlinear
restoring force, which includes a non-zero linear compo-
nent. The non-dimensional equations of motion for this
periodic system can therefore be written as follows

ün + 2ζu̇n + knun + kc∆(un) + αnu
3
n
= F cos(Ωt) (1)

where un(t) represents the displacement of the n-th unit
for 1 ≤ n ≤ N and overdot denotes differentiation
with respect to non-dimentional time t. Energy dissi-
pation is modeled as uniform viscous damping in each
unit with coefficient ζ. Adjacent units are coupled lin-
early such that ∆(un) = 2un − un+1 − un−1 for all units
except at the boundaries where ∆(u1) = u1 − u2 and
∆(uN ) = uN −uN−1 (free boundary conditions). kc rep-
resents the strength of coupling between adjacent units.
The external driving force is harmonic, with F and Ω
as its amplitude and frequency. The remaining stiffness
parameters are defined as

kn = 1 + δnnd
kd,

αn = δnnd
αd,

where δnnd
is the Kronecker delta and the defective unit

is located at n = nd. kd and αd characterize the devi-
ations of the elastic restoring force within the defective
unit from the restoring force in other units. For ease of
reference, we attribute this deviation to an internal force
Fd acting within the defective unit that we call the defect
force. This defect force is a function of the motion of the
defective unit only (und

) and can be written as

Fd = Fd(und
) = kdund

+ αdu
3
nd
. (2)

We have chosen the simplest possible form for Fd that
would allow complete delocalization. The defective unit
is a Duffing oscillator [26] that is embedded within a lin-
ear lattice.
We have chosen the following parameters for the peri-

odic system in Eq. (1) throughout the paper: ζ = 0.005
(light damping), kc = 0.01 (weak coupling regime),
N = 14 (finite length). While operating near the anti-
continuum limit (small kc) is not necessary, it helps cap-
ture the dispersion effects of periodicity more easily for
such a short periodic system – also note that realizing
this value for kc is practical [6, 21, 24]. The remaining
parameters are free.
There are various measures for quantifying the degree

of localization. We use the inverse participation ratio [2],
IPR, which is a scalar defined by

IPR =

∑

N

n=1
(v2n)

2

(

∑

N

n=1
v2
n

)2
,

1

N
≤ IPR ≤ 1

where vn are the amplitudes of motion – often IPR is used
for quantifying mode shape localization, in which case vn
would represent an eigenvector of the periodic system. A
value of 1/N denotes a uniform state where all units move
with the same amplitude (complete delocalization) and
a value of 1 denotes the extreme localization state where
all but one unit is motionless. Based on a rescaling of
IPR, we define an alternative measure

M = − logN (IPR), 0 ≤ M ≤ 1 (3)

where M = 1 occurs in the case of complete delocaliza-
tion (uniform response) and M = 0 occurs when only one
unit is moving (complete localization).
In the absence of defect (kd = 0, αd = 0), the resulting

dynamics has a spatially uniform state and M = 1 at any
forcing frequency Ω; i.e. all units exhibiting harmonic,
in-phase motion with identical amplitudes. In a linear
defective system (kd 6= 0, αd = 0), M < 1 at all driving
frequencies Ω. In a nonlinear defective system (kd 6=
0, αd 6= 0), we will show that if kd and αd satisfy a certain
condition, there exists a threshold on F above which it
is possible to obtain complete delocalization (M = 1) at
certain values of Ω.
In this work, we denote the amplitude of vibrations for

the n-th unit by Un and define it as

|Un| =

√

2

T

∫

T

0

u2
n
(t)dt (4)

where T = 2π/Ω is the period of vibrations. The re-
sponse of the system in Eq. (1) can be computed numer-
ically as a family of periodic orbits via pseudo-arclength
continuation technique. Note that these solutions need
not be harmonic and no restriction is imposed by the nu-
merical procedure on the response other than periodicity.
We have used the software package AUTO to perform
these computations. See [27, 28] for further technical de-
tails.

III. DELOCALIZATION IN A LATTICE WITH
A SINGLE DEFECT

We start by considering a linear defective system with
kd = −0.2 and αd = 0. Figure 1 shows the localization
measure M(Ω) for this system for 0.80 ≤ Ω ≤ 1.10. The
insets show the amplitude profiles corresponding to the
maximum and minimum values of M , both occurring in
this frequency range. The amplitude profiles are normal-
ized to vary between 0 and 1. Maximum localization oc-
curs at Ω = 0.9056 with M = 0.0231, with almost all the
energy localized to the defective unit. This localization
can also be understood as the resonance of the defective
unit. Minimum localization occurs at Ω = 0.9598. De-
spite the high value of M = 0.9936 at this frequency, the
amplitude profile is not uniform; neither do units oscil-
late in phase with each other.
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FIG. 1. The localization measure M for a (linear) system
with (nd, kd, αd) = (5,−0.2, 0). The insets show the ampli-
tude profiles corresponding to the maximum and minimum
values of M , denoted by � and � respectively. The ampli-
tude profiles are normalized to have a maximum value of 1.
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FIG. 2. The localization measure for a (nonlinear) system
with (nd, kd, αd) = (5,−0.2, 0.1) for increasing values of forc-
ing amplitude F . The solid portions of each curve denote sta-
ble response and dashed portions denote unstable response.
The linear response is repeated from Figure 1 for comparison.
The inset zooms on the region where the state of complete
delocalization is obtained at M = 1.

Figure 2 shows the localization measure for increasing
values of forcing amplitude F for a nonlinear defective
system with kd = −0.2 and αd = 0.1. As the forcing
amplitude increases, the amplitudes of motion increase
(most importantly within the defective unit) and the non-
linear defect force becomes significant. This results in a
bend in the M(Ω) curve towards higher frequencies due
to the hardening nature of nonlinearity (αd > 0). At
F = 0.010, we observe the influence of nonlinearity as
appearance of additional solutions (bistability) and in-
crease in the minimum value of M in this range com-
pared with the linear solution. Notice that there is little
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FIG. 3. Evolution of the localization measure M(Ω) for the
same system as in Figure 2 as a function of F . As the forcing
amplitude increases beyond a threshold (F > F ⋆ = 0.016),
complete delocalization is achieved at two separate forcing
frequencies. The red curve traces the intersection of M(Ω)
with the M = 1 plane, which is shown separately in Figure 4.
Stability information is not included in this graph.
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FIG. 4. The threshold curve for the same system as in Fig-
ure 2, showing the forcing amplitude threshold for the onset
of complete delocalization as a function of forcing frequency.
The grey curve is obtained from Eq. (9). The black curve is
obtained numerically with M = 1 fixed. The solid portions
denote stable response and dashed portions denote unstable
response. The onset of instability is denoted by a diamond
(cannot be captured by the analytical solution).

change in M where the linear solution had a maximum
near Ω = 0.9598. The additional branch of solutions
grows with increasing F and the localization measure ap-
proaches M = 1 near Ω = 1. We can see this in Figure 2,
where complete delocalization is achieved near Ω ≈ 1 for
F = 0.016. Beyond the delocalization threshold, shown
for F = 0.020, there are two forcing frequencies at which
complete delocalization can be achieved, one below and
one above Ω = 1. For a given forcing frequency, though,
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FIG. 5. Steady state response amplitude of the same system
as in Figure 2 at F = 0.020, above the onset of complete de-
localization. The stable portions of solution are shown using
solid curves and dashed portions denote unstable response.
The defect is located at nd = 5. The inset zooms on the re-
gion where complete delocalization occurs (denoted by empty
green squares), which correspond to |U5| = |U4|. The hori-
zontal black line corresponds to the analytical prediction of
response amplitude at complete delocalization by Eq. (7).

we found only one state of complete delocalization.

Figure 3 shows M(Ω) curves for different values of
F for the same system parameters as in Figure 2. For
F ≥ 0.016, these curves intersect the M = 1 plane, trac-
ing the locus of forcing amplitudes required for the onset
of complete delocalization as a function of forcing fre-
quency. This locus can be obtained as a two-parameter
continuation in F and Ω with M = 1 fixed. This thresh-
old curve lies on the F − Ω plane and is replotted in
Figure 4, including the stability information. We show
in Section IV that the threshold curve is (approximately)
a parabola in the F − Ω2 plane, with its vertex located
slightly below Ω = 1.

Figure 4 shows that the response of the system at the
state of complete delocalization can become unstable (on-
set of instability denoted by a diamond). This instabil-
ity occurs if the forcing amplitude is increased beyond a
certain limit. For a fixed set of system parameters, we
found the onset of instability to depend on the location of
the defective unit. Most notably, this instability is trig-
gered more easily (i.e. at a lower forcing amplitude) if
the defect is located closer to the boundary of the lattice.
The mechanism of instability is a torus (Neimark-Sacker)
bifurcation, where a pair of complex conjugate Floquet
multipliers exit the unit circle into the complex plane.
Further analysis of the bifurcation structure of the re-
sponse near this point is beyond the scope of our current
investigation.

Figure 5 shows the steady state response amplitude
at n = 5 (defective unit) and n = 4. We can see that
the response of the defective unit has bent toward higher

frequencies due to the hardening nature of the nonlinear
force (αd > 0) and, eventually, we have reached a point
where |U5| = |U4| near Ω = 1. Interestingly, this is the
linear natural frequency of the system when kd = 0 = αd,
implying that the defect force Fd is zero at the state
of complete delocalization. We will show in Section IV
that this assumption can predict the onset of complete
delocalization with very good accuracy.
We also note the bistable nature of the response at the

state of complete delocalization in Figure 5. Complete
localization corresponds to the higher-energy state of the
system, which can be reached readily (i.e. without ex-
plicit knowledge of its basin of attraction) by up-sweeping
the forcing frequency.

IV. ANALYTICAL PREDICTION OF THE
ONSET OF COMPLETE DELOCALIZATION

We can predict the onset of complete delocalization
based on the nature of the response at M = 1. In the
linear system, complete delocalization can only be ob-
tained in a perfectly periodic system. All units vibrate
with equal amplitudes and phases, and the solution can
be written as

un(t) = U0 exp (iΩt) (5)

where U0 is the uniform (complex-valued) amplitude of
motion. Substituting this solution into the governing
equations with kd = 0 = αd, we obtain the following

U0 =
F

1− Ω2 + 2iζΩ
(6)

which is the familiar steady-state response of a single lin-
ear oscillator. Without loss of generality, we can assume
that F is real-valued. It is important to note that the
coupling force vanished in the state of complete delocal-
ization because adjacent units move in phase with each
other; in other words, the coupling springs are not en-
gaged at all.
In the case of a linear defect (Figure 1), as expected,

neither the phase nor the amplitude of motion are equal
among different units. Upon introduction of the nonlin-
ear defect force, however, it becomes possible to achieve
the state of complete delocalization again. This occurs
because the defect force may vanish beyond a certain
force threshold. Given that the response of the sys-
tem is described by Eq. (5) in this state, we can obtain
the conditions for complete delocalization by substituting
Eq. (5) into Eq. (2) and setting Fd = 0.

Fd ≈ (kd + 3/4αd|U0|2)U0 exp(iΩt) = 0

which results in

|U⋆

0 | =
√

−4kd
3αd

(7)
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where |U⋆
0 | denotes the amplitude of motion at the onset

of complete delocalization. Note that the harmonic ap-
proximation used in the above analysis is valid for small
(but finite) amplitudes of motion, and that the higher
harmonics generated by the cubic nonlinearity have been
neglected (the rotating wave approximation).
We can immediately see from Eq. (7) that a necessary

condition for realizing complete delocalization is that

kdαd < 0 (8)

Based on Eq. (7), the onset of complete delocalization
occurs at the same amplitude of motion for all forcing fre-
quencies. One would therefore expect all the points along
the threshold curve in Figure 4 to have the same ampli-
tude predicted by Eq. (7). We found that the value of
|U⋆

0 | based on numerical computations of Figure 4 (aver-
aged over all units and forcing frequencies) is 1.2% lower
than the predicted value in Eq. (7). We attribute this
discrepancy mainly to the harmonic approximation used
in the analysis and, to a lesser extent, to the fact that
we used M = 0.99999 for numerical computation of the
threshold curve.
Given that the defect force is zero in the state of com-

plete delocalization, the expression in Eq. (6) remains
valid for |U⋆

0 |. We can therefore use Eqs. (6) and (7) to
obtain an expression for F ⋆, the force threshold at the
onset of complete delocalization, as follows

F ⋆ = |U⋆

0 |
√

Ω⋆4 − 2(1− 2ζ2)Ω⋆2 + 1 (9)

Eq. (9) describes the threshold curve in the F −Ω plane,
as shown in Figure 4. Of course, the location of the
secondary instability points (torus bifurcations) shown in
Figure 4 cannot be predicted using the present analysis.
The minimum forcing amplitude at which complete de-

localization occurs (Fcr) can be obtained from Eq. (9) as

Fcr = min (F ⋆) = 2|U⋆

0 |ζ
√

1− ζ2 (10)

The corresponding critical forcing frequency is

Ωcr =
√

1− 2ζ2 (11)

The point (Fcr,Ωcr) is the vertex of the threshold curve
in Figure 4.
We note that the location of the defect (nd) and the

length of the periodic system (N) do not play a role in
the analysis above. This can in part be justified by re-
calling that, at the state of complete delocalization, the
system has a uniform in-phase response across all units
such that the coupling force vanishes. In this state, thus,
adjacent units are not coupled to each other. We have
indeed verified this numerically by computing the thresh-
old curves for 1 ≤ nd ≤ 7 and calculating the relative
standard deviation between these curves (standard devi-
ation divided by the mean value) as a function of Ω. We
found the relative standard deviation to be smaller than
0.03% for the left portion (Ω < 1) of the threshold curves
and increasing to 0.28% in the right portion (Ω > 1),

where higher-order nonlinear effects appear. This con-
firms that, to a first approximation, the location of the
defect has a negligible effect on the threshold curve. It
is worth recalling that we found the main influence of
nd and N in triggering secondary instabilities, as already
discussed in Figure 4.

V. DELOCALIZATION IN A LATTICE WITH
TWO DEFECTS

Complete delocalization may also be realized in a lat-
tice with multiple defects, provided that the conditions
derived in Section IV are satisfied. We show this in a
system with two defective units. We consider the defects
to have the same nature as the one in Section II: de-
viations in their elastic properties with respect to that
of other units. To characterize these deviations, we at-
tribute them to internal forces acting within the defective
units that we call defect forces. We consider the defect
forces to have the same functional form as in Eq. (2) and
denote them by Fd1 and Fd2, acting respectively on units
nd1 and nd2.
In the state of complete delocalization, we expect the

periodic system to have a uniform, in-phase amplitude
profile with M = 1. Following the same procedure as in
Section IV, we arrive at the same expressions as in Eq. (7)
for the amplitudes of motion at which the two defect
forces vanish. Equating these amplitudes, we arrive at
the following condition for complete delocalization:

kd1
αd1

=
kd2
αd2

(12)

To demonstrate complete delocalization in a lattice with
two defects, we take (nd1, kd1, αd1) = (5,−0.2, 0.1), iden-
tical to the defect used in Section III. The second defect
is described by (nd2, kd2, αd2) = (7,−0.3, 0.15), in accor-
dance with Eq. (12). For clarity of demonstrations, we
chose kd2 such that the two defect frequencies are visibly
separate and lie below the pass band (see Figure 6(a)).
Although there is no restriction on the relative signs of
kd1 and kd2, realizing kd1kd2 < 0 experimentally might
be unnecessarily cumbersome, if not impractical. Also,
the main effect of nd2 is in determining the stability of
the response, similar to what we observed for a single de-
fect. All other system parameters are the same as those
used in Section III.
Figure 6(a) shows the evolution of M as a function

of forcing parameters Ω and F . For the linear lattice
(black curve with square marker), there are two main lo-
calized states, each corresponding to localization to one
of the defect sites. The corresponding amplitude pro-
files are shown in Figures 6(b) and 6(c). As F increases,
the nonlinear forces become significant, resulting in in-
crease of the defect natural frequencies (αd1>0, αd2>0).
This manifests in Figure 6(a) as bending of the re-
sponse curve at locations corresponding to the two de-
fects for F = 0.005 (green curve with up-triangle marker)
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FIG. 6. Complete delocalization in a lattice with two defects, nd1 = 5, nd2 = 7. (a) M(Ω) for increasing values of F ; (b)
evolution of the amplitude profiles for the nd2-localized mode; (c) evolution of the amplitude profiles for the nd1-localized
mode; (d) M(Ω) at F = 0.016 near the region where complete delocalization occurs; (e) amplitude profiles for the three stable
solutions at complete delocalization. All amplitude profiles are normalized to have a maximum value of 1. The markers in (b),
(c) and (e) correspond to points in (a) and (d).

and F = 0.010 (blue curve with down-triangle marker.
The amplitude profiles corresponding to these points are
shown in Figures 6(b) and 6(c), where we can notice the
decrease in the degree of localization as F increases. As
we reach F ⋆ ≈ 0.016, the branch corresponding to the
nd1-localized mode reaches M = 1 near Ω ≈ 1 and the
state of complete delocalization is achieved (red empty
circles in Figures 6(a) and 6(d)).
Figure 6(d) zooms on the M(Ω) curve at F = 0.016

near Ω = 1, where complete delocalization occurs. Notice
that the system has three stable periodic solutions (limit
cycles) in this region. Figure 6(e) shows the amplitude
profiles of the delocalized state along with the other two
stable solution at the same frequency Ω⋆. Only one of
these three stable solutions corresponds to a delocalized
state; similar to the single-defect case, the higher-energy
state is delocalized (cf. Figure 5).
We note that there is no particular link between re-

sponse tristability and complete delocalization. Indeed,
we can see regions of tristability in Figure 6(a) for both
F = 0.010 and F = 0.016. A tristable region occurs due
to energy dependence of response, in the same spirit that
the commonly-known nonlinear bistability occurs. The
occurrence of tristability in driven periodic systems was
previously shown theoretically and experimentally in a
chain of coupled pendula [29].

The threshold curve for the onset of complete delocal-
ization (the locus of M = 1 in the F − Ω plane) was
computed in the same way as described in Section III.
The resulting threshold curve is similar to Figure 4 and
is not shown again. We found two major differences
between the threshold curves of the single-defect and
double-defect systems: (a) the frequency at which insta-
bilities occur along the right half of the threshold curve
(Ω > 1), though the instability mechanism remains the
same; (b) the threshold curve for the double-defect sys-
tem terminated at Ω ≈ 1.01 near a torus (Neimark-
Sacker) bifurcation point. We were not able to find a
state of complete delocalization at higher frequencies. A
detailed analysis of the bifurcation structure near this
point lies beyond the framework of our current study.

VI. DELOCALIZATION OF THE FREE
RESPONSE

Complete delocalization may also be observed in the
free response of an undamped system; i.e. F = 0, ζ = 0 in
Eq.(1). At low energies (motions with small amplitudes),
the system has N normal modes with frequencies ωn. As
the energy of the system increases, these modes evolve
and the defect mode may reach the state of complete
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FIG. 7. Evolution of the defect mode as a function of energy.
The inset shows the amplitude profiles corresponding to the
markers in the main graph. All amplitude profiles are normal-
ized to have a maximum value of 1. M = 0.25 at the point
with blue down-triangle marker, while both the magenta up-
triangle and green hexagonal markers correspond to the same
value of M = 0.77.

delocalization.
In the absence of defect (kd = 0, αd = 0), we have

1 ≤ ωn <
√
1 + 4kc and the lowest mode ω1 = 1 is

completely delocalized. Upon introduction of a linear
defect (kd 6= 0, αd = 0), one of the modes becomes
strongly localized to the defective unit, with its natu-
ral frequency lying outside the pass band (phonon spec-
trum). For kd = −0.2 < 0 used in this study, we have
ωd = 0.905 < 1 and M = 0.004 for the linear local-
ized mode. For the nonlinear defective system (kd 6= 0,
αd 6= 0), the defect mode delocalizes as the amplitudes
of motion increase until M = 1 is reached at a specific
energy level. Simultaneously, the defect frequency ωd in-
creases with energy and approaches 1, which is the first
natural frequency of the defect-free system.
Figure 7 shows the evolution of the defect mode as a

function of the total energy in the system, E, along with
the amplitude profiles at different energy levels. We have
defined E as

E =
1

N

N
∑

n=1

|Un|2

where |Un| is defined in Eq. (4). For small energies
(E < 0.1), the nonlinear force in the defective unit is
negligible and the response of the system is very similar
to that of the linear system (grey square marker). As
energy increases more, the nonlinear defect mode grad-
ually delocalizes until it reaches complete delocalization
(uniform, in-phase vibration) at E⋆ = 2.64. The de-
fect mode re-localizes beyond this point with a different
amplitude profile (green hexagonal star). We have not
investigated the evolution of the defect mode beyond the
point of complete delocalization.

It is worth noting that the amplitude at which com-
plete delocalization occurs, and the corresponding energy
value E⋆, agree very well with the analytical prediction
in Eq. (7). The difference between the analytical and
numerical values of |U⋆

0 | is about 0.5%. This is the am-
plitude at which the defect force Fd vanishes.
We also computed the nonlinear evolution of defect

modes in the double-defect system of Section V. We
found that the first defect mode (localized to nd1) be-
came completely localized at the predicted energy level
E⋆, while the second defect mode (localized to nd2) did
not delocalize completely. The second mode reached the
maximum value of M = 0.862 at E = 4.02 > E⋆. These
results are in agreement with the findings of Section V.

VII. DISCUSSION

We presented the complete delocalization phenomenon
in a very basic setting: a one-dimensional linear periodic
system possessing a nonlinear defect with cubic restoring
force – see Eqs. (1–2). We found the principle ingredient
for occurrence of complete delocalization to be a van-
ishing defect force. This condition is indeed not limited
to the setting described by Eqs. (1–2). For example, if
the main lattice (i.e. apart from Fd) is nonlinear, one
would still expect that obtaining the state of complete
delocalization is possible provided that the defect force
is chosen carefully. There would be more possibility of
nonlinear resonances in this scenario, and care should be
taken to avoid them. Another generalization is to lat-
tices with multiple defects. The case of two defects was
presented in Section V. The condition for complete de-
localization in Eq. (12) extends to lattices with multiple
defects provided that the defect force has the same form
as in Eq. (2).
We used free-free boundary conditions to ensure that

the first mode of the defect-free lattice (Fd = 0) is in-
deed described by Eq. (5). This mode is completely de-
localized and remains unchanged as N varies; thus, it
coincides exactly with the lower edge mode of the same
lattice with infinite units. For other boundary conditions
(e.g. fixed boundary conditions), the first mode of the fi-
nite lattice cannot be described by Eq. (5) and a uniform
response amplitude cannot be realized in the finite lat-
tice even in the absence of defect. Although using a peri-
odic boundary condition would also be feasible (a ring ar-
rangement), its experimental realization is more involved
than a free-free boundary condition; e.g. see [21, 24] for
straight-forward realizations of free boundary conditions
in base-driven mechanical systems. A very good candi-
date for experimental realization of complete delocaliza-
tion is a chain of coupled cantilevers with controllable
magnet-induced nonlinear defect force.
Although we studied complete delocalization in the

weak coupling regime (small kc), there are no restric-
tions on the strength of coupling. We verified this by
computing the evolution of the defect mode in the same
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system as in Figure 7 but with kc = 0.10: we obtained
the same result. This happens because ∆(un) = 0 in
Eq. (1) in the state of complete delocalization; thus, the
coupling forces vanish. In this sense, the units become
effectively decoupled. This also explains why the length
of the lattice (N) and the location of the defect(s) within
the lattice (nd) do not change the threshold curves; they
only influence the stability of delocalized solutions.

The strength of coupling is important – from a purely
linear perspective – in relation to the linear portion of the
defect force, determined by kd. The main parameter in
this sense is the ratio kd/kc. For otherwise fixed system
parameters, the influence of the defect force on the linear
dynamics of the lattice decreases as kd/kc is decreases.
Notice that this has no phenomenological bearing on real-
izing the state of complete delocalization described here.

An important consideration in complete delocalization
is to distinguish between hardening (αd > 0) and soft-
ening (αd < 0) types of nonlinearity. The obvious con-
sideration is given by Eq. (8) that ensures the nonlinear
component of the defect force can cancel its linear com-
ponent. An inconspicuous consideration, on the other
hand, comes from the relation of the defect frequency
with respect to the pass band. For a defect with harden-
ing nonlinearity, the defect frequency is below the pass
band (ωd < 1) and the instabilities in the threshold
curve appear on the opposite side of the pass band (i.e.
for Ω > 1) – see Figure 4. We made a similar obser-
vation in a system with a softening defect nonlinearity,
(nd, kd, αd) = (5, 0.2,−0.1), where ωd >

√
1 + 4kc. The

numerically computed threshold curve for this system
was the same as the one shown in Figure 4, except for
the stability information. In the softening system, the
solution along the threshold curve (i.e. the completely
delocalized solution) lost stability through a Neimark-
Sacker bifurcation close to the upper edge of the pass
band and remained unstable for all forcing frequencies
below that.

The analysis of the nonlinear evolution of defect modes
of the system, i.e. the free-response analysis, can pro-
vide useful insights into the complete delocalization phe-
nomenon, as seen in Section VI. We found the analysis
of free response to be more straight forward for finding
completely delocalized states. From a practical point of
view, however, capturing the nonlinear behavior of nor-
mal modes is not an easy task, at least in mechanical sys-
tems. The stability of completely delocalized solutions is
also less problematic in driven systems due to presence
of damping.

When analyzing the free response of the softening sys-
tem, we were not able to reach complete delocalization
in the system. The defect mode delocalized considerably
as a function of energy, reaching a maximum value of
M ≈ 0.85 at E ≈ 1.79. This is the value of M for the
N -th mode of the linear defect-free system. We note that
the defect modes approach the closest linear mode of the
defect-free system as E increases. This is the lower edge
mode for the hardening system and the upper edge mode

in the softening system. Only the lower linear edge mode
is completely delocalized in the defect-free system. Thus,
we could only observe complete delocalization in the free
response of the system with hardening nonlinearity. This
also explains why only the first mode of the double-defect
system could delocalize completely.
Up to here, our discussion of complete delocalization

was exclusively focused on the first (in-phase) mode of
the periodic system, described by Eq. (5). This is because
complete delocalization as described by M = 1 can only
be achieved by the in-phase mode in a free-free lattice. In
order to make generalizations to other modes, we recall
that complete delocalization is accompanied by vanishing
of defect forces (Fd = 0). With that in mind, we can
view complete delocalization as retrieval of the linear,

defect-free response within a nonlinear, defective lattice.
In this generalized perspective, the previous condition of
M = 1 becomes a special case ofMnonlinear = Mlinear. An
example of this generalization was given in the previous
paragraph for the out-of-phase mode of a softening lattice
where the linear defect-free modes of the system were
reached at E ≈ 1.79.
In principle, it should be possible to extend this gen-

eralization to the case of a force-damped system. This
would be achieved by modifying the external force such
that it could excite other lattice modes: replacing the
right-hand side of Eq. (1) with fn cos(Ωt), where fn is
proportional to one of the mode shapes of the system.
In practice, however, this is limited to exciting either the
in-phase or out-of-phase mode. The analysis of gener-
alized complete delocalization for the out-of-phase mode
(π-mode) is also tractable analytically. In this case, we
would replace Eq. (5) by un(t) = U0(−1)n exp(iΩt) and
follow the same procedure as in Section IV. Of course,
one major difference here would be that the strength of
coupling plays a very significant role. It is not clear to us
if a similar analysis could be easily extended to the other
modes of the system.
Finally, we demonstrated the existence of stable, com-

pletely delocalized states in a defective lattice using nu-
merical simulation and approximate analysis. Neverthe-
less, from a purely mathematical perspective, an exact
analytical proof remains to be presented.

VIII. CONCLUSION

We introduced the phenomenon of complete delocal-
ization in a nonlinear defective lattice. This refers to
existence of a stable response regime within a defective
periodic system that is characterized by a spatially uni-
form amplitude and phase profile. We showed that the
spatially-localized response associated with the presence
of a linear defect may be eliminated by careful placement
of a nonlinear element within the defective unit. Energy
is uniformly distributed throughout the lattice in the en-
suing delocalized state.
Complete delocalization may be observed in both the
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free and forced responses of the periodic system. In
damped-driven systems, the elimination of defect-borne
localization may be realized provided that the driving
amplitude is beyond a certain threshold. In the free
response of the system, the defect modes become com-
pletely delocalized at a certain energy level.
We characterized the defects as internal forces acting

within the defective units. We showed that complete de-
localization occurs when these defect forces vanish. This
allowed us to develop closed-form analytical expressions
to predict the onset of complete delocalization and ob-
tain necessary conditions for the phenomenon to occur.
Our analytical results showed excellent agreement with
numerical analysis of the system. We further generalized
the concept of complete delocalization as retrieval of the
linear defect-free response within a nonlinear defective

system.

Experimental realization of the complete delocaliza-
tion phenomenon is in progress. Complete delocalization
(and its generalization) opens new avenues for manipu-
lating the propagation of mechanical waves in phononic
crystals and mechanical metamaterials.
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