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Classical ground states (global energy-minimizing configurations) of many-particle systems are
typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside
from trivial symmetry operations). By contrast, the few previously known disordered classical
ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we
show computationally that our recently-proposed “perfect glass” many-particle model [Scientific
Reports, 6, 36963 (2016)] possesses disordered classical ground states with a zero entropy: a highly
counterintuitive situation, which has heretofore never been identified. For all of the system sizes,
parameters, and space dimensions that we have numerically investigated, the disordered ground
states are unique such that they can always be superposed onto each other or their mirror image.
At low energies, the density of states obtained from simulations matches those calculated from the
harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our
discovery provides singular examples in which entropy and disorder are at odds with one another.
The zero-entropy ground states provides a new perspective on the celebrated Kauzmann-entropy
crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal.
We expect that our disordered unique patterns to be of value in cryptography as pseudo-random
functions with tunable computational complexity.

I. INTRODUCTION

The classical ground states of many-particle systems
are typically crystals consisting of periodically replicated
energy-minimizing local geometries with high symmetry.
The ability for the particles to attain and display long-
range order (Bragg diffraction) becomes the likely pro-
cedure for those models to attain their ground state. A
specific system at a specific density usually possesses a
unique crystal ground state, aside from trivial symmetry
operations. Therefore, the “enumeration entropy”

SE = kB lnΩE (1)

is zero for such ground states. Here ΩE is the number
of distinct accessible structures and kB is the Boltzmann
constant.
The fact that ground states of many-body systems can

be disordered have intrigued condensed-matter physi-
cists. Although quantum effects are the cause of ground-
state disorder in many systems (for example, helium un-
der normal pressure [1] and certain spin systems [2–5]),
classical systems can also have disordered ground states
[6–13]. A ground state of a classical many-particle or
spin system is simply a global minimum of the potential
energy. For classical many-particle systems in Euclidean
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spaces, all known examples of disordered ground states
possess high enumeration entropy, in the sense that there
exists an uncountable collection of geometrically inequiv-
alent ground-state configurations. Here, “inequivalent”
configurations are those that are not related to each other
by trivial symmetry operations, which includes transla-
tions, rotations, and inversions (illustrated in Fig. 1).
Such examples include equilibrium hard-sphere systems
away from jammed states [7] and particles interacting
with “stealthy” and related collective-coordinate poten-
tials [10–14]. While the former situation is trivial in
that any nonoverlapping configuration counts as a ground
state, the latter systems are less so because certain non-
linear constraints are imposed on the configuration. De-
pending on the specific constraints, the latter interactions
can create “stealthy” systems [13], “super-ideal gases”
[11], “equi-luminous materials” [11], as well as other un-
usual ground states [10, 12].

It it natural to expect that the entropy of these disor-
dered ground states is large and extensive for two reasons.
First, entropy has often been associated with the amount
of disorder in a system. It was not until 1949 that On-
sager realized that entropy and disorder are not always
directly related to one another by showing that the en-
tropy of a fluid of hard needles can increase when the nee-
dles tend to align with one another, thereby increasing
the orientational order of the system [15]. Hard spheres
also undergo an entropically driven disorder-order phase
transition at sufficiently high densities [16, 17]. Second,
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as the aforementioned examples illustrate, the tendency
for ground states to be disordered is caused by the na-
ture of the interactions, which allows certain individual
or collective displacements of particles without causing
any change in the energy. A ground-state configuration
can thus move in these unconstrained directions of the
configuration space, and thus become pattern-degenerate
with large and extensive entropy. Here we define a set of
ground states to be pattern-unique if all of the ground
state structures are equivalent, and pattern-degenerate
otherwise [18].

In this paper, we demonstrate that our recently-
proposed “perfect glass” many-particle model [19] sur-
prisingly possess classical ground states that are coun-
terintuitively disordered with zero enumeration entropy.
Perfect glasses are distinguished from normal glasses and
other amorphous solids in that they are by construction
hyperuniform (anomalously suppress large-scale density
fluctuations), as defined by a static structure factor that
tends to zero in the infinite-wavelength limit [20]; see
Refs. 21–24 for recent developments on disordered hy-
peruniform systems. Moreover, since perfect glasses can
never crystallize or quasicrystallize at zero or any pos-
itive temperature [19], they circumvent the Kauzmann
entropy crisis in which the extrapolated entropy of a su-
percooled liquid drops below that of the crystal [25]. By
contrast, traditional glasses have been venerably under-
stood as liquids kinetically arrested from cooling that are
metastable with respect to a crystal [26–30]. The unique
disordered ground states of “perfect glass” models are to
be contrasted with zero-entropy crystals and quasicrys-
tals that possess high symmetry and long-range transla-
tional and/or rotational order. Thus, these disordered
ground states can be fertile area for future research in
disciplines beyond physics.

It is noteworthy that unlike spin-glass models [6],
perfect-glass interactions treat all particles equally and
thus does not introduce disorder by the intrinsic random
nature of the interactions; unlike the low-correlation spin
model [8, 9], the ground state is pattern-unique for all
finite system sizes we have studied, and is therefore ex-
pected to be pattern-unique in the infinite-system-size
limit.

The rest of the paper is organized as follows: In Sec. II,
we provide basic definitions. In Sec. III, we numerically
show that perfect-glass ground states are pattern unique
by enumerating the minima of the potential energy sur-
face. In Sec. IV, we compute the density of states of
perfect glasses as a function of the potential energy with
two different approaches: one assuming ground-state pat-
tern uniqueness, and another without such assumption.
We show that the results from these two different ap-
proaches are in excellent agreement, which confirms the
ground-state pattern uniqueness. In Sec. V, we provide
conclusions and discuss the broader implications of our
findings.

Translation

Rotation

Invertion

FIG. 1. Illustration of the three pattern-preserving symmetry
operations. Two configurations have the same pattern if they
are related to each other through any combination of these
three symmetry operations.

II. BASIC DEFINITIONS

For a single-component system with N particles lo-
cated at r1, r2, · · · , rN , in a simulation box of volume
V with periodic boundary conditions in a d-dimensional
Euclidean space Rd, the static structure factor is defined
as

S(k) =

∣

∣

∣

∑N
j=1 exp(−ik · rj)

∣

∣

∣

2

N
, (2)

where i is the imaginary unit and k is a d-dimensional
wavevector (which must be integer multiples of the re-
ciprocal lattice vectors of the simulation box).
The perfect-glass interaction potential [19] has either a

direct-space or Fourier-space representation. In the latter
case, we have

Φ(r1, r2, · · · , rN ) =
∑

0<|k|<K

ṽ(k)[S(k) − S0(k)]
2 (3)

attempts to constrain the static structure factor, S(k) =
|∑j exp(irj ·k)|2/N , to a target function S0(k), for all k
vectors within a certain distance K from the origin; and
assigns energy penalties, adjusted by a weight function
ṽ(k), if such constraints are violated. Here rj is the loca-
tion of the jth particle, k is a wave vector, N is the total
number of particles, and α is a positive parameter we
can choose freely. Following Ref. 19, we use S0(k) = |k|α
and ṽ(k) = (K/|k| − 1)3. The two multiplicative factors
in the summand of Eq. (3) are illustrated in Fig. 2. In
general, other forms of S0(k) and ṽ(k) may also be used,
but the particular form was chosen to realize hyperunifor-
mity. The direct-space representation of the perfect-glass
potential (3) involves a sum of two-body, three-body, and
four-body interactions [10].
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FIG. 2. Shaded-area illustration of the two multiplicative con-
tributions of the potential energy, defined in Eq. (3). Notice
that even though the target structure factor S0(k) is mono-
tonic in k, the actual structure factor S(k) deviates from it
and develops peaks, the first of which is shown here.

We define χ to be the ratio of the number of con-
strained degrees of freedom to the number of independent
degrees of freedom [19]. When χ is larger than unity,
the system runs out of degrees of freedom and becomes
glassy, i.e., develops a complex energy landscape with
multiple energy minima, and a positive shear modulus
[19]. This model completely banishes crystalline struc-
tures at any nonnegative temperature, since the existence
of Bragg peaks would make the potential energy infinite
[19].

III. ENUMERATION OF THE ENERGY

MINIMA

We numerically study the classical ground states of the
perfect-glass interactions and demonstrate their pattern
uniqueness by showing that the enumeration entropy, de-
fined by relation (1), is zero. We minimize the potential
energy, using the low-storage BFGS algorithm [31–33],
starting from random initial configurations, to find local
minima of the potential energy surface. A random local
minimum of the potential energy surface is deemed to
be reached once the energy minimization routine finishes
with a stringent tolerance of δΦ = 10−11. Therefore, by
repeating this process a sufficient number of times, we ex-
pect to find the global minimum of the potential energy
surface. After 107 to 109 independent energy minimiza-
tion trials, a lowest energy is achieved at least 10 times,
but often more than 103 times (see Appendix A for de-
tails). Presumably, this is the ground state energy. Sub-
sequently, we compare the ground-state configurations
for pattern uniqueness. A particular ground-state con-
figuration is taken to be a comparator, and then we com-
pare it to every other ground-state configuration. Us-
ing an algorithm detailed in Appendix B, we attempt to
find a translation, a rotation, and/or an inversion so that
after these symmetry operations the comparator super-
poses onto the original ground state. After these symme-
try operations are performed, if each particle in the com-
parator is within 10−5L distance to a particle in the other
ground state, then the two ground states are deemed to
have the same pattern. Here L denotes the side length
of the simulation box. The ground state is considered

FIG. 3. The disordered unique ground states of the perfect-
glass potential for (top) d = 1, α = 6, χ = 1.75, and N = 70;
(bottom left) d = 2, α = 6, χ = 1.87, and N = 40; and
(bottom right) d = 3, α = 6, χ = 1.75, and N = 30. These
figures illustrate a point presented in Ref. 19, namely, the
particles experience a pair repulsion that is clearly observed
when one calculates the pair correlation function.

pattern-unique if all of the ground-state configurations
have the same pattern as the comparator.
We studied a total of 60 different combinations of pa-

rameters (d, α, χ, andN); see Appendix A for a complete
list. These cases cover wide ranges of N (between 10 and
70, including both prime N ’s and composite N ’s), α (be-
tween 0.5 and 6), and χ (between 1.7 and 2), in one, two,
and three dimensions. For all cases, the ground state was
found to be disordered and pattern-unique. The discov-
ered ground states of the largestN cases in the first three
space dimensions are presented in Fig. 3.
Besides the ground states, we also study other minima

of the potential energy surface. As Fig. 4 shows, as N
increases, the success rate (the probability that one finds
the ground state through an energy minimization trial)
decreases exponentially, and the number of discovered
energy minima increases exponentially. This exponential
rise of the number of higher minima is in agreement with
what one has topographically for real glass formers [34].
Compared to the α = 1 case, the α = 6 case possesses a
higher success rate and fewer distinct energy levels. This
is also expected because as we have discovered earlier,
increasing α increases geometrical order in these glasses
[19]. Finally, Fig. 4 also shows that the ground state
energy is roughly proportional to N for both α values we
presented.

IV. CALCULATION OF THE DENSITY OF

STATES

To further confirm ground-state uniqueness, we have
also performed Wang-Landau Monte Carlo (WLMC)
simulations on a perfect-glass system with d = 2, α = 1,
χ = 1.89, and N = 10. The WLMC algorithm allows
one to calculate the density of states g(E) as a function
of the potential energy [35] (or equivalently, the hyper-
area of an iso-energy surface in the configuration space).
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FIG. 4. (left) The probability of finding the ground states by energy minimization for d = 1, χ = 2.00, α = 1 and 6, and
10 ≤ N ≤ 30. (middle) The number of distinct energy local minima found by 107 repeated energy minimizations for the same
systems. (right) The ground-state energy of the same systems.

Alternatively, for energy values very close to the ground
state, one could also calculate g(E) from the eigenval-
ues of the Hessian matrix by treating the system as an
harmonic oscillator around the ground state. As detailed
below, after considering the aforementioned trivial sym-
metry operations, we find very good agreement between
the calculated g(E)’s from these two approaches, further
verifying ground-state uniqueness.

A. Density of states g(E) from the harmonic

approximation

In this subsection, we calculate g(E) using the har-
monic approximation. For a d-dimensional configuration
ofN particles, the configuration space is dN -dimensional.
Of these dN directions of the configuration space, d direc-
tions correspond to translations of the whole configura-
tion, which cause no energy change. The other d(N − 1)
directions correspond to deformations, which generally
change the potential energy. Near the classical ground
state, such changes can be quantified by the eigenvalues
of the Hessian matrix, λ1, λ2, · · · , λd(N−1). Let E denote
an energy that is slightly above the ground-state energy,
E0, the portion of the configuration space with potential
energy Φ ≤ E is given by the equation

E ≥ E0 +
λ1

2
x2
1 +

λ2

2
x2
2 + · · ·+ λd(N−1)

2
x2
d(N−1), (4)

where x1, x2, · · · , xd(N−1) are the deformations along
each eigenvectors of the Hessian matrix. Equation (4)
specifies a d(N − 1)-dimensional ellipsoid, for which the
hypervolume is

Vvibrational =
πd(N−1)/2

Γ(1 + d(N − 1)/2)

d(N−1)
∏

j=1

√

2δE

λj
, (5)

where πd(N−1)/2

Γ(1+d(N−1)/2) is the volume of a d(N − 1)-

dimensional hypersphere of unit radius and δE = E−E0.
To obtain the total volume of the configuration space

for which Φ ≤ E, one need to multiply Eq. (5) with a few

additional factors to account for trivial symmetry oper-
ations. First, there are d independent translations, each
contributes a factor of

√
NL, where L is the side length

of the simulation box. The factor
√
N comes from the

fact that translations correspond to diagonal movements
in the configuration space. An additional factor, f , that
depends on the space dimension and the simulation box
shape, also needs to be included to account for rotations
and inversions. For d = 2 with square box, f = 8, since
such boxes allow rotations of 0◦, 90◦, 180◦, and 270◦, and
a combination of any rotation with an inversion. Lastly,
particle permutations contribute a factor of N !. Overall,
the total volume in the configuration space is

V = Nd/2V fN !
πd(N−1)/2

Γ(1 + d(N − 1)/2)

d(N−1)
∏

j=1

√

2δE

λj
, (6)

where V = Ld is the volume of the simulation box.
The density of states is the surface area of the total

volume in the configuration space for which Φ ≤ E to E,
and is therefore the derivative of V to E.

g(E) =
dV
dE

= Nd/2V fN !
πd(N−1)/2

Γ(1 + d(N − 1)/2)




d(N−1)
∏

j=1

√

2

λj





d(N − 1)

2
δEd(N−1)/2−1.

(7)

B. Density of states g(E) from Wang-Landau

Monte Carlo simulations

We now use the Wang-Landau Monte Carlo (WLMC)
algorithm to calculate g(E) for the perfect-glass system.
To do so, we first divide the energy range E0 ≤ Φ < 105

into Nbin = 2 × 104 bins that are equidistant in a loga-
rithmic scale. Let the minimum and maximum energies
of a bin be Emin and Emax, the WLMC algorithm al-

lows one to calculate gbin = c

∫ Emax

Emin

g(E)dE over ev-

ery bin, where c is an unknown constant independent
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of the bin [35]. We then determine c by the condition

V N =

∫ ∞

E0

g(E)dE =
∑

gbin, where the upper limit

of the integration can be replaced with 105, since g(E)
turns out to be negligible for very large E. We finally di-
vide gbin with (Emax −Emin) to find out g(E) at each
bin.
We perform a total of 1500 stages of Monte Carlo

simulations, each consisting of Ntrial = 4 × 107 trial
moves. In each trial move, a random particle is moved
by a distance of xyL in every direction, where x is uni-
formly distributed between -1 and 1, y have 50% proba-
bility of being 0.2 and 50% probability of being 0.002,
and L is the side length of the simulation box. The
WLMC algorithm has a tuning parameter, called the
“modification factor” in [35], that affects its efficiency
and accuracy. Following Ref. 36, we let this factor be
f = exp{max[2Nbin/(Ntriali), exp(−0.1i)]} at the ith
stage, where max(a, b) denotes the maximum value be-
tween a and b.
We have performed two independent runs of the sim-

ulations detailed above. The resulting g(E) is presented
in Fig. 5 and compared with the g(E) obtained from the
harmonic approximation. At the lowest energies, g(E)
from both runs agree very well with that from the har-
monic approximation, differing by less than 12%. If the
ground state was 2-fold degenerate, there would be a two-
fold difference between the calculated g(E). This verifies
the uniqueness of the perfect-glass ground state.
From the density of states, we have also calculated the

excess isochoric heat capacity CV of the system, which is
given by

CV =
d < Φ >

dkBT
, (8)

where

< Φ >=

∫

Eg(E) exp(−E/kBT )dE
∫

g(E) exp(−E/kBT )dE
. (9)

The heat capacity, presented in Fig. 6, starts at the har-
monic value at T = 0, and begins to rise because the
shape of the potential energy landscape is such that the
effective harmonic force constants are reduced in order to
produce transition pathways to neighboring minima. The
reduction of the local effective force constants increases
the amount of configuration spaces associated with that
particular level of the potential energy, and therefore in-
creases the heat capacity. Eventually, CV levels off and
decreases because the energy landscape becomes irrele-
vant at very high temperature.

V. CONCLUSIONS AND DISCUSSION

To summarize, all previously known disordered clas-
sical ground states are caused by interactions that al-
low continuous configurational deformations without en-
ergy change. These deformations also cause the ground
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FIG. 5. (Top) Natural logarithm of the density of states,
g(E), from two independent runs of WLMC simulations, and
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state to possess large and extensive entropy. Instead of
the previous approach, here we create disordered classi-
cal ground states by penalizing crystalline order, causing
no ground-state degeneracy. These zero-entropy ground
states are in sharp contrast with zero-entropy crystalline
ground states, since the latter possess very high symme-
try and long-range translational and rotational order.

Our discovery of unique disordered ground states im-
pinge on the famous Kauzmann glass paradox [25] and
the associated “ideal glass” [37]. Historically, it was
found that at some low but positive temperature, called
the “Kauzmann temperature,” the extrapolated entropy
of a supercooled liquid would be equal to and then ap-
parently declines below that of the crystal, resulting in
what has been called the “Kauzmann paradox”. This
impossible scenario constitutes an entropy crisis. One
resolution is to postulate that as the Kauzmann temper-
ature is reached, the supercooled liquid must undergo a
phase transition into an “ideal glass,” which is a glass
with zero configurational entropy. This scenario is in
contradistinction to the perfect-glass model, which does
not require that the presence of a crystal and its ther-
modynamic properties have to provide a constraint on
the behavior of the amorphous manifold of the config-
urations. Indeed, perfect-glass ground states can never
be crystalline nor quasicrystalline. On the other hand,
perfect-glass ground states and “ideal glasses” share one
common feature: both states are disordered while having
zero enumeration entropy.

We would like to stress that while the perfect-glasses
interaction is not yet achievable in practice, it is an ide-
alization that is nonetheless valuable because it teaches
us what types of many-body molecular interactions are
required to attain “unique” disorder and hence provides
guidance to experimentalists to approximate such inter-
actions in the laboratory with, for example, polymers
[19].
Finally, we also expect our results to be useful in cryp-

tography, where pseudo-random functions with tunable
computational complexity are desired; for example, in de-
riving an encryption key from a password [38]. The task
of finding a perfect-glass ground state suits this need,
since its complexity can easily be tuned by changing a
set of parameters (d, N , α, and χ).
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Appendix A: Summary of Results of the

Numeration Studies

In Table I, we summarize major results obtained from
our enumeration studies for the different parameter com-
binations (d, α, χ, and N) that we used.

TABLE I: List of all the parameter combinations (d, α, χ, and N) that
we employed to carry out the enumeration studies and a summary of
results for each combination, which includes the number of inherent
structures that we generated, the number of times the ground state
structure was achieved, the ground-state energy, the mean energy of
inherent structures, and the number of distinct energy levels of inherent
structures found.

d α χ N
Number of inherent
structures generated

Number of lowest-
energy structures
generated

Lowest energy
Mean energy
(of inherent
structures)

Number of
distinct ener-
gies found

2 1 2.20 6 106 97510 0.0534 0.094867 37
2 0.5 1.89 10 3× 107 1769 0.0059314 0.046363 34719
2 1 1.89 10 3× 107 14442 0.0512129 0.126145 7398
2 2 1.89 10 3× 107 1508436 0.835746 0.953847 339
2 6 1.89 10 3× 107 5178002 2.73031 2.86945 34
2 1 1.87 16 108 147 0.0618558 0.178029 2.16 × 107

2 1 1.89 20 109 40 0.0664875 0.204629 7.41 × 108

2 6 1.89 20 108 265084 5.37199 5.74988 147590
2 6 1.90 30 108 1634 8.0647 8.57543 4.08 × 107

2 6 1.87 40 108 11 10.6843 11.3862 9.10 × 107

1 1 1.79 20 2× 107 60490 0.517475 1.015135 3492
1 1 1.74 40 5× 107 24 0.991197 1.849102 3.06 × 107

1 1 1.79 50 109 12 1.68337 2.94643 8.45 × 108

1 6 1.75 60 108 28 77.8601 79.7294 5.46 × 107

1 6 1.75 70 109 27 93.3095 95.7188 5.94 × 108

1 1 2.00 10 107 739724 0.866727 1.31398 20
1 1 2.00 11 107 651397 0.929444 1.42011 24
1 1 2.00 12 107 589273 1.2673 1.69868 48
1 1 2.00 13 107 242182 1.31007 1.87405 78
1 1 2.00 14 107 358037 1.53538 2.06303 109
1 1 2.00 15 107 142763 1.61837 2.29402 201
1 1 2.00 16 107 158544 1.69043 2.50381 351
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1 1 2.00 17 107 105541 1.85802 2.74284 557
1 1 2.00 18 107 65853 1.98903 2.96204 959
1 1 2.00 19 107 27438 2.31345 3.17478 1578
1 1 2.00 20 107 22617 2.40054 3.4008 2613
1 1 2.00 21 107 15771 2.55858 3.64033 4527
1 1 2.00 22 107 20318 2.63018 3.85341 7645
1 1 2.00 23 107 9110 2.80526 4.06194 12665
1 1 2.00 24 107 5778 2.93012 4.289 21383
1 1 2.00 25 107 1754 3.1362 4.52102 36116
1 1 2.00 26 107 2095 3.21506 4.7385 60728
1 1 2.00 27 107 1261 3.45142 4.95513 100960
1 1 2.00 28 107 1618 3.60496 5.1805 168599
1 1 2.00 29 107 573 3.84163 5.39782 275767
1 1 2.00 30 107 518 4.01308 5.60469 442279
1 6 2.00 10 107 2715392 14.13106 14.2772 5
1 6 2.00 11 107 2749262 16.47931 16.8239 13
1 6 2.00 12 107 1432882 19.08413 19.325 15
1 6 2.00 13 107 470326 21.22258 21.5804 13
1 6 2.00 14 107 624508 23.95933 24.2088 22
1 6 2.00 15 107 578671 26.13922 26.7836 43
1 6 2.00 16 107 554290 28.93276 29.444 59
1 6 2.00 17 107 196175 31.03469 31.902 75
1 6 2.00 18 107 471502 34.10818 34.6142 102
1 6 2.00 19 107 224480 36.54381 37.2612 154
1 6 2.00 20 107 214371 39.26553 39.9763 204
1 6 2.00 21 107 73660 41.83513 42.6645 301
1 6 2.00 22 107 98901 44.40762 45.3614 422
1 6 2.00 23 107 69845 47.1069 48.1436 677
1 6 2.00 24 107 57822 49.86945 50.8796 887
1 6 2.00 25 107 57726 52.37915 53.5622 1343
1 6 2.00 26 107 26194 55.20688 56.4128 1966
1 6 2.00 27 107 22438 57.52615 59.1253 2853
1 6 2.00 28 107 12874 60.70169 61.9653 4022
1 6 2.00 29 107 2699 62.57372 64.6753 5898
1 6 2.00 30 107 10039 66.15001 67.5981 8796
3 1 1.70 10 3× 107 1418 0.0020304 0.0196315 1.04 × 106

3 6 1.77 20 3× 107 553282 1.05579 1.24064 945314
3 6 1.75 30 3× 107 518 1.69167 1.88439 2.51 × 107

Appendix B: Details of the Configuration

Comparison Algorithm

Here provide details of the algorithm that we devised
to compare two configurations to determine whether one
of the configurations can be superposed onto to the other
after a translation, a rotation, and/or an inversion.
We begin with a description for the one-dimensional

case for simplicity. For each configuration, we find a
“characteristic vector” by the following step:

• Find the closest pair of particles, A and B. Find
out their locations, rA and rB.

• Find the distance from particle A to its second clos-
est neighbor particle, dA; and the same distance for
particle B, dB .

• If dA > dB, then swap particles A and B.

• The characteristic vector is v1 = rB − rA.

The characteristic vector is invariant to configuration
translations and particle permutations, and rotates or
inverts if the configuration is rotated or inverted. Thus,
if the two configurations are indeed related to each other

through these trivial symmetry operations, then their
characteristic vector must be related to each other by
a constant 1 or -1, i.e.,

v
2
1 = Rv

1
1, (B1)

where v
j
1 is the characteristic vector of the jth config-

uration, and R is either 1 or -1. If R = 1, then the
two configurations are not related to each other by any
rotation or inversion. If R = −1, then the two configu-
rations are related to each other by a 180◦ rotation, or
equivalently in one dimension, an inversion. The transla-
tion relating the two configurations can be found by the
difference of the location of particle A: t = r

2
A − Rr

1
A,

where the superscripts indicate different configurations.
Having found the translation and rotation relating these
configurations, one can verify that for each particle j in
the first configuration, at location Rr

1
j + t there is a par-

ticle in the second configuration. If so, and if the two
configurations have the same number of particles, then
these two configurations must be related to each other
through symmetry operations.
To generalize this method to d > 1 dimensions, one

must find d characteristic vectors, derived from d clos-
est particle pairs. Solving the following matrix equation
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gives the rotation/inversion matrix between the two con-
figurations, R.

(

v
2
1 v

2
2 · · · v

2
d

)

= R

(

v
1
1 v

1
2 · · · v

1
d

)

(B2)

where vj
i is the ith characteristic vector of the jth config-

uration. The translation relating the two configurations
can be found similarly by t = r

2
A − Rr

1
A, where r

j
A de-

notes the starting particle in finding the first character-
istic vector in configuration j. Similar to the 1D case,
the jth particle in configuration 1 still corresponds to a
particle at Rr

1
j + t in configuration 2.
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