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We define stochastic bridges as conditional distributions of stochastic paths which leave a specified
point in phase-space in the past, and arrive at another one in future. These can be defined relative
to either forward or backward stochastic differential equations, and with the inclusion of arbitrary
path-dependent weights. The underlying stochastic equations are not the same except in linear
cases. Accordingly, we generalize the theory of stochastic bridges to include time-reversed and
weighted stochastic processes. We show that the resulting stochastic bridges are identical, whether
derived from a forward or a backward time stochastic process. A numerical algorithm is obtained
to sample these distributions. This technique, which uses partial stochastic equations, is robust and
easily implemented. Examples are given, and comparisons made to previous work. In stochastic
equations without a gradient drift, our results confirm an earlier conjecture, while generalizing this
to cases with path-dependent weights. An example of a two-dimensional stochastic equation with
no potential solution is analyzed and numerically solved. We show how this method can treat
unexpectedly large excursions occurring during a tunneling or escape event, in which a system

escapes from one quasi-stable point to arrive at another one at a later time.

I. INTRODUCTION

What is the probability that a physical system will
arrive near a certain destination, knowing its initial con-
figuration? What is the probability that it started near a
certain point in phase-space, given a final configuration?
What happens at intermediate times if both end-points
are known? The last question was first considered by
Schrodinger [1], in the context of diffusion in a classical
system. Such problems are known as ‘Brownian bridges’.
In physics, this terminology is often extended to the term
‘stochastic bridges’. These problems are especially im-
portant in studying questions of large but rare fluctua-
tions, and are related to the concept of a prehistory of
a fluctuation [2]: what are the most likely prior events
that lead to a given subsequent observation?

The underlying trajectories of diffusion in a phase-
space are often described with a stochastic differential
equation (SDE). These are very common in physics,
chemistry, biology, engineering and finance [3]. Their
transforms are the topic of extended analysis in the math-
ematics literature [4, 5], and are related to diagrammatic
methods in classical statistical physics [6]. They are equiv-
alent to probability conserving Fokker-Planck equations
(FPEs) [7, 8]. However, there are many examples where
the relevant SDEs are trajectories with weights, that
is, path-dependent probabilities, as in the case of the
backwards Kolmogorov equation [9], which describes the
probability that an initial condition will reach a prede-
termined final state. These also occur when computing
finite temperature canonical ensembles [10, 11], and dy-
namical simulations [12] in quantum many-body physics.

Here, we consider stochastic bridges with arbitrary
numbers of components, as well as spatially varying
weight and drift terms. This allows us to treat time-
reversed as well as forward time stochastic bridge. Al-
though software exists for such bridges in ecological mod-
els [13], the general, nonlinear stochastic bridge is non-

trivial to sample efficiently. We show that such problems
are generically transformable to an unweighted partial
stochastic differential equation in an extra dimension.
The advantage of the approach is that a numerical evalu-
ation is straightforward, using standard partial stochas-
tic differential equation (PSDE) algorithms with equally
weighted samples, and it is readily extended to bridges of
stochastic fields in arbitrary space dimension. This ex-
tends previously known algorithms [14, 15] to include the
novel area of weighted and backwards time equations, as
well as confirming an earlier conjecture [14] for stochastic
bridges without potential conditions.

There are many known methods for obtaining numer-
ical samples of unweighted SDEs [16-19]. When there
is a weight factor as well, efficiency issues become im-
portant. Simple methods of direct sampling combined
with weights encounter severe problems. As the spread
of weights increases, most computed trajectories have a
very low weight compared to the most probable trajec-
tory. As aresult, the effective number of equally weighted
trajectories decreases with time, and the sampling error
increases [20]. There are methods to treat this, includ-
ing the use of genetic or branching algorithms [10, 21].
However, even these relatively sophisticated methods do
not appear useful to constrained stochastic bridge calcu-
lations, because most trajectories - apart from a subset
of measure zero -do not satisfy the constraint.

The origin of the sampling problem that occurs with
stochastic bridges, is that standard SDE solvers [18] do
not allow a constrained end-point. The direct use of
stochastic differential equations is inefficient when ap-
plied to stochastic bridges. Except for special cases [22],
algorithms for these problems are not widely known, es-
pecially for high-dimensional dynamical variables and
fields with arbitrary nonlinear terms and weights. As
well as in physics, applications are known in probabil-
ity theory [23], stochastic finance [24], queuing theory,
ecological analysis [25] and computer science.

Stochastic bridges and related problems have been



treated numerically in other ways as well. To give a
brief account, Markov Chain Monte Carlo methods of
various types exist [22], and could potentially be gener-
alized to the problems studied here. Similar ideas have
been used to study rare events and large fluctuations, us-
ing transition path sampling [26] and other methods [27].
The stochastic method obtained in this paper is a par-
tial stochastic differential equation in an extra dimension,
obtained by extending earlier work on path-integral so-
lutions to Fokker-Planck equations [28-33]. This can be
further improved through Metropolis-adjusted Langevin
algorithms (MALA) [22, 34].

The time-reversed stochastic bridge is closely related to
the time-reversal question implicit in Schrédinger’s orig-
inal title: ‘Uber die Umkehrung der Naturgesetze’ , or,
‘On the time-reversal of natural laws’ [1]. Such issues
arise generally in many physical applications, including
the question of time-reversed quantum mechanics [35]
and quantum trajectories, as well as in stochastic control
problems and inverse scattering. We show how to treat
these problems in a unified way, using stochastic evolu-
tion in an additional dimension. This must converge to
a steady-state, so the time to equilibrate is important.
Numerical examples indicate that such convergence is-
sues are straightforward to control; they are also found
in stochastic quantization [36].

As anticipated by Schrédinger, there is a general time-
reversal symmetry in stochastic bridges. This is not
found in one-directional stochastic differential equations.
The symmetry is proved analytically, by utilizing both
forwards and backwards form of the underlying diffusion
equations. An explanation is given in terms of the use of
time-symmetric path integral propagators. These results
generalize and extend earlier results in the literature for
evaluating stochastic bridges using stochastic partial dif-
ferential equations. Analytic and numerical examples are
given in simple cases, which show rapid convergence in
the additional dimension.

II. WEIGHTED STOCHASTIC EQUATIONS

In this section we present the definitions and nota-
tion underpinning the algorithm obtained later. While
the results explained here are mostly well-known, it is
useful to summarize them in a unified form. For gen-
erality and definiteness, we are interested in stochastic
time-evolution problems that either start from a specific
configuration « 4, or else terminate at a specific configu-
ration xg. These are known as forward and backwards
time problems respectively.

A. The weighted Fokker-Planck Equation

We will consider a general form of weighted FPE
[37] in which there are zeroth, first and second order
derivative terms, for a probability density P(¢,«) in

an n-dimensional real vector space of coordinates =
T .
(xl, .. x”) . The relevant equation has the form:

2P(t, x)=L[x] P(t,x).

= (2.1)

where L [] is a general second order differential operator:

Llz] = Ulx) — 041 () + %aiajpii (2.2)

We use the Einstein summation convention, in which
repeated indices are summed. Derivative operators are
defined using the notation that 9; = 9/92%, and are as-
sumed to act on all terms to the right. Here, U, A and D
are scalar, vector and matrix quantities respectively. We
suppose that D is positive definite and symmetric, and
for the purposes of this paper, constant in space. Cases
where partial integration may fail owing to the size of dis-
tribution tails or singular coefficients are excluded. These
will not be investigated, which means that there are re-
strictions on the growth rate of the coeflicients at large
|| [38].

In the case where U(x) = 0, probability is conserved,
and one can probabilistically sample to obtain an equiv-
alent Ito SDE for the sampled path trajectories. This
is:

@ = A(z)+ BC(t). (2.3)

As usual, the noise coefficient B is an n X m matrix
such that D = BBT, and ¢ = (Cl,...gm)T is an m-
dimensional real Gaussian noise vector, defined such that:

(¢ (¢ (1) = 895 (L~ 1) .
When convenient, we use the difference notation, that
W = fot ¢ () dt’, and the equation becomes:

de = A(x)dt +B-dW.

(2.4)

(2.5)

Unlike the standard FPE the weighted equation de-
scribed by 2.1 does not generally result in a conserved
probability if U(x) # 0 . One can transform the more
general weighted FPE (2.1) into a stochastic form like
(2.3), by weighting moments of the distribution with a
factor €%, where the additional weight Q evolves in time
along each trajectory according to:

dQ = U(z)dt. (2.6)

Given an initial condition ® = x4 at t = ta, any
subsequent moment of form O(x) can be evaluated as
a weighted average. This is obtained by considering a
set of initial trajectories starting at * = x4 with equal
weights, then summing over N independent trajectories
(M, ... 2™)) with weights (QW,... QM) at a subse-
quent time ¢, and taking the limit of N — oo, so that:

N
. 1 i )
<O>t = J\}grclmﬁ E O(:B( ) (t))eQ ®), (2.7)
=1



Such weighted averaging is not efficient as a numerical
algorithm when there is a large range of weights Q2 [20].
The question of sampling efficiency is largely independent
of the question of convergence as a function of step-size.
However, it cannot be readily solved by just using more
trajectories, as this only delays the time when the sam-
pling error growth creates large errors . The issue of how
to efficiently solve weighted equations without a large
sampling error will be investigated here.

B. Backwards Kolmogorov Equation

A common case of a weighted equation is the back-
ward Kolmogorov equation (BKE) [9], which is widely
used to treat problems such as first passage times [3]. To
understand the terminology, we recall that the standard
Fokker-Planck equation with U(x) = 0 is also called the
forward Kolmogorov equation, since it predicts a relative
probability forwards in time. If all stochastic trajecto-
ries commence at an initial time ¢4 and point x4, then
the probability of moving forwards to a time ¢ , reach-
ing a neighborhood of volume dV = d"x around a point
xp, is given by P(t,xp)dV = P(t,xp |ta, x4 )dV. This
is formally the solution to equation (2.1), given the ini-
tial condition at time t4 that P(ta,z) = 6V (x — x4),
and with £ > t4. The probability is normalized to unity,
since all trajectories have to terminate somewhere, and
the probability is defined relative to the current trajec-
tory location at the latest time t.

One can also enquire about the conditional probability
density of trajectories starting at a location x, given a
known final destination xp. This is obtained by first
solving the backwards Kolmogorov equation subject to a
fixed final condition that P(tg,x) = 6" (x —xp) at time
tp, which is:

—%P(tB,wB [t,x)=L"[x] P(tg,xp|t,z), (2.8)
where £* [x] is an adjoint operator defined by:
. 1. .
L' [x] =U(x)+ A'(x)0; + 581-1)”8]-. (2.9)

This function is mot normalized to unity when inte-
grated over the initial location @, unless the coefficients
are independent of position. The reason for this is that
the probability P(t,x) occurring in the normal Fokker-
Planck approach is defined as a final state probability
density, so it is only guaranteed to be normalized when
integrated over the final time.

To transform the BKE into the standard form used
elsewhere, we introduce a frame change to a time-
reversed coordinate, t' = tg—t. On defining a BKE func-
tion of reverse time, Ppxp(t',x) = P(tg,zp|tg — t', @),
one obtains

0
7PBKE(t/,£lZ) = ,C* [il:] PBKE(t’7:c) .

o (2.10)

Next, £* [x] can be re-expressed in the form of Eq (2.2),
with the result that
] 1 .
L [z] =U'(z) + 0;A'(x) + §8iD”aj, (2.11)
where there is now a modified potential of U'(x) =
U(x) — J.

Here, the term J is the trace of the Jacobian of the
drift, i.e., J = Tr (J), where J; = 9;A". To understand
the implications of this result, we note that in the for-
ward time direction, if U = 0, the equivalent stochastic
equation is:

0

5755 = A(x) + (stochastic terms) ,

while in the backward time direction, provided the dif-
fusion is constant, there is a modified weight U’(x), and
the drift terms change sign:

ox

at’

The time-reversed deterministic behavior in the drift
term A is as expected from the fact that there is a change
in reference frame from ¢ to ¢’ = —t. However, when the
drift coefficients are not constant the additional weight-
ing terms have subtle effects. In summary, for nonlinear
drift the BKE trajectories have changed relative proba-
bilities as well as being time-reversed. This means that
the usual stochastic techniques for sampling require addi-
tional weighting terms. This makes them very inefficient
unless the algorithm is modified substantially.

(2.12)

= —A(x) + (weight and stochastic terms). (2.13)

III. TIME-REVERSED INFERENCE

For an illustration of the applications of the BKE, we
now obtain the time-reversed probability of leaving from
a small volume dV near location x, given a known final
location xp. In typical applications, given a final con-
dition * = xp at t = tp, we wish to evaluate earlier
observable moment expectations. This is one of many
conditional problems in probability theory.

A. Time-reversed diffusion

To obtain the required result, we apply Bayes’
theorem [39]. The quantity given by the BKE is
P(tp,zp |t,z)dV, the conditional probability that a tra-
jectory is at final location near x g, if initially near . We
wish to obtain the complement of this, namely the con-
ditional probability that a trajectory is initially near x,
given a known final location atxp.

Bayes’ theorem gives the result that the joint proba-
bility of these two events at @, xp is:

P(ta,x;tp,xp)dV? = P(tg,xp|ta, @ )p(ta, x)dV?

= P(ta,x|tp, zp)p(ts, z5)dV?,
(3.1)



where P(t,x |tp,xp) is the conditional probability for
t < tp, that a trajectory comes from an initial location
near x, if it terminates near xg.

Here we have also introduced a priori probabilities
p(ta,x)dV, p(tp,x)dV of the two events at t4 and tp.
In the the case of a constant probability C of trajec-
tory starting points, p(ta,x)dV = C . Noting that for
conserved probabilities, [P(ta,x|tp,xp)d"x = 1, we
obtain:

p(te,xp) = C/P(tB,wB [ta,x)d"x. (3.2)

Hence, on cancelling the constant factors of C, the time-
reversed conditional probability is:

P(tp,zp|ta, )
P(tA7w|tBawB)_ fP(tB;:BB |tA,$)dnw (33)
Algorithms for sampling the weighted Fokker-Planck
equation allow one, amongst other things, to sample the
BKE. This gives a useful strategy for generating a time-
reversed stochastic process. In the next section, we show
how to use these results to derive an algorithm for a more
general problem known as the stochastic bridge.

B. Time-reversed linear problems

As an example of these applications of the BKE, we
consider linear stochastic equations, both forward and
backward in time. The previous results show that one
example of the general weighted Fokker-Planck equation
is a backward Kolmogorov equation, since it has an equiv-
alent weighted trajectory. However, in some cases there
can also be an equivalent, unweighted set of trajectories.

This is trivially the case for a forward time, linear
stochastic equation, of form:

de = Jxdt + BdW (t) , (3.4)
where J is a constant n X n matrix, and B is also constant
in this example.

The fact that the time-reversed equation is also un-
weighted follows, since the results given above show that
the weight term U’(x) = —J is the same for each tra-
jectory. It therefore cancels on calculating the condi-
tional time-reversed probability. Thus, the time-reversed
stochastic trajectory in the linear case is simply:

dx = —Jxdt' + BAW (t') . (3.5)

In summary, with constant diffusion and linear drift
the effect of time-reversal gives the known result that it
reverses the drift sign, while keeping the diffusion term
unchanged. This result is also known to be valid from an
earlier analysis of linear stochastic time-reversal [40].

IV. STOCHASTIC BRIDGES

We defined a forward time stochastic process as the
relative probability of trajectories that start definitely
at x4, while ending in a neighborhood dV of xp. Simi-
larly, we defined a time-reversed stochastic process as the
relative probability of trajectories that end definitely at
xp, while starting in a neighborhood dV of 4. Given
the discussion above, these are generally different prob-
lems. From the probabilistic viewpoint, they are simply
two different, abstract conditional probabilities, P (B|A)
and P (A|B), which are not the same.

There are more general types of multi-time conditional
probabilities as well. In this section we will be interested
in stochastic trajectories constrained at two end-points
A, C, while being unconstrained at an intermediate point
B. We therefore define a stochastic bridge as the prob-
ability P (B|A,C), i.e., the probability of obtaining an
intermediate point * = xp, with constraints on initial
and final points 4 , ¢ .

Similar results were previously obtained for simpler
cases, including scalar variable [15, 41] and potential
problems [14]. In these papers the drift term A was
obtained as the gradient of a potential V', and the dif-
fusion was constant in space. As a consequence, these
algorithms are unable to treat the general class of prob-
lems dealt with here, which include arbitrary drift with-
out a potential, as well as weighted trajectories and time-
reversed stochastic paths.

A. Path integral solution

To obtain results for stochastic bridges, we first obtain
an efficient algorithm for the general weighted stochastic
trajectories described by Eq (2.1). This includes the case
of the BKE. It gives a technique for propagating time-
reversed stochastic trajectories in nonlinear cases more
general than in Eq (3.4), and a technique for treating
weighted stochastic processes. In order to do this, we
write the general solution in its path-integral form [42],
and transform the results to a stochastic partial differen-
tial equation in a higher dimension.

Only the case where D¥ is invertible will be treated.
Although this restriction is not essential, it simplifies
the method, and reduces the algebraic complexity. In
these cases, the path-integral result is straightforward.
There have been a number of well-known path-integral
formulations of diffusion processes, pioneered by Onsager
and Machlup [43, 44], although this early work was re-
stricted to linear equations. Later developments due to
Stratonovich [45] and others [30, 31, 46, 47] extended
and made this early work more rigorous. As known from
this previous work, there is an analogy to a covariant or
curved-space path integral, where g = D~! plays the role
of a metric tensor. While a full covariant analysis is only
needed when the diffusion is space-dependent, which will
be treated elsewhere, we will utilize this definition of g



here.

1. Green’s function approach

The simplest derivation, corresponding to the earli-
est work of this type, used a convolution of Greens
functions. The Green’s function of the FPE for short
times At = € is the solution to an initial delta func-
tion condition of ¢ (x — x 4). Defining a relative velocity
v=(x—x4)/e— A(xa) compared to the average drift
velocity A, the solution is [37]

1 ee(—ngv/Q—i-U(m)) )

G(x|lra) = Nieza)

(4.1)

The normalization term is AN (€, T4) =
V/det 2meD(x 4)], and since D is positive-definite,
it has positive eigenvalues and a positive determinant.
Non-invertible cases where some eigenvalues vanish are
treated by taking a limit which turns the Gaussian into
a delta function. An orthogonal local coordinate trans-
formation can always be found such that a symmetric
diffusion can be diagonalized, but we will not assume
this.

The path integral is a convolution of successive Green’s
functions. Consider a discrete set of N + 1 times ¢, =
ta + ke for Kk = 1, N + 1 where t¢ = ty41, and cor-
responding coordinates x;, with €4 = ¢ , Tc = TN

Defining d[x] = d"x;...d"xy, the solution over
the finite interval [ta,tc], given an initial distribution
P(ta,x) = 6" (x —x4), is then:

P(tp,zc) = lgr(l)//d[w} G(xolen—1)..G(zi|Ta).
(4.2)

This form of the path integral is equivalent to the well-
known Ito-Euler or forward-time numerical algorithm
[18] for a stochastic equation, but with additional weights
now included from the potential U(x). We note that the
r.h.s. explicitly includes x¢, and it depends implicitly on
tc through the relation that t4 =tc — (N + 1)e.

The results for the case of constant diffusion with no
drift correspond to a standard quantum mechanical Feyn-
man path integral in imaginary time [48]. In more general
cases this form of path integral is not time-symmetric,
nor is it invariant under coordinate transformations. This
makes it unsuitable for the functional calculus methods
we will use later, as Feynman also recognized [49).

2. Time-symmetric path-integral

A time-symmetric treatment of path integrals was orig-
inally obtained by Stratonovich for the case of constant
diffusion [45]. To summarize this method for the constant
diffusion case, one may take the limit of € — 0 with func-
tions evaluated at the midpoints, not the starting points

of each interval [33, 50]. This allows the path integral to
be treated as a normal functional integral.

In the case where D is constant, one may replace A(x)
by A(z) , and U(x) by

0= Uz) - %J, (4.3)
where = (z + ') /2, and J = 9; A (z). This gives the
same formal path integral result as (4.2) in the limit of
€ — 0, except for the additional spatial derivative term
in the potential. On introducing © = (&’ — x) /e — A(Z),
and after some manipulation [33], one obtains a corrected
propagator:

1 (-eTgv/240 ()
N(e)

The final path integral is written - after the limit e — 0
is taken - as:

Ptp,xp) = /d,u[m (t)] exp{—/t:C L(m,a’:)dt} :
(4.5)

G(x'|x) = (4.4)

where the functional measure is defined as:

wmm:y%jg&,

(4.6)

the end-points are constrained so that x (t4) = ¢4 and
x (tc) = xco , and & = dx/0t. The effective path-integral
Lagrangian in the time-integral can now be written as

L&) = + (& — A(z))" g (& — A(x)) - U(x).

- (4.7)

Here the assumption is made that all functions are
smooth, so that in the limit of ¢ — 0 , one has
A(x) = A(x). However, the potential is modified since
U(x) # U(x), owing to the Jacobian correction term in
4.3.

8. Time-reversed path-integrals

In the time reversed or BKE case, we must replace
A by —A, and U by U’ = U — J. Taking into account
the derivation explained above, and applying it in the
reverse time direction, this would then give a Lagrangian
in which the final potential term U’ = U is unchanged,
giving:

1 [0zt , Oxd , _
L/=§ ((,%, +Az)gij ((%-FAJ) - U.

If we then rewrite the path integral and its derivatives as
a function of forward time, so ' — t = —t’, this leads to
a form for the Lagrangian, which is the same as for the
FPE, namely:

L= (i'—A") gy (a7 — A7) - U. (4.8)

DN | =



Thus, the Lagrangian is unchanged whether it is de-
rived from the FPE or the BKE, provided the final inte-
grals are expressed in a compatible form, with the same
time coordinate. To explain this, the FPE gives the prob-
ability density of arriving near xp, having started at a
fixed point, 4. Conversely, the BKE allows us to investi-
gate probability densities of starting near « 4, conditional
on arriving at a fixed point, . Since it is the final posi-
tion that is known, it is normally written as an equation
in reverse time, t'. If we write the path integral formula-
tion of these probability densities so they are expressed
in the same time-coordinate, the final Lagrangians are
identical.

B. Path integrals and stochastic bridges

Path integral trajectories can have constrained inter-
mediate and /or end points. Suppose that we consider a
trajectory in the forward time direction, starting at x4
, passing through xp and ending at x¢, thus giving a
Dirichlet type fixed boundary condition. In this case we
simply have to evaluate the probability P (B) that the
trajectory passes through xpg .

We therefore wish to sample the path integral as a
functional of coordinate space and time, i.e., to sample
paths [z] = [x(¢)], with a constrained functional proba-
bility that is given by:

P ([x]) = exp { /tc L(zx, d:)dt} )

ta

(4.9)

under the constraint that « (t4) = @4, and x (t¢) = z¢.

The goal is to obtain a set of equally weighted stochas-
tic trajectories for sampling purposes. If U = 0, a
stochastic differential equation (SDE) algorithm with in-
dependent variable ¢ will achieve this, although the end
points cannot be treated efficiently: only a set of mea-
sure zero will satisfy the constraints. If U # 0, even a set
that meets these constraints will have different weights
in general, make sampling inefficient.

One method to proceed when there are constraints, is
to define a new stochastic process in an virtual ‘time’
coordinate 7, such that its steady-state solution for 7 —
oo is P ([z]). This is achieved using a technique similar
to that employed in stochastic quantization [36]. We can
define a new probability functional P ([x], 7) in an extra
dimension 7, with the steady-state requirement that

lim P ([x],7) =P ([z]) . (4.10)
T—>00
The steady-state solution at 7 — oo, is required to have
a potential form as a functional integral over paths ' (¢)
that have their end-points constrained so that x (t4) =
x4 and z (tg) = xp :

x(t)
P ([ (£)], 7 — o0) o exp {/ o (=) d[w’]} .
(4.11)

From direct functional differentiation of 4.11, and ap-
plying the condition that

0
EP([z],T—H)o)zo,

(4.12)
this is achieved provided P ([x], 7) satisfies a functional
Fokker-Planck equation in the form:

8%7’([90]’7) = % [—a[w] + (;EJ P([z], 7). (4.13)

Since the solution of the new functional FPE must agree
with the required path-integral in 4.9, it follows directly
that:

o ([z]) = —% /tc L(z, )dt. (4.14)

ta

The full applicability of methods like this are under
active investigation in the mathematical and probability
literature [14]. To obtain the partial stochastic differen-
tial equation coeflicient a[x], it follows from (4.13) that
the functional a[z] is given by

) .
0 /L(:c, &)dt

OL d OL
= k) T d om0 (4.15)

axlz ()] =

Substituting into Eq (4.7), and dropping the time argu-
ments for brevity, one obtains that:

0A OU .
ag[z] = vig— + — + gty

9k T gk (4.16)

where v = (& — A(z)). We now re-express the coeffi-
cients of (4.16) in a simpler form. Introducing second
derivatives, & = 0%x/0t?, one then obtains a compact
expression for ¢ in terms of time-derivatives of the tra-
jectory location, namely:

a=gi+Czx+U. (4.17)
Here the circulation matrix,
C=J"g—gJ (4.18)

describes the extent to which the drift A violates poten-
tial conditions. To be more explicit, we can write the
circulation term with its components as:

QA A

Crj = Ik Jis T Gkl g -

(4.19)
We also introduce the vector U, which is an effective drift
rate in the virtual time coordinate, where:

0

Uk = ur

{U - ;ATgA] . (4.20)



C. Stochastic equation in virtual time

The distribution of (4.11) solves the problem of the
stochastic bridge in the form treated here. We now wish
to sample this probability distribution efficiently, with
equally weighted samples. This is achieved by noting
that the functional Fokker-Planck equation, 4.13 is ex-
actly equivalent to a partial stochastic differential equa-
tion (PSDE) in virtual time,

0T _ o (la)) + VIE (1,7) .

5 = (4.21)

It has noise correlations given by:
(€ ()& (7)) = 698 (t— )5 (r—7')

and transverse Dirichlet boundary conditions at t 4, such
that @ = x4, and at t¢ such that x = z¢.
Writing the PSDE in its explicit form, one has

Qf:gi+cr+U+¢%uﬁy

o (4.22)

The path-integral is then solved by taking the steady-
state or 7 — limit of the distribution of this stochas-
tic process, using a numerical method for a PSDE [51]
with Dirichlet boundary conditions. In order to compare
this with other expressions in the literature, we notice
that previous analyses [14] have considered cases with-
out weights (U = 0) and with a drift potential V' such
that:

ov

gjiA = —% .

(4.23)
This places an immediate constraint on the drift A?,
known as the drift potential condition. Differentiating Eq
(4.23) with respect to ¥, and using the equality of second
derivatives under change of order of differentiation, leads
to:
9jidik = Gridij- (4.24)
This is the condition that the circulation term van-
ishes, so that C = 0. Thus, the circulation term C con-
tains all the non-potential contribution to the drift. Un-
der the restriction that U = C = 0, our results are identi-
cal to the previous ones. The case that U = 0 but C # 0
was conjectured to give the result of Eq (4.22) in earlier
literature [14], although using an abstract notation. Our
result gives a derivation for this conjecture, makes the
notation explicit, and extends it to weighted stochastic
processes.

D. Time-reversed stochastic bridges

The time-reversed path originates from constraining
the future time phase-space position, resulting in the

backwards Kolmogorov equation, which has an addi-
tional weight term. We can use the path integral
method to constrain the earlier time as a time-reversed
stochastic bridge, reversing the procedures in the pre-
vious subsection. We wish to demonstrate that the
time-ordering of imposing the constraints doesn’t mat-
ter, which was the motivation of Schr"odinger’s original
work on ‘Umkehrung’ or time-reversal.

Because U’ = U, we see from Eq (2.11) that the virtual
stochastic equation for the time-reversed path @’ (¢') is:

ox’ 0%z’ ,0x’
=g +C
or ot’? ot’

It is instructive to write this using a variable change
to the forward time coordinate, with x (t) = o' (¢') =
' (tg —t), and dx/0t = —0x’/Ot' . This is the same
coordinate system as the usual FPE, and one might ex-
pect to therefore get the same bridge equations. After
all, once written in the same coordinate frame, each de-
scribes an identical overall constraint on the bridge. We
note that dt’ = —dt in the time-reversed frame of ref-
erence, and A* = —A’ when using the BKE, so that
the result of the variable change is to only change the
sign of the circulation term. Since C’ = —C, this has
no effect: all terms match once the sign change in the
time-coordinate is taken into account. We obtain a par-
tial stochastic equation identical to the previous form.
In summary, these equations are independent of whether
the forward or backwards Kolmogorov equation chosen
initially, provided the same time coordinate is utilized in
the final equation.

This is as one might expect: neither end-point con-
straint is conditional on the other. The result given
here satisfies Schr"odinger’s requirements with regard to
time-reversibility, without having the product form that
Schr"odinger considered [1]. The agreement of the for-
ward and reverse time results gives further evidence that
this weighted, virtual-time stochastic equation is correct.

+U+V2¢(t',7).  (4.25)

V. EXAMPLES

We now consider a number of examples of this ap-
proach, both to give a comparison with previous analyses,
and to show where there are new results.

A. The scalar Brownian bridge

The first example we treat is the classic, scalar Brown-
ian bridge, in which the unconstrained stochastic process
is

de =dW . (5.1)
It is known [52] that the constrained problem of z! =
2% = 0 is solved by the random trajectory

x@zW@—%W@% (5.2)
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Figure 1. Convergence of Brownian bridge variance (solid
lines) to analytic result (dotted lines) with virtual time 7,
at fixed real time of ¢t = 0. Upper and lower lines indicate
sampling errors of +1o.

where z (0) = = (T') = 0, and W (t) = [, dW (t).

In this case one can sample the stochastic trajectory
directly. The forward and backward bridges are identi-
cal, and one can easily compute moments at intermediate
times, including the variance,

ooy _ LT =)
(a1 = L0

Since there is neither drift nor potential terms, the partial
stochastic equation method gives:

Or 0%z
or = om TV

(5.3)

(5.4)

B. Scalar bridge numerics

Solving this PSDE with fixed or Dirichlet boundary
conditions at ¢ = +0.5, gives the results for (x?(t))
shown in Fig (3). This demonstrates rapid convergence
with virtual time 7, and excellent agreement with the
known result for the Brownian bridge variance at the
midpoint, t = 0.

The results in Fig (2) show that this agreement is main-
tained, within sampling error, over the full range of real
time. Fig (1) shows a three-dimensional representation
of the results.

These results used a public domain PSDE solver [53] ,
using 2000 time steps in 7, 31 time steps in real time ¢,
and 10* stochastic trajectories. The algorithm was an it-
erated semi-implicit or midpoint technique [17, 51]. Cen-
tral finite differences were used for the transverse deriva-
tives with Dirichlet boundary condition. This algorithm
can be accelerated using spectral methods [54]. In order
to check convergence, the following procedure was used:

Sampling Error: A sub-ensemble averaging technique
was used, in which the stochastic trajectories were

0.25 =

<X2>

0.1r 1

0.05 1

Figure 2. Convergence of Brownian bridge variance (solid
lines) to analytic result (dotted lines) with real time ¢, at
a fixed virtual time 7 = 1. Upper and lower lines indicate
sampling errors of +1o.
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Figure 3. Three-dimensional Brownian bridge variance sur-
face evolving with real and virtual time.

dividing into sub-ensembles. After sub-ensembles
were averaged, the resulting means were averaged,
and error-bars estimated using standard deviations
of the mean. These are shown as upper and lower
lines in two-dimensional graphs.

Virtual time-step error: Calculations were repeated
with twice the number of virtual time-steps to check
virtual-time convergence. In all cases, error-bars
were less than +1%.

Virtual time equilibration: Calculations were re-
peated with double the maximum virtual time
window, to ensure convergence.

Real time-step error: Calculations were repeated
with larger numbers of real time-steps to check
real-time convergence in step-size.



Figure 4. Parametric plot of = versus y values for 10 random
unconstrained stochastic trajectories for a linear stochastic
differential equation with € = 0.01, from time ¢t =0tot = .

C. Linear case

The next example we treat is a general linear FPE. To
simplify the resulting algebra, we assume that D = g =
€L, where Z is an identity matrix. This has an exact
solution for the time-reversed process in which only the
drift is time-reversed [40], so it is a useful test case. For
this problem, we have a forward SDE of

dx = Jxdt + /edW | (5.5)

with A = Jx, and J is a constant matrix.

This can be treated using the stochastic equation given
above, although this will not include constraints. One
may also sample it using the constrained path-integral
method, which gives an equivalent partial stochastic dif-
ferential equation of:

0 1
=B+ (I =) e - I I+ V. (56)

T €
In the reverse time direction, the corresponding BKE
has A = —A, and a potential of U = —Tr[J] = —J.

Since this is constant, one has U’ = 0 , just as with the
forward time case. The path integral expressions for the
bridge are identical in the forward and backward direc-
tions, which illustrates the general time-reversal symme-
try in the path-integral algorithm.

As a numerical example of linear evolution in higher
dimensions without a drift potential, consider the case:

).

giving the equivalent stochastic differential equation of :

&=y + Ve
y=—z+Ve(a.

(5.7)

(5.8)

Figure 5. Parametric plot of final z versus y values for 10
random trajectories at 7 = 0.4, for a linear stochastic bridge
with e = 0.01, from time t =0tot =7

This describes circular motion with no equivalent gradi-
ent, combined with random diffusion in the z — y plane.
The bridge is from x = [1,0] to £ = [-1,0], with
e = 0.01, over a time interval of 7. The equivalent virtual
time bridge equation is:

gi: . % & - 20 — 2]+ V2E(tT).  (5.9)

In the limit of small ¢, the bridge solution has a de-
terministic equation that is similar to the motion of a
charged particle in a magnetic field in the z- direction,
resulting in circular orbits in the x —y plane. This results
in characteristic quasi-circular bridges, if the initial and
final constraints are chosen to occur on a circle with a
fixed radius from the origin. Here, Fig (4) gives a para-
metric plot for ten random stochastic trajectories start-
ing at @ = [1,0] , while Fig (5) graphs the constrained
x,y values in the bridge. This shows the expected circu-
lar motion, which only occurs if the circulation term of
C = —2J is present.

In these figures, there were 1200 time steps using a
semi-implicit midpoint method [17] for the stochastic
equation, with negligible step-size errors. The bridge
equations were solved with a fourth-order Runge-Kutta
finite-difference method with 4 x 10* virtual time-steps
and 40 real time steps. The accompanying figures give
solutions of the PSDE at the final value of virtual time,
in this case 7 = 0.4. There was little or no difference
found by using 7 = 0.2, indicating a steady-state.

D. Non-potential bridges

The last case we treat is a nonlinear FPE, also with
a circulation term and no potential solution. There are
many examples of this type, occurring in chemical re-
action networks, thermal ratchets and communications
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Figure 6. Ten typical stochastic bridge trajectories, showing
evolution of z,y during the constrained transition from a sta-
ble to a metastable point for the Maier-Stein equations with
a=1,p=1and e=0.01. Here, 7 =1 and ¢t = 20.

networks. These processes can lead to large rare fluc-
tuations. The behavior of escape paths and transition
events has been investigated previously. Due to the lack
of a drift potential, the circulation term strongly modifies
the bridge results.

A relevant example is a two-dimensional system pro-
posed by Maier and Stein [55, 56|, and analyzed in greater
detail by some later workers [26]. This describes two-
dimensional over-damped stochastic motion in a force-
field that generally has no potential, where:

&= xp(z,y) + VeCi
v =yq(z,y) + Vel

Here, p(z,y) = 1 — 2% — ay? and q(z) = —u(l +
2?) . If a # u, this is not a gradient system. In the
special case of @ = p, this has a drift potential. One
may sample the corresponding bridge with an equivalent
partial stochastic differential equation of:

(5.10)

ox 1., .

— = [@+ci+ul + V2 (t,71)
or ¢

where the circulation term is an antisymmetric matrix:

c 2 0 1
C——e(a—ﬂ)my[_l 0}-

€

(5.11)

(5.12)

and the virtual drift vector U is given by U = wu/e,
where:

z ((3+4p) e —p® + 22%p + 2quy?) ] _

y (ea + 2paz? — q2) (5.13)

E. Non-potential bridge numerical examples

The Maier and Stein system has a stable double-well
potential, provided that @« = p > 0. If 4 > 0 there are

10

local attractors at © = (£1,0) where the drift terms van-
ish, as well as an unstable equilibrium point at = (0, 0).
In the cases where o # i, these local attractors are not
changed, but the off-axis flow with y # 0 is changed.
This leads to large excursion events occurring during the
escape trajectories, as illustrated by the solutions shown
in Fig (7). These are well-suited to investigation using
stochastic bridge techniques.Here we focus on a stochas-
tic bridge that connects a stable point to the saddle point,
starting at (—1,0) and ending at (0,0). We suppose that
1 =1 and analyze different values of «. This allows one
to investigate the probability of different escape paths
that connect the two stable points, conditioned on a pre-
determined transition time between the paths. An ap-
proximate analysis of the stochastic differential equation
shows that, near the stable points, the effective equation
in y has the form:

g~ —2uy +VeCa.

As a result, for small enough noise coefficients €, the y
distribution will stabilize in a short time to give (y?) ~
€/4u. However, paths with y # 0 result in z being at-
tracted towards a new quasi-stable point, since on sub-
stituting y? ~ (y?) ~ €/4y, the effective equation in x
becomes:

i~ —z(1— 2% —ea/dp) + Ve

The z distribution will re-equilibrate to give an approxi-
mate Gaussian centered around x = /1 — ea/4p. These
analytic calculations predict that the early-time behavior
of the ztrajectories is to move rapidly to a new quasi-
stable point which depends on «, prior to undergoing an
escape from the local potential well.

In the potential case, with &« = p = 1, there is no
circulation term, and bridge techniques that use gradi-
ent methods are able to calculate the stochastic bridge
distributions. Typical trajectories are shown in Fig (6).

With a < pu, there is no potential for the drift, al-
though there is an effective meta-stable point as before.
Paths with y # 0 result in large excursions in z, with
x being amplified away from the transition path, to-
wards £oo. There these are conditionally excluded in
the bridge. In order the system to travel stably between
the stable points, y must remain smaller than its local
equilibrium value. This gives transition paths that must
thread the needle of small y values in order to make a
transition. Typical trajectories with suppressed y values
near x = 0.8, as they exit the stable region, are shown in
Fig (7). These have o = —10.

The most interesting case is a > p. Again, there is
no potential solution. Paths with y # 0 will rapidly
reduce = towards the origin, away from the stable point.
As a result, there is a bifurcation during tunneling with
characteristic curved transition paths that connect the
stable points [26, 55], and the opposite behavior to those
with a < p. A set of trajectories for the stochastic bridge
with a = 6.67 are shown in Figure 8.
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Figure 7. Parametric plots of x versus y for ten independent
stochastic bridge trajectories, with « = —10, u = 1 and € =
0.01. Initial condition is the stable point at & = [1,0], total
integration time is 7 = 2 and ¢t = 20.
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Figure 8. Ten typical stochastic bridge trajectories, showing
evolution of z,y during the constrained transition from a sta-
ble to a metastable point for the Maier-Stein equations with
a=6.67,u=1and ¢ =0.01. Here, 7 =1 and ¢t = 20.

Finally, in Fig (9), we show ten stochastic trajectories
starting from the stable point, but without constraints
and the same time duration. No escapes occur on this
time-scale. This shows the great utility of stochastic
bridges for studying rare events. Simply taking the orig-
inal equations and waiting for an escape to occur will
generally take much longer than solving the bridge equa-
tions, with a total time duration that would become ex-
ponentially long as the noise is reduced.

In these numerical calculations, the same RK4 tech-
niques with finite-differences and convergence checks
were used as in Fig (1). All Maier-Stein bridge figures
used 60 time-steps and 1.5 x 10* virtual time-steps. The
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stochastic differential equation solutions used 5000 time-
steps, with no significant discretization errors.

0.95 -

0.85 -

0.3

Figure 9. Ten typical stochastic differential equation trajec-
tories, showing evolution of x,y for ¢ = 20, with the same
parameters as in Figure (8). Over this time-scale, no escapes
occur, and all trajectories are trapped near the stable region
at @ = [1,0].

VI. SUMMARY

A general definition of stochastic bridges was given for
arbitrary weighted stochastic equations. A path integral
was obtained for the corresponding probability density.
We show that there is a difference in stochastic equations
in forward and backward time directions, owing to the
different type of Bayesian conditioning involved. How-
ever, the final stochastic bridge results are completely
identical regardless of the time-direction of the under-
lying equation, which directly relates to Schréodinger’s
original motivation for studying this problem. A numer-
ical algorithm was obtained for the results given here,
using a higher-dimensional stochastic partial differential
equation. An example of the well-known exactly solu-
ble Brownian bridge was evaluated numerically, giving
agreement with this previously known result.

Our results generalize previous ones, and substantiate
an earlier conjecture on stochastic bridges for equations
with non-potential flows. Several numerical examples are
given of how large excursions away from the direct escape
path may be analyzed using these methods.
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