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Tricriticality in Crossed Ising Chains

T. Cary, R.R.P. Singh and R.T. Scalettar
Department of Physics, One Shields Ave., University of California, Davis, California 95616, USA

We explore the phase diagram of Ising spins on one-dimensional chains which criss-cross in two
perpendicular directions and which are connected by interchain couplings. This system is of interest
as a simpler, classical analog of a quantum Hamiltonian which has been proposed as a model of
magnetic behavior in Nb12O29 and also, conceptually, as a geometry which is intermediate between
one and two dimensions. Using mean field theory as well as Metropolis Monte Carlo and Wang-
Landau simulations, we locate quantitatively the boundaries of four ordered phases. Each becomes
an effective Ising model with unique effective couplings at large interchain coupling. Away from this
limit we demonstrate non-trivial critical behavior, including tricritical points which separate first
and second order phase transitions. Finally, we present evidence that this model belongs to the 2D
Ising universality class.

PACS numbers: 71.10.Fd, 71.30.+h, 02.70.Uu

INTRODUCTION

Dimensionality, along with order parameter symmetry,
plays a decisive role in the occurrence of phase
transitions and the critical exponents with which
they are characterized[1]. Beginning with simple,
regular geometries, critical properties are now well-
understood in more complex geometries in which the
dimensionality is more ambiguous, including diluted
lattices[2], fractal geometries[3], and networks with
longer range interactions[4–8].

Recently there has been interest in a further class
of systems of “mixed geometry” whose underlying
structure consists of two perpendicular collections of one
dimensional chains which are then further connected
to form a two dimensional framework. For example,
it has been suggested[9] that an appropriate model
of magnetic phase transitions in one of the niobates,
Nb12O29, consists of one dimensional chains of localized
(Heisenberg) spins and a further perpendicularly oriented
set of one dimensional conduction electron chains. These
two types of spins reflect the presence of distinct Nb
cations with 4d1 configuration, one of which exhibits local
moment behavior and the other being itinerant and Pauli
paramagnetic[10, 11]. In this model, the electron spins on
the conducting nanowires are coupled to the Heisenberg
chains by a Kondo interaction on each site.

Similarly, in optical lattices[12], bosonic or fermionic
atoms can occupy higher, spatially anisotropic, px and
py orbitals which allow hopping which is essentially
just along one-dimensional chains. Within a given
well, atoms can convert from occupying the px to
occupying the py orbital, thus coupling the perpendiular
chains and providing a two dimensional character to the
system. Bosonic systems in this geometry can exhibit
exotic forms of superfluidity whose condensate wave
functions belong to non-trivial representations of the
lattice point group, with condensation accompanied by
unusual columnar, antiferromagnetic, and Mott phases

[13–16]. Models in which fermionic degrees of freedom
in the two orbitals have Hund’s rule type coupling have
also been considered, and shown rigorously to exhibit
magnetic order[17].

These examples share a common “1D × 1D”
geometrical structure in which one type of chain has
degrees of freedom which are coupled in the x̂ direction,
while the degrees of freedom of the other couple in
the ŷ direction. An additional interaction on each
lattice site connects the two sets of chains. Although
considerable progress has been made in modeling the
niobates and p-wave bosons in optical lattices, in both
cases the quantum nature of the spins makes achieving a
definitive understanding of the critical phenomena quite
challenging. The goal of this paper is to examine a
classical Ising model on this type of lattice. We will
show that the interchain coupling is sufficient to promote
long range order at finite temperature, and that the
phase transitions can exhibit a rich variety of behaviors
including tricritical points.

MODEL AND METHODS

We consider the following model,

E =− Jx
∑
r

SrSr+x̂ − Jy
∑
r

TrTr+ŷ

− Jz
∑
r

SrTr − Jz′
∑
r

Sr (Tr+ŷ + Tr−ŷ )

− Jz′
∑
r

Tr (Sr+x̂ + Sr−x̂ ) (1)

which we will refer to as the crossed Ising chains model
(CICM).

Here Sr and Tr are Ising spins (i.e. they can have a
value of either +1 or −1) coupled into one-dimensional
chains in the x̂ and ŷ directions, respectively. These spins
occupy a two-dimensional, square, L × L lattice with
periodic boundary conditions. There is an S and a T
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spin on each of the N=L2 sites and therefore, 2N total
spins in the system. Jz and Jz′ couple S and T spins on
the same lattice site and near neighbor sites, respectively.
The geometry of Eq. (1) is illustrated in Fig. 1. For
simplicity, and also because this choice is the appropriate
one for several of the physical realizations of the CICM,
we will set Jx = Jy = Jx,y = 1 and measure all energies
in units of Jx,y.

Initial insight into the phase diagram of this model
is obtained by considering T = 0 and minimizing the
internal energy, Eq. (1). Fig. 2 shows the definitions of
the four ordered phases which can occur: ferromagnetic
(FM), ferromagnetic-prime (FM′), antiferromagnetic
(AFM), and antiferrmagnetic-prime (AFM′). The phase
diagram at T = 0 is shown in Fig. 3. The CICM has
the symmetry that changing Jz → −Jz and Jz′ →
−Jz′ changes the phase from FM → AFM or AFM
→ FM, and FM′ → AFM′ or AFM′ → FM′. If
Jz and Jz′ are both positive or both negative, there
will be no competition between ordered phases and
the model will have relatively uninteresting features,
namely a conventional second order phase transition
between a high temperature disordered paramagnetic
(PM) phase and a low temperature FM phase or AFM
phase, respectively. However, if only one of the interchain
couplings is negative, there will be a competition between
ordered phases and the most interesting physics will
result.

The total spin, Sr +Tr, on a site can take on the three
values, −2, 0, or + 2, giving the CICM some similarity to
the two-dimensional square lattice Blume-Capel model
[18, 19],

E = −J
∑
〈ij〉

MiMj + ∆
∑
i

M2
i (2)

which is a spin 1 generalization of the Ising model where
Mi = −1, 0, or + 1. The choice Jz < 0 favors Sr = −Tr
and hence Sr + Tr = 0 so that the strength of Jz plays
a role similar to that of the vacancy potential ∆ whose
energy ∆M2

i can tune the density of sites with Mi = 0.

The remainder of this paper is organized as follows. We
begin our discussion of Eq. (1) via a mean field treatment.
The resulting phase diagrams, as in the case of the BCM,
will be shown to correctly predict certain qualitative
features of the CICM such as the presence of ordered
phases, effective Ising regimes in the large |Jz| limit, and
tricritical points. We then turn to a Monte Carlo (MC)
approach which allows a more accurate quantitative
determination of the phase diagram. We use the standard
single-spin flip Metropolis MC algorithm, supplemented
by some multiple-spin flips. The data are analyzed with
standard numerical approaches, including the use of the
Binder fourth order cumulant [20]. The results show that
there are four ordered phases, each of which becomes
an effective Ising model in the large |Jz| limit with
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FIG. 1: (Color online) The geometry of the interactions in the
CICM for four sites is shown. This model is studied on an L
× L square lattice with periodic boundary conditions (in the
x̂ and ŷ directions) containing N (= L2) “S spins” and N “T
spins” taking values ±1. There are L parallel 1D chains of S
spins in the x̂ direction and L parallel 1D chains of T spins
in the ŷ direction, illustrated by the blue (Jx) and red (Jy)
lines, respectively. There is an interaction between an S and
a T spin on the same site in the ẑ direction (Jz) illustrated
by the green lines. Finally, there is an interaction between
nearest neighbor S and T spins (Jz′) which is illustrated by
the gray lines.

unique effective couplings. Additionally, the presence of
tricritical points is confirmed. In order to provide further
corroboration for the nature of the phase transitions,
we also employ the Wang-Landau algorithm[21–23] to
obtain the density of states and the behavior of canonical
distributions as a function of temperature when passing
through first and second order phase transitions. We
find that this algorithm is particularly well suited for
verifying the order of a phase transition and therefore
the existence of tricritical points. Finally, we use finite-
size scaling techniques to verify the universality class of
the CICM.

MEAN FIELD THEORY

We solve Eq. (1) by replacing the two spin interactions
with a single spin coupled to a self-consistently
determined average spin value

m1 ≡< Sr > m2 ≡< Tr > . (3)

In the case of the FM’ and AFM’ phases, these order
parameters alternate in sign on the (bipartite) lattice.

The resulting implicit equations for the order
parameters, mFM=m1=m2 and mAFM=m1=−m2 (β =
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FIG. 2: The four ordered phases found in the CICM
are defined. Each pair of spins represents an S and a
T spin on a single site (i.e. coupled by Jz). In the
ferromagnetic (FM) phase, all S and T spins are aligned
ferromagnetically. In the ferromagnetic prime (FM′) phase,
the S and T spins are aligned ferromagnetically on each site
and antiferromagnetically along the S and T chains. In the
antiferromagnetic (AFM) phase, the S and T spins are aligned
antiferromagnetically on each site and ferromagnetically along
the S and T chains. Finally, in the antiferromagnetic-
prime (AFM′) phase, the S and T spins are aligned
antiferromagnetically on each site and also along the S and
T chains. There is spin inversion symmetry in this model so
flipping all of the spins in any of these phases does not change
the phase.

1
T and kB = 1),

mFM =
sinh (4βmFM (Jx,y + 2Jz′))

cosh (4βmFM (Jx,y + 2Jz′)) + e−2βJz

mAFM =
sinh (4βmAFM (Jx,y − 2Jz′))

cosh (4βmAFM (Jx,y − 2Jz′)) + e2βJz
(4)

are solved using Newton’s method. Equivalently, the
mean field free energy of the CICM can be expanded
in a power series in the order parameter for both the
FM and AFM phases and the critical temperature for a
second order phase transition determined by calculating
the temperature where the coefficient of the quadratic
term in the free energy expansion vanishes. The implicit
equations for the FM and AFM second order critical lines
are as follows.

TC,FM =
4(Jx,y + 2Jz′)

1 + e
−2Jz
TC,FM

TC,AFM =
4(Jx,y − 2Jz′)

1 + e
2Jz

TC,AFM

. (5)

Tricritical points are located by calculating the
temperature at which the quartic coefficient in the
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FIG. 3: The phase diagram for the CICM with Jx,y=1 and
T=0 in the Jz′ versus Jz parameter space is shown. The
line separating the FM and AFM phases (where the internal
energies are equal) is given by Jz′=− 1

4
Jz. The AFM and

AFM′ phases are separated by Jz′ =
Jx,y
2

= 1
2
; the FM and

FM′ phases by Jz′ =
−Jx,y

2
= −1

2
; the FM and AFM′ phases

by Jz = −2Jx,y = −2; and the AFM and FM′ phases by
Jz = 2Jx,y = 2. This phase diagram is consistent with the
observation that for Jz and Jz′ both positive or both negative,
there is no competition between phases. Additionally, the
symmetry between FM and AFM and FM′ and AFM′ when
switching the signs of Jz and Jz′ is evident.

expansion of the free energy vanishes.

Ttricritical, FM =
−2

ln(2)
Jz

Ttricritical, AFM =
2

ln(2)
Jz. (6)

Combining this with the condition for intesecting the
second order phase boundary, simple analytic expressions
for the coordinates of the mean field tricritical points can
be written down.

Ttricritical point, FM =
4(Jx,y + 2Jz′)

3

Jz,tricritical point, FM =
−2 ln(2)(Jx,y + 2Jz′)

3

Ttricritical point, AFM =
4(Jx,y − 2Jz′)

3

Jz,tricritical point, AFM =
2 ln(2)(Jx,y − 2Jz′)

3
(7)

To find the first order phase boundary once the
tricritical point has been reached, simultaneous plots
of the FM and AFM free energy were made and
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FIG. 4: (Color online) The mean field theory phase diagram
for Jz′ = 0 and Jx,y = 1 is shown. For these parameters,
there is no tricritical point. For Jz > 0, there is a second
order phase transition between a low temperature FM phase
and a high temperature PM phase. For Jz < 0, there is
a second order phase transition between a low temperature
AFM phase and a high temperature PM phase. Also, there
is a vertical first order phase boundary between the FM and
AFM phases at Jz= 0 which extends up to T=2, the MF
critical temperature for the 1D Ising model. In the large,
positive Jz limit, this model becomes an effective 2D Ising
model with TC = 4(Jx,y + 2Jz′) = 4. In the large, negative
Jz limit, this model also becomes an effective 2D Ising model
with TC = 4(Jx,y − 2Jz′) = 4. The FM and AFM phase
shapes are symmetric about Jz=0 only when Jz′=0.

temperature or Jz was incremented to find the point
where the phase with the global minimum changes.

For Jz′ = 0, the mean field phase diagram (Fig. 4)
shows no tricritical point. Clearly, Jz′ is necessary for
the onset of first order phase transitions. The AFM
phase arises for Jz < 0, as expected, since negative
Jz antiferromagnetically couples the S and T spins on
shared sites. For Jz > 0, the FM phase arises. The mean
field phase boundary separating the FM and AFM phases
at T = 0 where thermal fluctuations are nonexistent
agrees with the ground state phase diagram in Fig. 3.
The MFT critical temperature is TC = 2 at Jz=0
and Jz′=0, as expected since the CICM decouples into
independent 1D Ising chains For large |Jz|, the S and
T spin pairs on each site lose their independence due to
the high energy cost of flipping only one of the spins in
a pair. In this limit, the model becomes an effective 2D
Ising model with Jeff,FM = Jx,y + 2Jz′ and Jeff,AFM =
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FIG. 5: (Color online) The mean field theory phase diagram
for Jz′ = 0.1 and Jx,y = 1 is shown. For these parameters,
there is no tricritical point. For Jz > −4Jz′ = −0.4, there is a
second order phase transition between a low temperature FM
phase and a high temperature PM phase. For Jz < −4Jz′ =
−0.4, there is a second order phase transition between a low
temperature AFM phase and a high temperature PM phase.
Also, there is a vertical first order phase boundary between
the FM and AFM phases at Jz = −0.4. In the large, positive
Jz limit, this model becomes an effective 2D Ising model with
TC = 4(Jx,y +2Jz′) = 4.8. In the large, negative Jz limit, this
model also becomes an effective 2D Ising model with TC =
4(Jx,y − 2Jz′) = 3.2. A positive Jz′ shrinks the AFM phase
and grows the FM phase as it is increased in magnitude, as
evidenced by comparing with the phase diagram for Jz′ = 0.

Jx,y−2Jz′ for positive and negative Jz, respectively. This
leads to the limiting values TC = 4 for |Jz| large in Fig. 4.

In fact, this single “locked spin” Ising regime in
the large |Jz| limit occurs for all four ordered phases.
However, the effective couplings are different for each
phase. In the large, negative Jz limit, the AFM and
AFM′ phases have the following effective Ising couplings.

Jeff,AFM = Jx,y − 2Jz′

Jeff,AFM′ = −Jx,y + 2Jz′ (8)

Meanwhile, in the large, positive Jz limit, the FM and
FM′ phases have the following different effective Ising
couplings.

Jeff,FM = Jx,y + 2Jz′

Jeff,FM′ = −Jx,y − 2Jz′ . (9)

This behavior is similar to that of the Blume-Capel
Model (BCM) which also approaches an Ising limit for
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FIG. 6: (Color online) The mean field theory phase diagram
for Jz′ = 0.3 and Jx,y = 1 is shown. For Jz >∼ −0.7, there
is a second order phase transition between a low temperature
FM phase and a high temperature PM phase. For −1.1 <∼
Jz <∼ −0.7, there is a first order phase transition between
a low temperature FM phase and a high temperature PM
phase. This section of the phase diagram is separated from the
previous section by the green square tricritical point (located

at T = 32
15

≈ 2.13, Jz = −16 ln(2)
15

≈ −0.74). For −1.2 <∼ Jz
<∼ −1.1 there is a low temperature FM phase followed by a
small higher temperature AFM phase and then, for higher
temperatures, a disordered PM phase. For Jz <∼ −1.2 there
is a second order phase boundary between a low temperature
AFM phase and a high temperature PM phase. Additionally,
there is an approximately vertical first order phase boundary
between the FM and AFM phases at Jz = −1.2. This phase
diagram is zoomed in relative to the other phase diagrams in
order to show the details of the tricritical point and first order
phase boundary.

large negative ∆ which drives the density of vacancy sites
Mi = 0 to zero. However, our model does not approach
the “vacant” lattice limit of the BCM at large positive ∆,
because even though Si = −Ti in the AFM and AFM′

phases, the individual nonzero S and T moments still
couple down their respective chains. It is interesting,
therefore, that, as we shall see, the tricritical points which
are driven by vacancies in the BCM are still present in
the CICM.

When Jz′ 6= 0 the phase diagram loses its symmetry on
changing the sign of Jz. As expected, for Jz′=0.1 (Fig. 5),
the AFM and FM phases meet at Jz=-4Jz′=-0.4. Also,
for large, negative Jz, Tc = 4(Jx,y − 2Jz′)=3.2 and for
large, postive Jz, Tc = 4(Jx,y + 2Jz′)=4.8; as Jz′ > 0
gets larger, the FM phase gets larger and the AFM phase
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FIG. 7: (Color online) A plot of the FM and AFM free
energies at Jz′ = 0.1 and T=1.0 is shown. For Jz=−0.39
the minimum of the FM free energy (thin blue solid curve) is
lower than the minimum of the AFM free energy (thin blue
dashed curve) and therefore, the system is in the FM phase.
For Jz=−0.40 the minimum of the FM free energy (thick red
solid curve) is greater than the minimum of AFM free energy
(thick red dashed curve) and therefore the system is in the
AFM phase. If the global minima were to be at m=0, the
system is in the PM phase where the total magnetization is
0. This is the analysis used to determine all of the first order
phase boundaries in the mean field theory phase diagrams.

shrinks. The phase diagram is reflected about Jz=0 for
Jz′=−0.1 (not shown): the AFM region expands and the
FM region shrinks.

Most importantly, the value of Jz′ determines whether
or not there is a triciritcal point. For Jz′ = 0.0 and 0.1,
there is no tricritical point and all thermally driven phase
transitions between an ordered phase and the disordered
phase are of second order. However, for Jz′ = 0.3 (Fig. 6)
there is a tricritical point. The thermally driven phase
transition between the PM and the FM phase switches
from second order to first order. The FM tricritical point
emerges when Jz′ >

Jx,y
6 = 1

6 , a result which follows from
a detailed analysis of Eq. (5) and Eq. (7).

METROPOLIS MONTE CARLO

In order to achieve more accurate quantitative results,
the Metropolis MC algorithm was implemented. We
include moves which flip a single S spin, a single T spin, a
row of S spins, a column of T spins, and an S and T spin
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simultaneously on a single site. What we will call one
sweep alternates between the following five procedures:
flipping every S spin (N total flips), flipping every T spin
(N total flips), flipping every row of S spins (L total
flips), flipping every column of T spins (L total flips), and
flipping every S and T pair (N total flips). To thermalize
the lattice we perform 5× 105 such sweeps of the lattice
(i.e. 105 sweeps of each type). We then perform another
5×105 sweeps of the lattice, making a measurement every
10 sweeps. Flipping multiple spins at a time helps the
system to break out of metastable states and thereby
makes the algorithm more efficient. For example, if Jz
is large and positive and a pair of S and T spins both
have values of +1, the probability of both spins changing
to −1 is very small if only single spin flips are allowed.
This is because of the large increase in energy that would
come from trying to change the value of one of them first
(i.e. making them align antiferromagnetically).

In order to calculate the critical temperatures, the
Binder fourth order cumulant,

UL = 1− < m4 >

3 < m2 >2
(10)

where m is either mFM, mAFM, mFM′ , or mAFM′ is
calculated as a function of temperature for various
lattice sizes, L. Curves for different lattice sizes have
a common intersection point at the critical temperature
(TC), regardless of the order of the transition [24].
Additionally, the behavior of the Binder cumulant away
from the crossing at TC can be used to distinguish
between first and second order phase transitions. For
second order phase transitions, UL approaches the
value UL = 2

3 as the temperature approaches zero.
For temperatures above the critical temperature, UL
approaches UL = 0, all the while staying between these
two values. For first order phase transitions, the Binder
cumulant has the same limit values but, above the
transition temperature, it develops a minimum that dips
below 0 and which gets deeper for larger lattice sizes [24].

For Jz′=0, the MC phase diagram of Fig. 9 has
the same qualitative features as the mean field phase
diagram. In both cases there are two ordered phases
at low temperatures, FM and AFM, and a PM phase at
high temperatures. The AFM and FM phases meet, as
expected, at Jz=−4Jz′ =0. Additionally, the MC phase
diagram also contains the expected Ising regimes at large
|Jz|, that is, TC ≈ 2.269Jeff [25]. For large positive Jz
this leads to TC ≈ 2.269 (Jx,y + 2Jz′) = 2.269 and for
large negative Jz, TC ≈ 2.269 (Jx,y − 2Jz′) = 2.269. We
can estimate the error bars on the MC simulations by
comparing how close the MC data is to the exact value
in the Ising regime. This leads to error bars on the critical
temperatures of ±0.02. Another way of quantifying the
uncertainty in the values of the critical temperatures is to
estimate the “spread” in the crossings of the fourth order
Binder cumulants for the various lattice sizes, since the
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FIG. 8: (Color online) The Binder fourth order cumulants for
various lattice sizes and for a second order phase transition
(solid lines) at Jz = −0.9 and a first order phase transition
(dashed lines) at Jz = −1.1. A minimum below UL,FM=0,
which gets deeper as the lattice size increases, is a signature
of a first order phase transition. The curves intersect at a
single critical temperature in both cases. In both cases, at
lower temperatures than the crossing, the order of the curves
from top to bottom are L=20, L=14, L=12, and finally L=10.
UL was used to determine all of the critical points in the MC
phase diagrams.

crossings are not perfectly sharp. This measure also leads
to error bars on the critical temperatures of ±0.02.

Similarly, for Jz′=0.1 (Fig. 10) the MC phase diagram
qualitatively agrees with the mean field theory phase
diagram. There is no tricritical point in either the mean
field theory or MC phase diagrams and the FM and AFM
phases meet at Jz=−4Jz′ = −0.4 in both cases. For
large positive Jz, we expect TC ≈ 2.269 (Jx,y + 2Jz′) ≈
2.723 and for large negative Jz, we expect TC ≈ 2.269
(Jx,y − 2Jz′) ≈ 1.815, which agrees with the MC data.

Fig. 11 shows MC results for Jz′=0.3. The FM and
AFM phases meet at Jz=-4Jz′ = −1.2, as in the MF
phase diagram, and there is a FM tricritical point at
Jz = −0.9(1). One important qualitiative difference
between the MF and MC phase diagrams for Jz′=0.3
is that there is also an AFM tricritical point in the
MC phase diagram. The MF phase diagram also has
a small parameter window for −1.2 <∼ Jz <∼ −1.1 where
raising the temperature from the FM phase results in
passage through an intermediate AFM phase before the
disordered high temperature regime is reached. We do
not observe this in the MC data.
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FIG. 9: (Color online) The MC-derived phase diagram for
Jz′ = 0 and Jx,y = 1 is shown. For Jz > 0, there is a
second order phase boundary separating a low temperature
FM phase from a high temperature PM phase. The critical
temperature increases as Jz increases and saturates at TC ≈
2.269(Jx,y +2Jz′) = 2.269. For Jz < 0, there is a second order
phase boundary separating a low temperature AFM phase
from a high temperature PM phase. Similarly, the critical
temperature increases as Jz decreases until it saturates at
with TC ≈ 2.269(Jx,y − 2Jz′) = 2.269. This phase diagram
is qualitatively similar to the MFT phase diagram with the
same parameters, particularly in its lack of a tricritical point.
As expected, the critical temperatures were overestimated in
MFT.

Finally, in Fig. 12 the phase diagram for Jz′=1.0 is
shown. The FM and AFM’ phases meet at Jz = −2, as
expected from the ground state phase diagram. There
is no tricritical point for this value of Jz′ which shows
that there is some intermediate range between Jz′=0.1
and Jz′=1.0 where tricritical points are present.

WANG-LANDAU SAMPLING

While the Metropolis MC algorithm is the most
widely used method of numerically calculating the
thermodynamic properites of classical spin models, there
exist more sophisticated alternatives. One is Wang-
Landau sampling (WLS). In WLS, the density of states
(DOS) is determined using a MC procedure. From the
DOS, all of the desired thermodynamic properties can be
calculated. The major advantage of WLS is that the DOS
is independent of temperature so that only one simulation
is needed to calculate thermodyanamic quantities at any
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FIG. 10: (Color online) Same as Fig. 9 except Jz′ = 0.1. The
phase diagram is qualitatively similar to the result of MFT,
particularly in its lack of a tricritical point.
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FIG. 11: (Color online) Same as Fig. 9 except Jz′ = 0.3. The
phase diagram is qualitatively similar to the result of MFT
in most regards. However, MC finds that a tricritical point,
which is present only on the FM side in MFT, is also present
on the AFM phase boundary.

temperature. Additionally, the DOS can be used to
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FIG. 12: (Color online) Same as Fig. 9 except Jz′ = 1.0. As
for Jz′ = 0.0 and 0.1, there is no tricritical point, which thus
appear to be restricted to intermediate Jz′ ≈ 0.3.

calculate the unnormalized canonical distribution, P (E),

P (E) ∝ g(E) e−βE (11)

for various temperatures from one simulation. This
distribution is another useful tool for distinguishing
between first and second order phase transitions as it has
distinct behavior in the two cases. For second order phase
transitions, the canonical distribution is always a single
peaked distribution which shifts its average value as the
temperature changes. For first order phase transitions,
the canonical distribution is similarly a single peaked
distribution at temperatures well above and below the
phase boundary. However, it develops a characteristic
double peaked structure near the transition temperature
due to phase coexistence. The peaks are of equal height
at the transition temperature [26].

This doubly peaked canonical distribution was found
for our model as is shown in Fig. 13, providing additional
confirmation for the existence of the first order phase
transition. For Jz = −1.1 and Jz′=0.3, the peaks
were found to be of equal height at TC = 0.6173(2).
The Metropolis MC data with the same parameters
gave TC = 0.615(5), which envelopes the Wang-Landau
value. This procedure confirmed all three first order
phase transition data points (Jz=−1.3,−1.1,−1.0) in the
Jz′=0.3 MC phase diagram.

A clear and comprehensive detailing of the WLS
algorithm can be found in the literature [21–23].
However, a few specific details of our simulations are

worthy of mention. The energies in our Wang-Landau
simulation were not binned. In other words, every
unique configuration energy has it’s own data point in
the density of states. Also, windows were not used
in the sampling. The entire energy spectrum shown
was sampled in one simulation. Every 10,000 × 2N
spin flips, the histogram is checked for flatness. The
flatness criterion used is that no individual energy is
visited less than 80 percent of the average number of
visits over all energies. When this criterion is achieved,
the modification factor, f, which was initialized to f=e,
is reduced (fi+1 =

√
fi), the histogram H(E) is reset to

zero and the process of spin flipping is continued. This
algorithm continued until f was less than e10−6

at which
time the density of states converged to our desired level
of accuracy. The Wang Landau algorithm calculates the
relative density of states and, therefore, the density of
states was normalized as follows,

ln(gnormalized(Ei)) = ln(gunnormalized(Ei))

− ln(gunnormalized(EGS)) + ln(gnormalized(EGS)) (12)

For the CICM, there are two ground states due to it’s
spin inversion symmetry.

-1900 -1800
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0.2

0.0
-1700 -1600

Energy

FIG. 13: (Color online) The canonical distributions for three
temperatures around a first order phase boundary are shown
(with Jz = −1.1 and Jz′=0.3). The characteristic double
peak behavior due to phase coexistence is clear. At the
transition temperature (TT ) (black data), the two peaks are
of equal height. The canonical distributions were normalized
by the constant k(T) such that the maximum height of the
distribution is equal to 1. This simulation was performed on
a size L=30 lattice.
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CRITICAL EXPONENTS

The CICM consists of Ising spins on one dimensional
chains with interchain couplings that connect the system
into a two-dimensional lattice and therefore, we expect
it to belong to the two-dimensional Ising universality
class where the magnetization critical exponent β = 1

8 ,
the correlation length critical exponent ν = 1, and the
magnetic susceptibility critical exponent γ = 7

4 . To
verify this universality class for the CICM (away from
the tricritical point) a finite size scaling analysis was

performed. Plots of (L
2β
ν < m2

FM (t) >) vs. (L
1
ν t) and

(L
−γ
ν < χL(t) >) vs. (L

1
ν t) for various values of L will

collapse onto a single curve for the correct values of the
exponents β, ν, and γ [27]. We measured < m2

FM >
and < χL > as a function of temperature for the CICM
with Jz=25 and Jz′=0.3. For these parameters, TC =
3.63. This was used to define the reduced temperature
t = T−TC

TC
. Fig. 14 and Fig. 15 show the results of this

analysis. The data collapses nicely over a broad range
of temperatures. This provides a satisfying consistency
check to our expectation of the universality class of the
CICM.

Precisely at a tricritical point, the critical exponents
are known to take on different tricritical values [20].
We attempted to measure the tricritical exponents at
the tricritical point in our model but this proved to
require a level of precision beyond the scope of our
work. However, we did find that when applying the
same finite size scaling analysis that is detailed in
the previous paragraph, including using the same two-
dimensional Ising exponents, to a tricritical point in our
model (Jz=-0.9 and Jz′=0.3), there was a significant
decrease in the degree to which the data “collapsed.”
Although inconclusive, this finding is consistent with our
expectation that there will be a change in exponents at
the tricritical point.

Finally, the critical Binder cumulant, U* is the value
of the Binder cumulant at the critical temperature in the
thermodynamic limit. For the 2D square Ising model
it has been shown that U*=0.61069... [29]. For Jz=25
and Jz′=0.3 in the CICM, our data shows that U* is
somewhere between 0.605 and 0.615, consistent with the
known value for 2D Ising universality. At Jz=-0.9 and
Jz′=0.3 (approximate location of a tricritical point) our
data has a larger spread of possible U* values although
it is clearly less than 0.61069. U* at the tricritical
point is in the range 0.50 to 0.55. We also measured
U* at the tricritical point of the 2D Blume-Capel model
and a similar range of values was found, providing some
evidence in favor of 2D tricritical Ising universality.

543210-1-2-3-4-5
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FIG. 14: (Color online) The data collapse of (L
2β
ν <

m2
FM (t) >) vs. (L

1
ν t) for L = 40, 60, 80, and 100 using the

two-dimensional Ising universality class exponents is shown.

CONCLUSIONS

Using a combination of mean field theory, Metropolis
MC, and Wang-Landau simulations, we have explored
an Ising-like model on a lattice composed of a 1D×1D
collection of coupled chains. As is well known, 1D
Ising chains with short range interactions do not
exhibit finite temperature ordered phases. However,
interchain couplings connect the chains into a 2D
framework which shows multiple ordered phases at finite
temperatures. The phase transitions between the ordered
and disordered phases can be of first or second order
as evidenced by the behavior of the Binder fourth order
cumulants and the canonical distributions. The existence
of tricritical points in the phase diagram depends on
the value of Jz′ . According to the MC simulations, for
Jz′=0.1 and 1.0, there are no tricritical points but for
intermediate Jz′=0.3, there are tricritical points.

It would be interesting to see if the Nb12O29 materials
can be tuned between first and second order transitions
by varying pressure, doping or other parameters, thus
giving rise to novel realizations of tricritical systems.

In some materials which exhibit this 1D×1D geometry,
the quantum mechanical nature of the degrees of freedom
may be crucial to the observed phenomena. For example,
in the optical lattice case, the focus is on the occurrence
of Bose-Einstein condensation at finite momentum, and
in a pattern of orbitals which alternates as px ± ipy
on the two sublattices. Our work shows that even at
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FIG. 15: (Color online) The data collapse of (L
−γ
ν < χL(t) >)

vs. (L
1
ν t) for L = 40, 60, 80, and 100 using the two-

dimensional Ising universality class exponents is shown.

the classical level, these crossed-chains systems exhibit
complex phase-transitions and crossovers. Future work
could address the additional non-trivial physics which
arises when the phase transitions are driven to T =
0, giving rise to exotic quantum phase transitions.
Additional future work could study the critical and
tricritical exponents of this model with greater precision
and breadth.
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