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Abstract 

 This work presents a method of model reduction that leads to models with three 

solutions of increasing fidelity (multi-fidelity models) for solute transport in a bounded 

layered porous media with random permeability. The model generalizes the Taylor-Aris 

dispersion theory to stochastic transport in random layered porous media with a known 

velocity covariance function. In reduced model, we represent (random) concentration in 

terms of its cross-sectional average and a variation function. We derive a one-

dimensional stochastic advection-dispersion-type equation for the average concentration 

and a stochastic Poisson equation for the variation function, as well as expressions for the 

effective velocity and dispersion coefficient. In contrast to the linear scaling with the 

correlation length and the mean velocity from macro-dispersion theory, our model 

predicts a nonlinear and a quadratic dependence of the effective dispersion on the 

correlation length and the mean velocity, respectively. We observe that velocity 

fluctuations enhance dispersion in a non-monotonic fashion (a stochastic spike 

phenomenon): the dispersion initially increases with correlation length λ, reaches a 

maximum, and decreases to zero at infinity (correlation). Maximum enhancement in 

dispersion can be obtained at a correlation length about 0.25 the size of the porous media 

perpendicular to flow. This information can be useful for engineering such random 

layered porous media. Numerical simulations are implemented to compare solutions with 

varying fidelity. 

 

Key words: stochastic PDE, model reduction, multi-fidelity model, advection, solute 

transport, porous media. 



I. Introduction 

 Many scientific applications (e.g., barotropic flow, contaminant transport, and 

functionally graded materials) are multiscale and stochastic in nature with uncertainties 

stemming from random initial and/or boundary conditions and/or stochastic parameter 

fields. Solving these stochastic problems is both theoretically and computationally 

challenging.  

     Most existing approaches to solute transport in heterogeneous media compute the 

lower order moments of concentration. Perturbation-based moment methods for solving 

stochastic advection-dispersion equations develop non-physical bi-modal behavior for 

average concentration [1, 2]. The moment solution based on the macro-dispersion theory 

[3] requires knowledge of Green’s function, which is expensive to compute numerically 

and can only be found analytically for a small class of problems (e.g., infinite domains). 

Another drawback to these methods is their accuracy rapidly deteriorates with increasing 

variance of the random parameters (i.e., advection velocity and/or dispersion coefficient). 

Other methods focus on deriving the evolution equations for probability density functions 

of concentration that contain a more complete information than moment-based methods 

[4]. Assumption of negligible transverse dispersion has to be made in order for explicit 

expressions for layered heterogeneous medium. Other statistical approaches, including 

Monte Carlo (MC) methods, suffer from a low convergence rate (O(N-1/2), where N is the 

number of samples) and are destined to fail when directly applied to problems with large 

numbers of degrees of freedom [5].  

 Polynomial chaos (PC)-based methods [6-8] currently are a method of choice for 

quantifying uncertainty [9-11]. However, these methods suffer from the so-called “curse 



of dimensionality” and become prohibitively expensive when applied to problems with 

correlated-in-space random parameters characterized by small correlation length and/or 

large variance [12-18].  

 In this paper, we present a new reduction method for solute transport in layered 

heterogeneous porous media with random distribution of the hydraulic conductivity 

across the layers. We derive stochastic equations for the spatial average of concentration 

and variations around the average. The spatial average represents the large-scale 

concentration and is governed by a stochastic advection-dispersion equation with the 

effective stochastic advection velocity and dispersion coefficient. The small-scale 

variability of the concentration, caused by the small-scale velocity fluctuations, is 

captured by the variation function, depending on the velocity covariance. The resulting 

hierarchical stochastic models enable efficient solutions of the original problem with 

significantly reduced dimensionality.  

 Aris and Taylor’s classical dispersion theory was developed for long-time evolution 

of solute concentration (Taylor [19, 20] and Aris [21], see also Philip [22], Brenner [23], 

Gill and Sankaras [24], Smith [25], Frankel and Brenner [26], Fischer [27], and Xu [28, 

29]). Whitaker, Adler and Brenner, and Bear later generalized this theory to 

(deterministic) flow in porous media. Neuman [3] and Koch and Brady [30] derived 

deterministic effective dispersion equations for solute transport in the stochastic velocity 

field. Our method generalizes Taylor dispersion theory [19, 20] for transport in the 

stochastic velocity field. Unlike Neuman’s macro-dispersion theory [3] (which results in 

deterministic “macroscale” equations), our method yields a stochastic “macroscale” 

advection-dispersion equation and an expression for microscale concentration 



fluctuations. A stochastic form of the effective equation allows efficient uncertainty 

quantification and parameter and state estimation using small-scale concentration 

measurements.  

  In the proposed method, for known statistics of the advective velocity, the variation 

function, effective advection velocity, and effective dispersion coefficient can be 

computed analytically. The stochastic parameters in the effective equation have smaller 

variance and larger correlation lengths than their small-scale counterparts in the original 

advection-dispersion equations. Therefore, the effective stochastic equation can be solved 

using Monte Carlo simulations (MCS) with significantly coarser resolution than the one 

required in the MCS solution for the original equation. In addition, as the accuracy of 

these methods increases with decreasing variances of the random parameters in the 

stochastic equations, the moment equation and macro-dispersion methods should be more 

accurate for the effective equation than for the original equations.  

 

II. Formulation of the Model 

 Here, we consider solute transport in porous media consisting of homogeneous layers 

with random permeability distribution across the layers. The randomness in permeability 

leads to randomness of the advective velocity. The two-dimensional (2-D) geometry of 

the problem is defined in Figure 1. The flow domain is bounded in the y direction (a is 

the size of the domain in the y direction) and is infinite in the x direction. Conservative 

solute transport in this domain can be described by the 2-D advection-dispersion equation  

2c t v c D c∂ ∂ + ⋅∇ = ∇          (1) 

subject to no flux boundary conditions  



0,

0
y a

c
y =

∂ =
∂

          (2) 

at the top and bottom of the domain. The advection velocity is along the x direction and 

only depends on the coordinate y. It satisfies Darcy’s law, ( ) ( )v y K y h x= − ∂ ∂ , where 

K(y) is random conductivity and h x∂ ∂  is the constant (in time and space) head gradient. 

In the preceding equations, ( ), ,c x y t  is the solute concentration at position (x, y) and 

time t, and D  is the dispersion coefficient assumed here to be constant and the same for 

each layer. Numerical solutions  via directly solving Eq. (1) can be expensive 

but with high fidelity.  

 For transport in a channel (v(y) having a parabolic profile), Taylor derived an 

analytical expression for the dispersion coefficient [19]. Here, we derive an expression 

for the dispersion coefficient for random velocity v(y) with the prescribed mean, variance, 

and correlation function. For an infinite domain in the x direction or a domain with the 

length L, such as L>>a, motivated by the original Taylor’s formulation [19, 28], we may 

write the total concentration as 

( ) ( )1( , , ) , , ( , ) cc x y t c x y t c x t y
x

η ∂≈ = +
∂

      (3) 

where ( ),c x t  is the cross-sectional average of total concentration ( ), ,c x y t . The cross-

sectional averaging operator •    is defined as: 

( )
0

1 a
dy

a
• = •∫ .         (4) 

( ), ,c x y t



Both solutions ( )1 , ,c x y t  and  are approximations of the high-fidelity solution

( , , )c x y t , where ( )1 , ,c x y t  is a mid-fidelity solution with corrections on top of  to 

consider the variations in y and  is a low-fidelity solution.  

 The in-plane variation function ( )yη  is a measure of the velocity variation along the 

y direction and will be derived later. Equation (3) decomposes the total stochastic 

concentration solution ( ), ,c x y t  in terms of the cross-sectional average concentration c

and its first-order gradient c x∂ ∂ , which can be a result of homogenization [31-35]. 

Though higher-order expression for the correction (in terms of the spatial derivatives of 

( ),c x t ) may be obtained [28, 36] and included in Eq. (3), only the first-order correction 

is considered in this study. The total uncertainty in solution  can be further 

decomposed into the ensemble contribution in average solution  and 

configurational contribution in variation function  [35]. 

 Similarly, the total velocity field is decomposed into the cross-sectional average  

( )
0

1 a
v v y dy

a
= ∫         (5) 

 and velocity fluctuation 'v  around that average 

( ) ( )'v y v v y= + ,        (6) 

where both  and  are random. The velocity fluctuation 'v  has a zero cross-sectional 

average: 

( )' '

0

1 0
a

v v y dy
a

= =∫ .        (7) 

( ),c x t

( ),c x t

( ),c x t

( ), ,c x y t

( ),c x t

( )yη

v

v 'v



The zero ensemble average  is satisfied only if the ensemble average 

 is independent of y, which is assumed in the current study. 

 The key part of the proposed solution method for stochastic partial differential 

equation (PDE) (1) is to formulate the equations and solutions for cross-sectional average 

concentration ( ),c x t  and in-plane variation function ( )yη . The boundary condition of 

( ), ,c x y t  (Eq. (2)) immediately leads to the boundary conditions for ( )yη : 

0,

0
y ay

η

=

∂ =
∂

.         (8) 

By applying the cross-sectional operator to both sides of Eq. (3), the cross-sectional 

average of function ( )yη  is found as: 

( )
0

1 0
a

y dy
a

η η= =∫ .         (9) 

 Substitution of Eq. (3) into the original stochastic PDE (1) and applying the cross-

sectional average operator to both sides of Eq. (1) lead to the equation for ( ),c x t :  

( )
2 2

2 2

c c cv D D v
t y x x

η η
⎞⎛∂ ∂ ∂ ∂+ − ⋅ = −⎟⎜⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.     (10) 

It is evident that the reduced model for ( ),c x t  (Eq. (10)), a one-dimensional stochastic 

PDE, is easier to solve than the original Eq. (1). According to Eq. (7), the statistical 

ensemble average of velocity fluctuation is 

( ) ( ) ( )'

0

1 a
v y v y dy v y

a
= −∫ ,      (11) 

where the operator •   represents the statistical ensemble average of a field variable “• ”  

' 0v =

( )v y v=



 Using the boundary condition (8), we find the conditions for ( )yη : 

2

2
0

0
y a yy y y

η η η

= =

∂ ∂ ∂= − =
∂ ∂ ∂

.       (12) 

By substituting Eq. (12) into Eq. (10), the equation for ( ),c x t  is further reduced to 

2

2

c c cv D
t x x

∂ ∂ ∂+ ⋅ =
∂ ∂ ∂

% ,        (13) 

where  

'D D v D vη η= − = −%         (14) 

is a stochastic scalar function representing the effective dispersion coefficient for ( ),c x t  

due to the random velocity v(y). The term 'vη  represents the contribution of the non-

uniform advection velocity field ( )v y  to the dispersion.  

 Thus far, we have formulated the stochastic advection-dispersion equation (13) for 

( ),c x t   with stochastic advection velocity v  and stochastic effective dispersion D%  that 

depends on the in-plane function ( )yη . To derive a equation for ( )yη , Eqs. (3) and (13) 

are substituted into the original stochastic PDE (1), which leads to:  

( )
2 2 3

2 2 2 0c c cv v D v v v v
x y x x

η η η η η η⎞⎛∂ ∂ ∂ ∂− − + − − − =⎟⎜∂ ∂ ∂ ∂⎝ ⎠
.   (15) 

Because the expansion of total concentration ( ), ,c x y t  (Eq. (3)) only retains a first-order 

correction, we obtain an equation for ( )yη  satisfying Eq. (15) to the first order: 

2
'

2D v v v
y
η∂ = − =

∂
.        (16) 

 



Equation (15) needs to be satisfied to higher order if higher order gradients are included 

in the original expansion of Eq. (3). By integrating Eq. (16) twice and using the boundary 

conditions (8) and constraint (9), we obtain the solution for ( )yη : 

( ) ( ) ( )2 2' '
1 1 2 1 1 20 0 0 0 0

1 1y y a y y
y v y dy dy v y dy dy dy

D a
η ⎡ ⎤= −⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ ∫ .   (17) 

Taking ensemble average of both sides of Eq. (17), we find the necessary conditions for    

( ) 0yη =          (18) 

is ' 0v = .  

 The stochastic effective dispersion coefficient D%  can be derived from Eq. (14). First, 

we integrate Eq. (17) by parts and the boundary condition for ( )yη  in Eq. (8) to obtain  

( )
2

2'
2v D D y

y
ηη η η∂− = − = ∂ ∂

∂
.      (19) 

Substituting this into Eq. (14), we obtain the solution for D% : 

( )( ) ( ) ( )2 ' '
1 1 2 22 0 0

11 1
y y

D D y D v y dy v y dy
D

η ⎛ ⎞= + ∂ ∂ = +⎜ ⎟
⎝ ⎠∫ ∫% .  (20) 

It can be seen from Eq. (20) that the stochastic effective dispersion D D≥% , i.e., the 

heterogeneity (fluctuations) in advective velocity v(y) always enhances the effective 

dispersion.  

 Next, we demonstrate the consistency of our formulation with the Taylor-Aris theory 

for the (deterministic) parabolic velocity profile for ( )v y : 

( )
( )

2

2
3 1
2 2

yv y v
a

⎞⎛
= − ⎟⎜⎜ ⎟

⎝ ⎠
.       (21) 



Substitution of Expression (21) into Eq. (17) leads to the corresponding solution for 

( )yη : 

( )
222 151 1

60 8 2
va yy

D a
η

⎡ ⎤⎞⎛ ⎞⎛⎢ ⎥⎟⎜= − − ⎟⎜⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

.      (22) 

Then, the effective dispersion coefficient D%  can be computed via substitution of Eqs. (21)

and (22) into Eq. (14) as 

( )
2

' 1
210

ePD D v Dη ⎛ ⎞
= − = +⎜ ⎟

⎝ ⎠
% ,       (23) 

where the Péclet number is defined as Pe = av D . This result exactly recovers the 

Taylor’s dispersion coefficient [19]. 

 

III. Statistical properties of effective parameters 

 Next, we study statistical properties of v  and D%  in Eq. (13). Mean and variance of v  

can be analytically obtained for a given covariance function of stochastic velocity ( )v y . 

Here, we assume that ( )v y  is statistically homogeneous and has the constant (ensemble) 

mean v  and exponential covariance function,  

( ) ( ) ( ) 2 2 1 2
1 2 exp

y y
v y v y v y σ

λ
− ⎞⎛

= + − ⎟⎜
⎝ ⎠

,    (24) 

where 2σ  is the variance of velocity fluctuation and λ  is the correlation length. Then, 

the ensemble  mean and variance of v are given by [34] 

v v=          (25) 

and 



( )22 2 2 2 12 1 1v v v e μσ σ μ μ−= − = + − ,     (25) 

where aμ λ=  is the dimensionless correlation length. Figure 2 shows the variation of 

non-dimensional ratio 2 2
vβ σ σ=  with the correlation length μ , where β  approaches 1 

with increasing correlation length μ  or 2 2
vσ σ→  when μ → ∞ . 

 The statistical mean of the effective dispersion D%  can be obtained from Eq. (20) as 

2 2

21
D a
D D

γ σ= +
%

,        (26) 

where 

( ) ( ) ( )2' '
1 2 1 20 0

y y
v y v y dy dy aγ σ= ∫ ∫         (27) 

is a dimensionless number representing the effect of velocity fluctuation on mixing  

enhancement. The covariance function of velocity fluctuation ( )'
1v y  can be related to 

the covariance function of ( )v y  using Eq. (6) as: 

( ) ( ) ( ) ( ) ( ) ( )' ' 2
1 2 1 2 2 1v y v y v y v y v v v y v v y= + − ⋅ − ⋅ .  (28) 

The final expression for γ  is obtained using Eq. (28) as 

( ) ( )4 1 3 2 11 14 1 4 5
3 3

e eμ μγ μ μ μ μ− −= − + − + +     (29) 

and plotted in Fig. 3 as a function of μ. This figure show that γ  increases from zero to its 

maximum value 0.026γ = , corresponding to μ ≈ 0.25, then decreases to zero for large μ.  

 Let’s make some comparison with the macro-dispersion model by Neuman [3]. We 

first writ the velocity as a function of permeability k(y) using Darcy’s law, 

( ) ( )k y
v y g

υφ
= ,        (30) 



where k(y) is the permeability field for each layer, υ  is kinematic viscosity, φ  is the 

porosity, and g is the force per unit mass along x direction with a unit of acceleration. 

Let’s assume the covariance function of k(y) as, 

( ) ( ) ( )2 2
1 2 2 1kk y k y k y yσ ρ= + − ,     (31) 

where k  and 2
kσ  are the mean and variance of the permeability, and ρ is the 

autocorrelation function. The velocity covariance can be written as 

( ) ( ) ( )2 2
1 2 2 11 kv y v y v y yα ρ⎡ ⎤= + −⎣ ⎦      (32) 

after Eq. (30), where k k kα σ=  is the coefficient of variance for permeability field k. 

Comparison between Eqs. (32) and (24) leads to the relation k vσ α= . The macro-

dispersion theory predicts the effective dispersion (in the limit of vanishing D and µ), 

21N
k

a vD
D D

α μ= +
%

,         (33) 

which scales linearly with both the correlation length µ and v . In contrast, our model 

(Eq. (26)) gives 

2

21 k

a vD
D D

α γ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

%
,        (34) 

where the effective dispersion scales quadratically with v  and is a nonlinear function of 

µ that exhibits a maximum at µmax =0.25, a stochastic spike referring to a sharp increase 

before µmax followed by a relatively slow decrease to 0 at infinity. This characteristics is 

also demonstrated for the stochastic heat conduction problem [34].  

 The correlation length µmax leading to the maximum dispersion should depend on the 

particular choice of covariance function ρ, but not on any other model parameters. 



Maximum enhancement in mixing can be achieved for the stochastic velocity field v(y) 

with a correlation length λmax≈0.25a, where a is the total layer thickness. This 

information can be useful for engineering a layered media to achieve maximum effect of 

mixing.  

 A quick comparison with Taylor dispersion can also be made here. Note that for the 

parabolic velocity profile (Eq. (21)), the velocity variance is   

( )( )22 2 5v y v vσ = − = ,        (35) 

and the equivalent γ  from Taylor’s theory is 1 42 0.0238γ = ≈ —only slightly smaller 

than the maximum value γ =0.026 for the random velocity.  

 Finally, we perform MCS to compute the probability distribution functions (PDFs) of 

v , D% , and ( )yη . We assume the porous medium is made of 100 layers, and the velocity 

in each layer is constant with a uniform distribution defined on interval [0, 1]. Figures 4 

and 5 illustrate the PDFs of v  and D%  with v  and D%  approaches Gaussian and 2χ  

distributions, respectively, for small correlation length μ.  

 Figure 6 depicts the realizations of ( )yη  obtained from the MCS. The PDFs for 

( )yη  at the top ( 1y = ) and middle ( 0.5y = ) of the domain are presented in Figs. 7 and 8. 

The PDF function for ( )yη  approaches Gaussian distribution at all locations but with 

fluctuating variance that is larger at both upper and lower boundaries and smaller in the 

middle of the domain.  

 

IV. Numerical Example 



 To investigate the accuracy of the proposed models, Eq. (1) was first fully solved by a 

finite difference simulator for chosen parameters to examine flow and transport through a 

multi-layer random media with 10 layers of a total thickness a=1. The diffusivity D=0.1 

was used and a hundred realizations were generated on a 2-D mesh with velocity v(y) 

discretized into 10 random variables vertically following a Gaussian distribution with 

1v =  and a unit variance (σ=1).  

 The numerical solutions obtained, i.e., the high-fidelity numerical solutions ( , , )c x y t  

by solving Eq. (1) directly, will be used as the reference for comparison. The cross-

sectional average solutions ( , )c x t  can be obtained by solving the one-dimensional 

effective Eq. (13) with effective properties computed from Eq. (5) and (20), respectively. 

The proposed model will also compute the mid-fidelity solutions 1( , , )c x y t using Eq. (3) 

to approximate the original high-fidelity solutions ( , , )c x y t , where the in-plane variation 

function η can be computed from Eq. (17) for all realizations. Variations of η along y 

direction for the first two realizations R1 and R2 are plotted in Fig. 9. Finally, three 

solutions ( c , 1c , and c ) with increasing fidelity are obtained for the purpose of 

comparison, where c is the low-fidelity and 1c  represents the mid-fidelity solutions. 

 To assess the discrepancy between c , 1c , and c , a comparison of these solutions for 

the first two realizations is presented in Figs. 10 and 11,where the concentration variation 

with time t at locations x=1, y=0 and x=1, y=1 are plotted. For both realizations R1 and 

R2, solutions c  solved from effective Eq. (13) (black solid lines) are in very good 

agreement with solutions Tc obtained by a direct cross-sectional averaging of the high-

fidelity solutions ( , , )c x y t  using Eq. (4) (black circles), i.e. ( ) ( )
0

1, , ,
aTc x t c x y t dy

a
= ∫ . 



This validates our reduced model. The mid-fidelity solutions 1c  (blue and red solid lines) 

approximate the high-fidelity c  (blue and red circles) much better than c  for both 

realizations. In this example, the original high-fidelity solution c  from the 2-D stochastic 

model can be better approximated by the mid-fidelity model 1c  that is decomposed into a 

1-D low-fidelity model c  and a 1-D in-plane variation function η, both of which can be 

solved more efficiently than the original solution c . Finally, the discrepancy iε  (L2 norm) 

between cross-sectional average solution c  and Tc  (black lines and circles in Figs. 10 

and 11) can be quantified for each realization,   

( ) 2

2
1

1 nN
T T

i i i i i
nn

t c c c c
N

ε
=

= − = −∑ ,     (36) 

where i is the realization number from 1 to 100 and nN  is the total number of 

discretization along the x direction.  The variations of ensemble mean and standard 

deviation of iε  with time t are plotted in Fig. 12, where both mean and deviation are 

decreasing with time showing that the proposed effective model (Eq. (13)) is better in 

describing the long time dynamics of solute transport with a maximum discrepancy on 

the order of 10-2.  

  

V. Conclusions 

 We have presented a model reduction method that results in hierarchical stochastic 

models for solute transport in layered porous media with random distributions of 

advection velocity across different layers. The model, given by Eq. (3), approximates the 

concentration field ( ), ,c x y t  in terms of its cross-sectional average ( ),c x t  and in-plane 



variation function ( )yη  (given by Eq. (16)), where ( ),c x t  represents the large-scale 

variability of ( ), ,c x y t  and is governed by the stochastic advection-dispersion equation 

(13) with effective advection velocity v  (given by Eq. (5)) and effective dispersion 

coefficient D%  (given by Eqs. (14) or (20)). The small-scale variability in ( ), ,c x y t , 

caused by small-scale variability of the advection velocity ( )v y , is captured by the in-

plane function ( )yη . The resulting multi-fidelity models can significantly reduce the 

problem dimensionality for efficiently solving the original expensive problem. The effect 

of correlation field length ( )v y  on the enhancement in dispersion also has been 

analytically examined. In contrast to the linear scaling with correlation length and mean 

velocity from macro-dispersion theory, our model predicts a nonlinear and a quadratic 

dependence of the effective dispersion on the correlation length and the mean velocity, 

respectively. A stochastic spike can be identified with the maximum enhancement 

(maximum effective dispersion coefficient) was found for a correlation length at about 

0.25a. There is no enhancement (i.e., the effective dispersion coefficient is equal to the 

molecular diffusion coefficient) for both zero and infinity large correlation lengths. This 

information can be very useful for engineering the random layered porous media with 

maximized effect of mixing. 
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Figure 1. Flow confined by two parallel plates with a stochastic velocity profile v(y). 
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Figure 2. Fluctuation of variance ratio β with correlation length μ. The variance 2 2
vσ σ<  

but approaches 2σ  when μ → ∞ . 
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Figure 3. Variation of enhancement in dispersion with the correlation length µ showing a 

stochastic spike at µmax.  
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Figure 4. Probability density function of effective velocity v . 
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Figure 5. Probability density function of effective dispersion  with 0.1D =  

corresponding to the dispersion of constant velocity. The ensemble mean  shows the 

enhancement in dispersion due to velocity fluctuation. 
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Figure 6. Plot of in-plane variation η(y) fluctuating with y from 105 samplings. 
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Figure 7. Probability density distribution of ( )yη  at 1y = . 
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Figure 8. Probability density distribution of ( )yη  at 0.5y = . 
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Figure 9. Variation of η along y direction for realizations R1 and R2. 

 



 

Figure 10. Variation of concentration solutions of increasing fidelity ( c , 1c , and c ) with 

time t for realization R1. Solution Tc is obtained by cross-sectional averaging of the high-

fidelity solution c  using Eq. (4). 
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Figure 11. Variation of concentration solutions of increasing fidelity ( c , 1c , and c ) with 

time t for realization R2. Solution Tc is obtained by cross-sectional averaging of the high-

fidelity solution c  using Eq. (4). 
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Figure 12. Mean and standard deviation of error of c  varying with time t.  
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