
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Smoothed particle hydrodynamics study of the roughness
effect on contact angle and droplet flow

Elena Shigorina, Jannes Kordilla, and Alexandre M. Tartakovsky
Phys. Rev. E 96, 033115 — Published 28 September 2017

DOI: 10.1103/PhysRevE.96.033115

http://dx.doi.org/10.1103/PhysRevE.96.033115


Smoothed Particle Hydrodynamics study of the roughness effect on contact angle and
droplet flow

Elena Shigorina, Jannes Kordilla, and Alexandre M Tartakovsky

(Dated: September 3, 2017)

We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile
and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling
of free surface flows without discretizing the air phase, which is achieved by imposing the surface
tension and dynamic contact angles with pairwise interaction forces.

We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle
on the effective contact angle and droplet dynamics. In the first part of this work, we investigate
static contact angles of sessile droplets on rough surfaces having the shape of a sinusoidal function
and made of rectangular bars placed on top of a flat surface. We find that the effective static
contact angles of Cassie and Wenzel droplets on a rough surface are greater than the correspond-
ing microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show
effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macro-
scopically hydrophilic or hydrophobic, depending on the type of roughness. To study the dependence
of the transition between Cassie and Wenzel states on roughness and droplet size we compare our
simulations to theoretical predictions. Good agreement is found and simulations can recover the
transition, which can be linked to the critical pressure for the given fluid-substrate combination.
Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface
inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the
surface roughness is oriented perpendicular to the flow direction. If the predominant elements of
surface roughness are in alignment with the flow direction, the flow velocities increase compared to
smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the
lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary
number for droplet flow on flat surfaces also hold for flow on rough surfaces. To our knowledge this
is the first application of SPH to this specific problem.

I. INTRODUCTION

Surface roughness and fluid-surface interactions con-
trol wettability and flow dynamics of droplets. Droplets
are likely to spread on hydrophilic smooth surfaces to
form a thin film or puddle and commonly form a spher-
ical shape on fully hydrophobic smooth surfaces when
droplet sizes are comparable to the capillary length of
water [1]. A surface is considered hydrophobic if the
static contact angle is larger than 90◦ and hydrophilic,
otherwise. On smooth surfaces, the static contact angle
θ0 only depends on the fluid-solid molecular interactions.
Therefore, in this paper, we will refer to this as the mi-
croscopic contact angle θ0. On rough surfaces, the static
contact angle, which we call the effective contact angle
θeff , depends on both the fluid-solid molecular interac-
tions (and θ0) and surface roughness. Various authors
have experimentally investigated the dependence of the
contact angles on the chemical composition and rough-
ness of solid surfaces [e.g., 2–4]. Recently, molecular dy-
namics (MD) simulations have been used to study the
effect of nanoscale roughness on static contact angles of
droplets [5, 6]. It was shown that smooth hydrophilic
surfaces can become less hydrophilic if certain types of
roughness are added. In some cases, a superhydrophobic
rough surface with a contact angle of 180◦ can be created.

Droplet flow on rough surfaces has been investigated
experimentally and numerically using MD simulations by
Huang et al. [7], Byun et al. [8], Zhang et al. [9], and

Stamatopoulos et al. [10]. For example, Zhang et al. [9]
experimentally studied the droplet velocities on grooved
surfaces with various inclination angles and different ori-
entations of grooves relative to the flow direction. Results
indicated that droplets experience less resistance to flow
if grooves are oriented parallel to the flow direction, and
they move significantly faster. On the other hand, water
droplets barely moved when the grooves were oriented
perpendicular to the flow direction.

In this work, we investigate contact angle dynamics of
sessile and transient droplets on rough hydrophobic and
hydrophilic surfaces using the pairwise force Smoothed
Particle Hydrodynamics (PF-SPH) method implemented
in LAMMPS [11], a massively parallel library for particle
simulations. In PF-SPH, the boundary conditions at the
fluid-fluid and fluid-fluid-solid interfaces are modeled by
pairwise forces [12]. In contrast to other numerical meth-
ods for multiphase flows [e.g., 7], PF-SPH allows for dis-
cretizing only the liquid phase in liquid-gas flows, which
significantly reduces the computational cost for modeling
water droplet flows where most of the domain usually is
occupied by air.

A validation of the PF-SPH method for fluid-fluid sys-
tems (where both fluids are explicitly modeled) for mod-
eling fluid-fluid and fluid-fluid-solid interfaces, including
dynamic contact angles, with respect to Young-Laplace
[13] and Tanner [14] laws was demonstrated in Tar-
takovsky and Panchenko [12]. Similarly, here, we demon-
strate the accuracy of PF-SPH for liquid-gas systems
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where only the liquid phase is explicitly modeled. Fur-
thermore, the model is shown to reproduce the Cassie-
to-Wenzel transition based on critical capillary pressure
and internal droplet pressure. Next, we use the PF-SPH
model to simulate highly intermittent, gravity-driven free
surface flows for a diverse range of wetting conditions
on time and length scales that are inaccessible to MD.
We also use the PF-SPH method to study the effect of
roughness on the effective static contact angle. We con-
struct four surface geometries to investigate the changes
of static contact angles of sessile droplets: rectangu-
lar, dual-rectangular, sinusoidal, and dual-sinusoidal sur-
faces.

Similar to the experimental work of Zhang et al. [9], we
study the effect of surface roughness orientation relative
to the flow direction on the motion of water droplets and
observe good qualitative agreement with our simulations.
Grooves oriented parallel to the flow direction result in
higher droplet velocities, while they impede movement
when oriented perpendicular to the flow direction. We
cast our results in a dimensionless form to investigate
the relationship between Bond (Bo) and capillary (Ca)
numbers for different surface inclination angles and types
of roughness. Simulations show that linear scaling rela-
tionships between Bo and Ca numbers for droplet flow
on smooth surfaces [15] also hold on rough surfaces.

II. GOVERNING EQUATIONS AND PF-SPH
METHOD

We consider flow of water and air phases, where the air
phase is continuous. Under this condition, it is common
to disregard the effect of the air phase on water flow
and model the latter by a combination of the continuity
equation,

dρ

dt
= −ρ∇ · v, (1)

and the momentum conservation equation,

dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + g, (2)

subject to the free surface boundary condition at the
fluid-air interface,

−Pn = −τ · n + κσn, (3)

and a no-slip boundary condition at the fluid-solid
boundary. Here, τ = [µ(∇v +∇vT)] is the viscous stress
tensor, v the velocity, P is the pressure, µ the viscosity,
g the gravitational acceleration, κ is the interface cur-
vature, σ is the surface tension, and the normal vector
n points away from the non-wetting phase. In addition,
the microscopic contact angle needs to be specified at the
water-air-solid contact line.

In this work, we use the weakly compressible PF-SPH
method [16, 17] to solve Eqs. 1-3. SPH is a mesh-free
Lagrangian method where fluids are discretized with a
set of N points, commonly referred to as particles. Each
particle is defined by its position ri, mass mi, density ρi,
and velocity vi, i = 1, ..., N . SPH is based on the ap-
proximation of a continuous function and its derivative:

f(r) =

N∑
j

mj

ρj
f(rj)W (|r− rj |, h), (4)

∇f(r) =

N∑
j

mj

ρj
f(rj)∇W (|r− rj |, h) , (5)

where the kernel W (|r−rj |, h) satisfies the normalization
condition, ∫

W (|r− rj |, h)dr = 1, (6)

and has compact support h. In the limit of h→ 0, W
approaches the Dirac delta function δ(|r− rj |):

lim
h→0

W (|r− rj |, h) = δ(|r− rj |). (7)

A number of functional forms of W have been used in
the literature. Here, we use W in the form of a so-called
“Wendland” kernel [18]:

W = αk

 (1− |r|h )3 if 0 ≤ |r| < h

0 if |r| ≥ h
, (8)

where αk = 168/16πh3.

The PF-SPH discretization of Eqs. (2)-(3) is:

dvi
dt

= −
N∑
j=1

mj

(Pj
ρ2
j

+
Pi
ρ2
i

)rij
rij
· dW (rij , h)

drij

+ 2µ

N∑
j=1

mj
vij

ρiρjrij
· dW (rij , h)

drij

+ g +
1

mi

N∑
j=1

Fij . (9)

The particle positions are advanced according to:

dri
dt

= vi. (10)

The particle-particle interaction force Fij in Eq. (9)
is used to generate surface tension and the fluid wetting
behavior. Here, we use Fij in the form:

Fij = sij(AijW̃ (rij ,
h

2
)
rij
rij
− W̃ (rij , h)

rij
rij

), (11)
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where W̃ is a cubic spline function:

W̃ (rij , h) =


1− 3

2 ( r
h )2 + 3

4 ( r
h )3 if 0 ≤ r

h < 0.5

1
4 (2− r

h )3 if 0.5 ≤ r
h < 1

0 if r
h ≥ 1

(12)

and sij and Aij are parameters determining the magni-
tude of surface tension and the microscopic static contact
angle. To impose the no-slip boundary condition away
from the fluid-fluid-solid contact line and the contact an-
gle at the contact line, the solid phase is discretized with
a set of static “solid” particles, and summation in Eq.
(9) is performed over both fluid and solid particles. The
parameter sij is set to sff when particle j is a fluid par-
ticle and ssf when particle j is a solid particle (particle i
in Eq. (9) is always a fluid particle). For a liquid to wet a
surface, sff should be set greater than ssf and vice versa.
In this work, the parameter Aij is set to Aff = 8 for in-
teractions between two fluid particles and to Asf = 24
for interactions between fluid and solid particles.

The density is obtained from kernel summation as:

ρi =

N∑
j=1

mjW (rij , h) . (13)

To evaluate pressure at each time step, we employ
an equation of state (EOS) following Batchelor [19] and
Monaghan [20]:

P = P0

{( ρ
ρ0

)γ
− 1
}
, (14)

where

P0 =
c2ρ0

γ
. (15)

Here, γ = 3 and the speed of sound c are chosen so that
the relative density fluctuation |δρ|/ρ is small enough
(less than 3%) to approximate an incompressible fluid
[21]. To integrate Eq. (9), we employ a modified Velocity
Verlet time stepping scheme:

1. vi(t+ 1
2∆t) = vi + 1

2ai(t) (16a)

2. v̄i(t+ ∆t) = vi(t) + ∆tai (16b)

3. ri(t+ ∆t) = ri(t) + ∆tvi(t+ 1
2∆t) (16c)

4. Calculation of ai(t+ ∆t)using extrapolated velocity v̄i

5. vi(t+ ∆t) = vi(t+ 1
2∆t) +

1

2
ai(t+ ∆t),

(16d)

where ai = fi
mi

is the acceleration.

Time step constraints are given by Tartakovsky and

Meakin [16]:

∆t ≤ 0.25h/3c (17a)

∆t ≤ 0.25min(h/3 | ai |)1/2 (17b)

∆t ≤ min(ρih
2/9µi), (17c)

where | ai | is the magnitude of acceleration ai.
In our simulations, we set the density and viscosity of

water to 1000 kg/m3 and µ = 0.001 296 Pa s, respectively.
Initially, the SPH particles are placed on a uniform cu-
bic lattice with the lattice size 0.5× 10−4 m (unless men-
tioned otherwise), which results in a fluid particle mass
of 1.25× 10−10 kg. The mass of solid particles is set to
that of the fluid particle. The smoothing length is set to
h = 1.71× 10−4 m, the speed of sound to c = 4.5 m s−1,
and the gravitational acceleration to g = 9.81 m/s2.

III. MODEL PARAMETERIZATION AND
VERIFICATION

A. Surface tension

The parameter sff is calibrated with respect to the
surface tension of water by simulating a droplet and using
the Young-Laplace law to relate the difference of pressure
inside and outside of the bubble, ∆P and its radius, Req,
to the surface tension σ:

σ =
Req
2

∆P. (18)

Because the pressure outside of the bubble is zero, ∆P
is equal to the pressure inside the bubble. It should be
noted that the total pressure in PF-SPH is a sum of the
pressure prescribed via the EOS and generated by Fij .
As in any particle system, the total pressure generated by
SPH particles can be calculated from the virial formula
[16, 17, 22]:

PT =
1

2dVr

∑
i

∑
j

rijfij =
1

8r3
v

∑
i

∑
j

rijfij , (19)

where d = 3 for a three-dimensional system, fij =
midvi/dt. The double summation is performed over all
particles within the distance rv from the droplet cen-
ter, where rv = Req − h, to exclude the boundary de-
ficiency effect. We obtain the surface tension of water
with sff = 3.5× 10−6. Six liquid droplets with radii
ranging from 0.5 mm to 1 mm are simulated in the ab-
sence of gravity with sff = 3.5× 10−6 and the other
parameters as described. Figure 1 shows the fluid pres-
sure PT in the center of the equilibrated liquid droplet
versus 1/Req. The surface tension, found as half of the
slope of the straight line fitted through the simulation
results, is σ = 73.14 mN m−1 (the water surface tension
is 72 mN m−1 at 25 C).

As recently demonstrated by [12], the virial pressure
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FIG. 1: Pressure for various droplet sizes.

and surface tension can also be analytically computed
for the given shape of the interaction force as

Pv = −ξn2
eqsff ξ =

2771

10206
π[−Ah4

1 + h4
2] (20)

and

σ = λn2
eqsff λ =

7

324
π(−Ah5

1 + h5
2) , (21)

where Pv is the virial pressure, σ the surface tension,
and neq is the number density of an equilibrated droplet.
For the given fluid-fluid interaction force and shape of
the interaction force we obtain the surface tension as
σ = 70.04 mN m−1, which is about 4.4% relative to the
determination via the pressure scaling relationships. The
deviation is most likely caused by the truncation of the
kernel at the free interface around the fluid droplet. In
this case, number density is defined as

n =
N

h3
. (22)

In our model we set N = 40, which was shown to yield
sufficient numerical accuracy for free-surface flows includ-
ing the effect of pairwise interaction forces [16, 17, 22, 23]

B. Static contact angles on smooth surface

To measure static contact angles, we simulate droplets
that are slowly brought into contact with the flat sur-
face. Each droplet has a volume of V = 2.14 mm3. After
droplets reach equilibrium and remain static, we select
fluid particles at the intersection of the droplet surface
with the xy- and zy-planes and fit circles with radius Rx
in xy-plane and Rz in zy-plane as shown in Figure 2.

The contact angles θx0 in the x-direction and θz0 in the
z-direction can be found as

θx,z0 = 90± arcsin(
lx,z
Rx,z

), (23)

where lx,z is a distance between circle center and solid
surface. In Eq. (23), the addition is carried out for static
contact angles larger than 90◦ and subtraction otherwise.
The static contact angle θ0 is equal to the arithmetic
mean of θx0 and θz0 .
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FIG. 2: Static contact angle measurements. Here only
shown for the droplet in xy-plane.

For the parameter set described above, the (micro-
scopic) static contact angle θ0 on a smooth surface de-
pends on the interaction forces ssf between solid and
fluid particles (Table I). Figure 3 shows that θ0 decreases
with increasing ssf . All static contact angles θ0 are mea-
sured with a standard error SEθ̄0 ≈ ±0.2◦, which is com-
puted as

SEθ̄0 =
s√
n
, (24)

where s is the standard deviation of the mean θ̄0 of n = 5
droplets. Droplets are brought into contact with the solid
surface from five different distances, in order to random-
ize the dynamic contact line movement until a static con-
tact angle is achieved.

To investigate the pinning effect due to the discrete
nature of the solid surface we compute the difference ε0

in contact angles in the x and z directions:

ε0 =| θx0 − θz0 | . (25)

The values of ε0 are reported in Table I. In these sim-
ulations ε0 is less than 1◦, and we assume that pinning
effects are negligible for the chosen resolution.

To validate our model, we simulate droplet spreading
on a horizontal surface (Figure 4(inset)) and compare the
time-dependent height of the droplet, H, with the Tan-
ner law: H ∼ t−2n/3, where n = 0.3 in three spatial
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TABLE I: Static contact angles of droplets for different solid-fluid interaction strengths ssf .

ssf 0 1 × 10−6 1.3 × 10−6 1.8 × 10−6 2.2 × 10−6 2.8 × 10−6

θx0 122.4◦ 100.8◦ 85.2◦ 81.3◦ 77.2◦ 0.1◦

θz0 122.9◦ 101.2◦ 84.3◦ 81.7◦ 77.7◦ 72.2◦

θ0 122.7◦ 100.9◦ 84.7◦ 81.5◦ 77.5◦ 72.8◦

ε0 0.5◦ 0.4◦ 0.9◦ 0.4◦ 0.5◦ 0.8◦

s
sf
 = 0

θ
0
 = 122.7°

s
sf
 = 1.0e-6

θ
0
 = 100.9°

s
sf
 = 1.3e-6

θ
0
 = 84.7°

s
sf
 = 1.8e-6

θ
0
 = 81.5°

s
sf
 = 2.2e-6

θ
0
 = 77.5°

s
sf
 = 2.8e-6

θ
0
 = 72.8°

FIG. 3: Static contact angles for different solid-fluid interaction strengths ssf .

dimensions [14]. The simulation is initialized by placing
a droplet with an initial radius R0 = 1.2 mm on the hor-
izontal surface. After equilibration of the droplet on the
solid surface in the presence of gravity, we prescribe a
solid-fluid interaction force of ssf = 3× 10−6 and mea-
sure the height changes of the droplet over time.

Figure 4 shows H as a function of time obtained from
the simulation with the exponent n = 0.274, which is
close to the theoretical value of n = 0.3.
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FIG. 4: Model verification with respect to Tanner’s law:
height of the droplet as a function of time. The inset
shows the droplet spreading on a horizontal surface.

C. Dynamic contact angles on smooth surface

Here we demonstrate that the PF-SPH model predicts
dynamic contact angles in accordance with the theoreti-
cal Cox-Voinov relationship [13, 24]. The dynamic con-
tact angle as a function of the contact line velocity is
measured by simulating a plate withdrawal from a pool
of liquid. According to the Cox-Voinov relationship, the
receding contact angle scales with the Capillary number,
Ca, as

θ3
0 − θ3

r ∼ Ca , (26)

where Ca is defined as

Ca = µ
v

σ
, (27)

and v is the velocity of the moving plate.

The simulation setup is shown in Figure 5(inset). The
receding angle is computed as the angle formed by a cir-
cle, fitted to the interface, and the solid boundary. From
Figure 5 we find that θ3

0 − θ3
r ∼ Caα with α = 0.9469,

which is close to the theoretical value α = 1.

Physically, θ0 depends on the chemical composition of
fluids and the solid surface, and, numerically (in the PF-
SPH model), θ0 is a function of the interaction parame-
ters ssf and sff . Therefore, we refer to θ0 as a micro-
scopic static contact angle. In the following, we study
droplet behavior on rough surfaces obtained by “carv-
ing” a flat surface and characterize macroscopic wetting
properties of these rough surfaces in terms of the effective
contact angle formed by a droplet and a plane fitted to
the rough surface.
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IV. WENZEL AND CASSIE DROPLETS ON
ROUGH SOLID SURFACES

Depending on θ0 and surface roughness, a droplet on
a rough surface can be in one of the three regimes: the
Wenzel regime [25], the Cassie regime [26], or the mixed
Cassie-Wenzel regime. Figure 6 shows the PF-SPH sim-
ulations of a droplet in all three regimes. On “micro-
scopically” hydrophilic rough surfaces (i.e., surfaces with
θ0 > π/2), Wenzel drops are formed by the fluid fill-
ing surface indentations (Figure 6 (middle)). On micro-
scopically hydrophobic surfaces, depending on the ratio
of roughness to the size and mass of the droplet, Cassie
(Figure 6(left)) or Cassie-Wenzel regime (Figure 6(right))
droplets can form. In the Cassie regime, a droplet “rests”
on the surface spikes, while a droplet partially filling the
pits and depressions of a rough surface is considered to
be in the Cassie-Wenzel regime. In general, the effec-
tive contact angle θeff , formed by a droplet on a rough
surface, differs from the microscopic static contact angle
θ0.

FIG. 6: Different states of droplets depending on
wetting conditions (top to bottom): Cassie state;

sWenzel state; Cassie-Wenzel state.

In the following, we simulate droplets in all three

regimes and study the relationship between the rough-
ness geometry, θ0 (or the parameter ssf ), and θeff . We
investigate both hydrophobic surfaces (θ0 > 90◦) and hy-
drophilic (θ0 < 90◦) surfaces.

V. EFFECTIVE CONTACT ANGLES OF
DROPLETS ON ROUGH

MICROSCOPICALLY-HYDROPHOBIC
SURFACES

Microscopically-hydrophobic rough surfaces are mod-
eled by setting ssf = 0, which yields θ0 = 122.7◦.
We consider four types of rough surfaces with rectan-
gular, dual-rectangular, sinusoidal, and dual-sinusoidal
patterns (see Figure 7).

We model droplets with an initial radius R = 0.8 mm,
which are slowly brought into contact with a rough sur-
face. After equilibration of a droplet on the rough sur-
face, we measure the effective contact angle θeff in the
x- and z-directions as shown in Figure 2. For Wen-
zel and Cassie-Wenzel droplets, which penetrate depres-
sions of the rough surface, we measure θeff relative to
the nominal smooth surface on top of the blocks, as in-
dicated in Figures 6(middle) and 6(right) by the solid
line. Depending on their geometry, solid surfaces are
discretized with approximately 20000 boundary particles
and droplets with 17075 fluid particles. Simulations are
run on eight processors.

A. Rectangular and dual-rectangular surfaces

Figure 7(first from left) shows the rectangular-
patterned surface. This surface is parameterized by the
distance d between “bars”, the height H, and the width
l of the bars. We study three rectangular-patterned sur-
faces with different parameters l and d, and H = 0.2 mm:
a fine-roughness surface with small d and l (Figure 8a),
a medium-roughness surface (Figure 8b), and a coarse-
roughness surface with large d and l (Figure 8c).

Figure 7(second from left) depicts the dual-rectangular
surface. It is constructed of blocks of height H, length
l, and the distance d between the blocks. Figures 8d-
f show three types of dual-rectangular surfaces: a fine-
roughness surface (Figure 8d), medium-roughness surface
(Figure 8e), and a coarse-roughness dual-rectangular sur-
face (Figure 8f).

Figure 8 also shows the equilibrated droplets on
rectangular-patterned surfaces. Table II provides the cor-
responding effective contact angle values. The effective
static contact angle θxeff measured in the x-direction per-

pendicular to the bars increases with decreasing l and/or
increasing d. All droplets on hydrophobic rectangular
surfaces are in a Cassie state. The effective static con-
tact angle θzeff of a droplet measured in the z-direction
parallel to the ripples varies between 123.3◦ and 125.5◦,
which is close to the corresponding θ0 = 122.7◦.
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FIG. 8: Static contact angles of droplets on
hydrophobic rectangular (a, b, c) and dual-rectangular
(d, e, f) surfaces. Surface parameters are: d = 0.2 mm,
l = 0.15 mm (a, d); d = 0.25 mm, l = 0.2 mm (b, e);
d = 0.25 mm, l = 0.25 mm (c, f); H = 0.2 mm for all

types of surfaces.

Due to the isotropic geometry of the dual-rectangular-
patterned surfaces, θxeff and θzeff are the same in both di-

rections (Figures 8d-f). The largest contact angle θxeff ≈
θzeff ≈ 151◦ is measured on a fine dual-rectangular sur-

face (Figure 8d). In contrast, the droplets on medium-
and coarse-roughness surfaces are in the Wenzel state,
even though not all small surface depressions are com-
pletely filled with fluid because of microscale surface hy-
drophobicity. The effective contact angles of “Wenzel”
droplets are larger than the microscopic static contact an-
gle, and the microscale hydrophobic rough surfaces also
show macroscale hydrophobic behavior.

B. Sinusoidal and dual-sinusoidal surfaces

Here, we study the contact angles of droplets on sinu-
soidal surfaces with longitudinal ripples in the z-direction
and a sinusoidal cross section in the x-direction (Fig-
ure 7(third from left)). The sinusoidal surfaces are pa-
rameterized as

S(x, z) =
A

2
· cos(x2π

T
) + 0.00015 , (28)

and the solid boundary in simulations is constructed by
filling the region y < S(x) with solid particles. The pa-
rameters of this surface are the period of the sinusoidal
function T and the magnitude A in the y-direction, which
is equal for all types of sinusoidal surfaces A = 0.2 mm.
We employ three types of rough sinusoidal surfaces: a
fine-roughness surface with T = 0.2 mm (Figure 9a),
a medium-roughness surface with T = 0.25 mm (Fig-
ure 9b), and a coarse-roughness sinusoidal surface with
T = 0.3 mm (Figure 9c).

The dual-sinusoidal surface is created as a surface with
sinusoidal cross sections in the x- and z-directions (Fig-
ure 7(forth from left)), described by the equation:

S(x, z) =
A

2
· cos(x2π

T
) +

A

2
· cos(z 2π

T
) + 0.00015. (29)

The parameter T is varied to create three surfaces: a
fine-roughness surface with T = 0.2 mm (Figure 9d),
a medium-roughness surface with T = 0.25 mm (Fig-
ure 9e), and a coarse-roughness dual-sinusoidal surface
with T = 0.3 mm (Figure 9f). The magnitude A is equal
to 0.2 mm for all three surfaces. In the simulations, the
region y < S(x, z) is filled with solid particles.

Figures 9 depict droplets on the sinusoidal and dual-
sinusoidal surfaces and Table II shows the effective static
contact angles. Here, the droplet on the fine sinusoidal
surface is in the Cassie state, the droplet on the medium
sinusoidal surface is in the Cassie-Wenzel state, and
droplets on the coarse sinusoidal and dual-sinusoidal sur-
faces are macroscopically in the Wenzel state. For all
considered microscopically hydrophobic rough surfaces,
the effective static contact angle is greater than 90◦, i.e.,
these surfaces are macroscopically hydrophobic.
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f

FIG. 9: Static contact angles of droplets on
hydrophobic sinusoidal (a,b,c) and dual-sinusoidal

(d,e,f) surfaces. Surface parameters are: A = 0.2 mm,
T = 0.2 mm (a, d); A = 0.2 mm, T = 0.25 mm (b, e);

A = 0.2 mm, T = 0.3 mm (c, f).

VI. EFFECTIVE CONTACT ANGLES OF
DROPLETS ON ROUGH MICROSCOPICALLY

HYDROPHILIC SURFACES

The microscopic hydrophilic behavior of droplets on
a solid surface is achieved by setting the solid-fluid in-
teraction strength to ssf = 1.3× 10−6, which yields
θ0 = 84.7◦. The surface geometries are the same as
in the preceding section (see Figure 7). We find that
Wenzel droplets form on all considered microscopically
hydrophilic surfaces (see Figures 10 and 11).

Table II lists the resulting effective contact angles.
The effective static contact angle of Wenzel droplets on
the dual-rectangular and dual-sinusoidal microscopically
hydrophilic surfaces are larger than 90◦. This means
that the dual-rectangular and dual-sinusoidal rough-
nesses considered in this work make microscopically hy-
drophilic surfaces macroscopically hydrophobic. For the
rectangular-rough and sinusoidal-rough surfaces, the ef-
fective contact angles in the x-direction are greater than
90◦, but the effective contact angles in the z-direction
are smaller than the corresponding microscopic contact
angle. These types of surfaces have mixed effective wet-
tability, i.e., they are macroscopically hydrophilic in the
z-direction and hydrophobic in the x-direction.

a

b

c

d

e

f

FIG. 10: Static contact angles of droplets on hydrophilic
rectangular (a,b,c) and dual-rectangular (d,e,f) surfaces.
Surface parameters are: d = 0.2 mm, l = 0.15 mm (a, d);

d = 0.25 mm, l = 0.2 mm (b, e); d = 0.25 mm,
l = 0.25 mm (c, f); H = 0.2 mm for all types of surfaces.

VII. DIMENSIONLESS ANALYSIS OF
EFFECTIVE STATIC CONTACT ANGLES

The influence of surface geometry on the effective con-
tact angles of droplets can be described by the (di-
mensionless) scaling ratio λ. For rectangular and dual-
rectangular surfaces, the scaling ratio λ is defined as

λ =
ld

R2
0

, (30)

and for sinusoidal and dual-sinusoidal surfaces as

λ =
AT

R2
0

, (31)

where l, d, A, and T are the surface parameters and R0 is
an initial droplet radius. Table II lists the effective static
contact angles of droplets, modeled in previous sections,
with respect to λ. All angles are measured with SEθ̄0 ≈
±0.2◦.

Figure 12 shows the relationship between λ and effec-
tive static contact angles, θxeff and θzeff , of droplets on
hydrophobic and hydrophilic rough surfaces. The depen-
dence of θxeff and θzeff on λ is different for Wenzel and
Cassie droplets. The effective contact angles of Cassie
droplets decrease with increasing λ. The effective con-
tact angles of Wenzel droplets may increase or decrease
with increasing λ, depending on the type of surface ge-
ometry. For example, for hydrophilic dual-rectangular
rectangular surfaces, the effective contact angles do not



9

TABLE II: Effective static contact angles of droplets on rough hydrophobic and hydrophilic surfaces. (fr) – fine
roughness, (mr) – medium roughness, (cr) – coarse roughness.

rectangular
dual-

rectangular
sinusoidal

dual-
sinusoidal

λ 0.0469 0.0781 0.0977 0.0469 0.0781 0.0977 0.0625 0.0781 0.0938 0.0625 0.0781 0.0938
(fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr)

hydrophobic surfaces
θxeff 152.9◦ 142.7◦ 130.3◦ 151.5◦ 135.5◦ 125.9◦ 144.6◦ 128.3◦ 145.3◦ 111.8◦ 121.2◦ 135.7◦

θzeff 123.3◦ 124.6◦ 125.5◦ 150.6◦ 136.6◦ 128.1◦ 106.7◦ 110.5◦ 118.4◦ 110.5◦ 122.9◦ 135.7◦

εeff 29.6◦ 18.1◦ 4.8◦ 0.9◦ 1.1◦ 2.2◦ 37.9◦ 17.8◦ 26.9◦ 1.3◦ 1.7◦ 0◦

hydrophilic surfaces
θxeff 103.7◦ 129.2◦ 122.2◦ 98.1◦ 94.5◦ 96.5◦ 99.8◦ 117.6◦ 123.2◦ 105.4◦ 113.7◦ 95.7◦

θzeff 80.9◦ 81.1◦ 84.7◦ 95.7◦ 94.5◦ 100.6◦ 74.6◦ 72.9◦ 79.7◦ 103◦ 114.5◦ 96.5◦

εeff 22.8◦ 48.1◦ 37.5◦ 2.4◦ 0◦ 4.1◦ 25.2◦ 44.7◦ 43.5◦ 2.4◦ 1.2◦ 0.8◦

a

b

c

d

e

f

FIG. 11: Static contact angles of droplets on
hydrophilic sinusoidal (a,b,c) and dual-sinusoidal (d,e,f)

surfaces. Surface parameters are: A = 0.2 mm,
T = 0.2 mm (a, d); A = 0.2 mm, T = 0.25 mm (b, e);

A = 0.2 mm, T = 0.3 mm (c, f).

change significantly with λ (Figure 12c), while for other
types of surfaces, θeff may increase or decrease with in-
creasing λ.

The largest effective contact angles are achieved by
Cassie droplets on hydrophobic dual-rectangular sur-
faces, and the smallest effective contact angles are
reached by Wenzel droplets on hydrophilic sinusoidal and
dual-sinusoidal surfaces. The angle θzeff on the rectangu-
lar hydrophobic and hydrophilic surfaces is close to the
corresponding θ0, while θzeff of sinusoidal hydrophobic
and hydrophilic surfaces is smaller than θ0. For all other
considered surfaces, θxeff and θzeff are larger than the
corresponding θ0.

We quantify the directional dependence of the effective
static contact angle by εeff , the difference between θxeff
and θzeff of each droplet:

εeff =| θxeff − θzeff | . (32)

We report εeff in Table II and Figure 13 for all studied
values of λ. For dual-rectangular and dual-sinusoidal hy-
drophobic and hydrophilic surfaces εeff is less than 5◦,
while for rectangular and sinusoidal hydrophobic and hy-
drophilic surfaces εeff varies in the range from 5◦ to 50◦.
Droplets on rectangular and sinusoidal rough surfaces are
extended in z−direction parallel to groves, and pinned at
sharp groove edges only in x−direction, so their θxeff are
larger than θzeff , and εeff may achieve 50◦. Elevated
blocks on dual-rectangular and dual-sinusoidal surfaces
pose an energy barrier [27, 28] hindering the extension of
droplets in both directions, so that droplets are pinned
in x− and z− directions, and θx,zeff is much larger than
corresponding θ0 on a smooth surface, while εeff stays
less than 5◦.

VIII. THE EFFECT OF RESOLUTION ON
EFFECTIVE STATIC CONTACT ANGLE

To study the effect of resolution on PF-SPH solu-
tions, we compare static contact angles of droplets on a
fine dual-rectangular-type surface obtained from PF-SPH
simulations with two different resolutions. In the high-
resolution simulation, the number of particles is eight
times higher than the number of particles in the low-
resolution simulation. The particle spacing in the high-
resolution simulation is 2.5× 10−5 mm, the smoothing
length is h = 8.55× 10−5 m, the mass m of each particle
in this case is 1.5625× 10−11 kg, the speed of sound c is
4.5 m/s, and the surface tension of water is achieved with
a fluid-fluid interaction strength sff = 1.9× 10−6. The
low-resolution simulation has the same parameters as the
simulations in the preceding sections.
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FIG. 12: Effective static contact angles θxeff and θzeff for scaling ratio λ between 3.5× 10−3 and 8.5× 10−3 for

hydrophobic rectangular and dual-rectangular (a), hydrophilic rectangular and dual-rectangular (b), hydrophobic
sinusoidal and dual-sinusoidal (c) and hydrophilic sinusoidal and dual-sinusoidal (d) surfaces. Solid symbols

represent droplets in a Cassie state, and open symbols represent droplets in a Wenzel state. Symbols “plus” and
“cross” represent a droplet in a Cassie-Wenzel state.

Figure 14 shows the static contact angles obtained from
the simulations with these two resolutions. The angles
θxeff and θzeff are nearly the same in both simulations.

IX. TRANSITIONS BETWEEN CASSIE AND
WENZEL STATES

Here, we simulate ten liquid droplets with initial radii
ranging from 0.5 mm to 1.6 mm which are brought into a
contact with fine-roughness (d = 0.2 mm; l = 0.15 mm),
medium-roughness (d = 0.25 mm; l = 0.2 mm), and
coarse-roughness (d = 0.25 mm; l = 0.25 mm) dual-
rectangular hydrophobic surfaces. The effective contact
angles of these droplets are listed in Table III. Figure 15
demonstrates six liquid droplets on a fine-roughness dual-

rectangular surface.
All droplets on rough surfaces create unique shapes de-

pending on the number of blocks they touch, so their θx,zeff
values vary in the range from 120.6◦ to 151.5◦, and εeff
varies in the range from 0.1◦ to 14◦. The variation in θx,zeff
for different droplet sizes can be explained by the Gibbs
criterion [28], which describes the pinning effects of the
liquid-air interface by the sharp edge of the solid surface.
For two different-size droplets placed on equal number of
blocks (droplets with Req = 1.11 mm and 1.3 mm in Fig-
ure 16), the larger droplet creates larger θx,zeff , because it
is pinned by the edge of the block. For a further increase
of the droplet size (the droplet with Req = 1.5 mm in
Figure 16), an immediate jump is initiated to the next
block and θx,zeff becomes smaller again.

For our simulations we observe a transition between
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TABLE III: Effective static contact angles of droplets with R0 ranging from 0.5 mm to 1.6 mm on fine-, medium-,
and coarse-roughness dual-rectangular hydrophobic surfaces.

R0 (mm) 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6
Req (mm) 0.44 0.54 0.64 0.73 0.83 0.92 1.02 1.11 1.3 1.5
∆P (Pa) 330.68 269.33 227.34 199.32 175.3 158.15 142.65 131.08 111.92 97.00

fine roughness
pc (Pa) 235.81
θxeff 122.8◦ 135.7◦ 123.7◦ 151.5◦ 133.6◦ 139.3◦ 142.1◦ 129.8◦ 136.2◦ 126.1◦

θzeff 124.1◦ 137.9◦ 122.7◦ 150.6◦ 135.2◦ 140.7◦ 143.4◦ 136.8◦ 136.7◦ 126.2◦

εeff 1.3◦ 2.2◦ 1.0◦ 0.1◦ 1.6◦ 1.4◦ 1.3◦ 7.0◦ 0.5◦ 0.1◦

medium roughness
pc (Pa) 193.49
θxeff 123.4◦ 135.2◦ 142.7◦ 135.5◦ 139.5◦ 129.5◦ 129.1◦ 137.4◦ 135.6◦ 132.8◦

θzeff 124.1◦ 124.3◦ 138.4◦ 136.6◦ 131.7◦ 129.4◦ 131.2◦ 126.6◦ 137.7◦ 137.2◦

εeff 0.7◦ 10.9◦ 4.3◦ 1.1◦ 7.8◦ 0.1◦ 2.1◦ 0.8◦ 2.2◦ 4.4◦

coarse roughness
pc (Pa) 209.61
θxeff 120.6◦ 125.6◦ 136.6◦ 125.9◦ 130.8◦ 140.7◦ 146.4◦ 135.2◦ 128.9◦ 135.8◦

θzeff 135.3◦ 125.0◦ 139.0◦ 128.1◦ 133.5◦ 126.7◦ 141.1◦ 130.4◦ 141.7◦ 126.6◦

εeff 14.7◦ 0.6◦ 3.4◦ 2.2◦ 2.7◦ 14.0◦ 5.3◦ 4.8◦ 12.8◦ 9.2◦
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FIG. 13: The effective static contact angle difference of
droplets on rough hydrophobic and hydrophilic surfaces.

(red) hydrophilic, (blue) hydrophobic, (square)
rectangular surface, (circle) sinusoidal surface, (solid)

dual surface, (empty) non-dual surface.

Wenzel and Cassie regime based on droplet size (Fig-
ure 15). Droplets with Req > 0.64 mm on a fine-
roughness dual-rectangular surface remain in the Cassie
regime, droplets with Req ≤ 0.64 mm are in a Wenzel
state (Figure 17). Various authors [e.g., 29–31] have in-
vestigated this transition phenomenon in terms of critical
capillary pressure pc:

pc = −σfcos(θ0)

(1− f)L
, (33)

FIG. 14: Comparison of effective contact angles on a
fine-roughness dual-rectangular surface for a

high-resolution (particle spacing 2.5× 10−5 mm;
θxeff = 149.36◦; θzeff = 150.28◦) and a low-resolution

(particle spacing 5× 10−5 mm; θxeff = 151.52◦;

θzeff = 150.84◦) simulation. Green particles - solid
surface; red particles - low resolution; blue particles -

high resolution.

where σ is the water surface tension, θ0 is the correspond-
ing static contact angle of a droplet on flat a hydropho-
bic surface, f is a fraction of the wetted projection area,
where L = l/4 and f = l2/(l + d)2. Here l and d are the
surface parameters as described in the previous chapters.

A Cassie-to-Wenzel transition occurs if the pressure
inside the droplet, ∆P , becomes larger than pc, where
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FIG. 15: Droplets on a fine-roughness dual-rectangular surface. Equilibrated radii of droplets are 1.5, 1.3, 1.11, 0.92,
0.54 and 0.44 mm.

FIG. 16: Pinning effect of droplets on a fine-roughness
dual-rectangular surface. Equilibrated radii of droplets

are 1.11, 1.3 and 1.5 mm.

∆P can be found from the Young-Laplace law:

∆P =
2σ

Req
, (34)

For a fine-roughness dual-rectangular surface and the
given fluid configuration, droplets switch from a Cassie
to a Wenzel state when ∆P > pc (pc =235.81 Pa) at a
radius Req < 0.62mm (Figure 17).

Some droplets with a value ∆P close to the theoretical
value pc (like a droplet with Req = 0.64mm in Figure 17)
can be in both Cassie and Wenzel states, such that no
clear transition point can be detected. Instead we define
a transition region for droplets with ∆P = pc ± 30 Pa
which can be in both states (Figure 18) based on our
simulation results. A region between two dashed lines
in Figure 18 represents the region at which the Cassie-
to-Wenzel transition occurs for all types of dual rectan-
gular surfaces. All large droplets with Req ≥ 0.92 mm
(∆P ≤ 158.15 Pa) are in a Cassie state, while small
droplets with Req ≤ 0.64 mm (∆P ≥ 227.34 Pa) are in a
Wenzel state. The width of the transition region may de-
pend on resolution effects or pressure fluctuations during
the equilibration of droplets on the surface.

Next, we investigate the dependence of droplet state
on initial conditions. We simulate droplets with Req =
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FIG. 17: Cassie-to-Wenzel transition based on critical
capillary pressure and internal pressures of droplets

with Req ranging from 0.44 mm to 1.5 mm for
fine-roughness dual-rectangular surface.

0.64 mm and 1.3 mm which are brought into contact with
a fine-roughness dual-rectangular surface. In the first
case, the droplet center is located between two rectangu-
lar blocks (left droplets in Figures 19a and 19c), for the
second case, the droplet center is located above the cen-
ter of a rectangular block (right droplets in Figures 19a
and 19c). For both cases the droplet state remains the
same, independent on initial placement relative to the
surface roughness. A small droplet stays in a Wenzel
state, a large one in the Cassie state. This difference
is caused by the initial placement of droplets relative to
the roughness, which influences the effective static con-
tact angle due to pinning effects (Table IV). A small
droplet with a center located above a block has a larger
effective contact angle. For the large droplet the effec-
tive contact angle is larger if the droplet center located
between blocks.

Figures 19b and 19d show droplets with Req =
0.64 mm and 1.3 mm which are dropped from 1.75 mm
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FIG. 18: Cassie-to-Wenzel transitions based on critical
capillary pressures and internal pressures of droplets

ranging from 97.00 Pa to 330.68 Pa (corresponding Req
are ranging from 1.5 mm to 0.44 mm) for fine-,

medium-, and coarse-roughness dual-rectangular
surfaces. Open symbols – Wenzel regime, filled symbols

– Cassie regime.

height (measured between surface and droplet center).
Small droplets with Req = 0.64 mm stay in a Wenzel state
(Figure 19b), while large droplets with Req = 1.3 mm
turn from Cassie to Wenzel state (Figure 19d) due to ad-
ditional pressure caused by gravitational impact. There-
fore, the initial height from which droplets are dropped
influences the effective contact angle hysteresis. Both,
small and large droplets dropped from 1.75 mm height
have smaller effective contact angles than droplets which
are placed directly above a surface.

X. DROPLET FLOWS ON ROUGH SURFACES

In this section, we study droplet flow on rough sur-
faces with a surface inclination angle α ranging from 10◦

to 90◦. We create two types of rough surfaces: a sur-
face with rectangular bars oriented parallel to the flow
direction and one with rectangular bars oriented perpen-
dicular to the flow direction. For comparison, we also
simulate flow on smooth surfaces. We simulate flow of
two different states: flow of Cassie droplets on micro-
scopically hydrophobic surfaces (with θ0 = 122.7◦ cor-
responding to ssf = 0), and flow of Wenzel droplets on
microscopically hydrophilic surfaces (with θ0 = 84.7◦ cor-
responding to ssf = 1.3× 10−6). In these simulations, a
droplet is discretized with 195216 fluid particles and the
surface with approximately 235000 solid particles. The
simulations are run on 32 cores.

Figure 20 shows simulation results for Cassie and Wen-
zel droplet flows on these rough surfaces with α = 90◦

after 50000 time steps (t = 46.296 ms). Cassie and Wen-
zel droplets can easily slide along the rough surface with
inclination angles α ranging from 10◦ to 90◦ if rectangular
bars are oriented parallel to the flow direction. However,
if rectangular bars are oriented perpendicular to the flow
direction, a Cassie droplet barely moves and a Wenzel
droplet remains stationary for all surface inclination an-
gles α. These results show a good qualitative agreement
with experimental results of [9].

Next, we investigate the relationship between Bo and
Ca numbers observed in our simulations. It was shown
by Podgorski et al. [15] that droplet dynamics on smooth
surfaces follows the linear scaling law:

Ca = γBo · sin(α)−∆θ, (35)

where the Ca number is defined as

Ca = µv/σ, (36)

and the Bo number as

Bo =
ρgV 2/3

σ
. (37)

Here, v is the droplet velocity, V the equilibrium droplet
volume, α the surface inclination angle measured from
the horizontal, ∆θ is a perimeter-averaged projection fac-
tor of the surface tension, and γ a constant related to the
specific fluid-solid combination. The linear dependence
between Ca and Bo for droplet flow on smooth surfaces
was numerically confirmed by Kordilla et al. [17] via PF-
SPH simulations for a range of wetting conditions, how-
ever, it has not been shown to hold for rough surfaces.

The results of our simulations, plotted in Figure 21,
demonstrate an existing linear relationship between Ca
and Bo numbers for Bo sinα < 1. For higher values of
Bo sinα, the relationship becomes non-linear. A similar
transition from linear to non-linear behavior for droplets
on smooth surfaces has been reported in Kordilla et al.
[17] and Podgorski et al. [15], which is mainly caused by
the deviation of droplet shapes from the spherical cap
form.

Our results show that Cassie droplets on a rough sur-
face with parallel orientation of bars to the flow direction
move approximately 1.2 times faster than droplets on a
smooth surface with the same θ0 and α. On the other
hand, Wenzel droplets on a surface with the same rough-
ness move 1.8 times slower than a droplet on a smooth
surface with the same θ0 and α. Cassie droplets on the
rough surface with bars perpendicular to flow do not start
moving until Bo sinα ≈ 0.6. For larger Bo sinα, Cassie
droplets accelerate faster than droplets on a smooth sur-
faces with the same θ0. Wenzel droplets on the rough
surface with “perpendicular bars” remain immobile for
all considered Bo sinα.
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a b

c d

FIG. 19: Droplet states depending on initial conditions: (a) droplets with Req = 0.64 mm are brought into contact
with a rough surface; (b) droplets with Req = 0.64 mm are dropped from 1.3 mm height; (c) droplets with

Req = 1.3 mm are brought into contact with a rough surface; (d) droplets with Req = 1.3 mm are dropped from
1.75 mm height.

TABLE IV: Effective static contact angles of droplets with Req = 0.64 mm and 1.3 mm on a fine-roughness
dual-rectangular hydrophobic surface depending on initial conditions.

Req = 0.64 mm Req = 1.3 mm
mode of

placement

immediate contact a dropped b immediate contact dropped

droplet

position

pit-centered block-

centered

pit-centered block-

centered

pit-centered block-

centered

pit-centered block-

centered

θxeff 121.7◦ 138.4◦ 118.7◦ 113.3◦ 137.9◦ 129.5◦ 118.8◦ 113.3◦

θzeff 122.1◦ 137.9◦ 119.1◦ 113.5◦ 138.2◦ 130.4◦ 118.4◦ 113.8◦

εeff 0.4◦ 0.5◦ 0.4◦ 0.2◦ 0.3◦ 0.9◦ 0.4◦ 0.5◦

a equilibrated in contact with the surface
b dropped from 1.75 mm height

XI. CONCLUSION

We employed a three-dimensional PF-SPH model to
simulate static and dynamic droplets on rough hydropho-
bic and hydrophilic surfaces. We demonstrate that the
PF-SPH can model flow under various wetting conditions
because of the efficient use of pairwise interaction forces.
We also validated the model against several analytical
solutions and performed a convergence study.

In PF-SPH, the surface tension and microscopic static
contact angle θ0 result from pairwise forces added into
the SPH momentum conservation equation. In this work,
we chose the pairwise forces to cover a wide range of mi-
croscopic static contact angles. We simulated droplets
and measured effective static contact angles θeff on
surfaces with different types of surface roughness, in-
cluding rectangular, dual-rectangular, sinusoidal, and
dual-sinusoidal. For each type of surface geometry, we
considered microscale hydrophobic and hydrophilic sur-
faces with different degrees of roughness, including fine,
medium, and coarse.

We observed that Cassie droplets form on microscopi-
cally hydrophobic surfaces, and Wenzel droplets form on

hydrophilic surfaces. We studied the dependence of θeff
on the degree of roughness, characterized by a dimen-
sionless ratio λ, with larger λ corresponding to coarser
surface roughness relative to the droplet size. The ef-
fective static contact angle of Cassie droplets decreases
with increasing λ. The effective contact angle of Wen-
zel droplets may increase on decrease with increasing λ,
which is attributed to the existence of pinning effects.
For most studied rough surfaces, we found θeff to be
greater than θ0. Our results showed that roughness can
cause microscopically hydrophilic surfaces to behave as
macroscopically hydrophobic. Moreover, microscopically
hydrophilic surfaces showed even stronger macroscopic
hydrophobic behavior.

In order to investigate the transition between Cassie
and Wenzel regime we simulated liquid droplets with
initial radii ranging from 0.5 mm to 1.6 mm on dual-
rectangular hydrophobic surfaces and compare our re-
sults to theoretical predictions. Good agreement is found
between the analytical solution and SPH simulations.
However, depending on size and internal pressure, a tran-
sition region exists where droplets may stay in a Cassie
or Wenzel state. This behavior is shown to depend on
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FIG. 20: Hydrophobic and hydrophilic droplets flowing
on a rough rectangular surface with rectangular bars

oriented parallel to the flow direction (a) and
rectangular bars oriented perpendicular to the flow

direction (b) at the time step t = 50000 (46.296 ms).
Surface inclination angle is α = 90◦.

initial conditions, in terms of lateral droplet position rel-
ative to the roughness and initial height. Both parame-
ters control the hysteresis of dynamic contact angles due
to pinning effects and are also present in our simulations,
due to the rather coarse roughness of the surfaces relative
to droplet size.

Finally, we studied droplet flow on inclined rough and
smooth surfaces. We demonstrated that the type and de-
gree of roughness, as well as the orientation of surface fea-
tures relative to flow, significantly affect droplet dynam-
ics. If rectangular bars are oriented parallel to the flow
direction, water droplets can easily slide on rough hy-
drophobic and hydrophilic surfaces. On the other hand,
if rectangular bars are oriented perpendicular to the flow
direction, droplets barely move on hydrophobic surfaces
and remain stationary on hydrophilic surfaces for all sur-

face inclination angles. We demonstrated numerically
that the linear scaling between the Bo and Ca numbers
described in Podgorski et al. [15] is valid not only for
sliding droplets on smooth surfaces, but also for sliding
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FIG. 21: Dimensionless scaling for smooth and rough
hydrophobic and hydrophilic surfaces with different
orientations of roughness relative to the droplet flow

direction. (par.) – flow parallel to the orientation of the
bars, (perp.) – flow perpendicular to the orientation of

bars. The surface inclination angles α are 10◦,
20◦,30◦,40◦,50◦,60◦,70◦,80◦ and 90◦.

droplets on rough hydrophobic and hydrophilic surfaces.
The presented simulations covered a wide spectrum of
wetting conditions and types of surface roughness. The
influence of surface roughness and orientation on flow dy-
namics in the case of more complex flow regimes, such as
rivulets and stable and unstable films, is part of future
work.
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