
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Autonomously responsive pumping by a bacterial flagellar
forest: A mean-field approach

James D. Martindale and Henry C. Fu
Phys. Rev. E 96, 033107 — Published 15 September 2017

DOI: 10.1103/PhysRevE.96.033107

http://dx.doi.org/10.1103/PhysRevE.96.033107


Autonomously responsive pumping by a bacterial flagellar forest: a mean-field
approach

James D. Martindale and Henry C. Fu
Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA

(Dated: August 7, 2017)

This study is motivated by a microfluidic device which imparts a magnetic torque on an array of
bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response
to properties of the background fluid, which provides an intriguing mechanism allowing their use as
an engineered element for the regulation or transport of chemicals in microscale applications. The
synchronization of flagellar phase has been widely studied in biological context, but here we examine
the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the
effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum.
Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt
arises and influences pumping. The mean-field methodology allows us to take into account possible
phase differences through a time-averaging procedure and to model an infinite array of flagella.
We find array separation distances, magnetic field strengths, and rotation frequencies that produce
non-trivial self-consistent pumping solutions. For individual flagella, pumping is reversed when
helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted
pumping solutions become untilted non-pumping solutions when helicity or rotation is reversed.

I. INTRODUCTION

Advances in fabrication techniques for microfluidic de-
vices utilizing biological and artificial flagella or cilia ne-
cessitate the development of methods to analyze how the
flows are influenced by collective effects such as synchro-
nization. Previous investigators have shown that oscillat-
ing synthetic cilia may be used to capture or release par-
ticles [1], change the flow direction within microchannel
geometries [2], transport microparticles [3], and even reg-
ulate heat flow [4]. The collective motion of active or pas-
sive cilia may also be used to repel microswimmers [5] or
particles [6] away from a surface, which has applications
such as self-cleaning surfaces or enhancement of mixing.
Synchronization of flagella or cilia direction and the phase
of rotation or beating pattern is crucial for establishing
transport. Synchronization of flagella has been achieved
by biological systems in metachronal waves beating at
the surface of Volvox carteri [7–9], and has been stud-
ied by examining the phase synchronization of eukary-
otic flagella for biflagellates such as Chlamydomonas [10].
Collective tilting of nodal cilia in developing embryos is
crucial in setting the left-right asymmetry of the inter-
nal organs, a phenomenon which has been examined ex-
perimentally [11] and numerically [12, 13]. Furthermore,
extensive theoretical work has examined synchronization
in a variety of models of varying simplicity. Hydrody-
namic effects which lead to phase synchronization have
been examined in minimalist numerical models such as a
pair of paddles [14] or helices [15] acted on by a constant
torque, or constant-force rotors used to model a bacterial
carpet [16], as well as more complex models investigat-
ing fluid transport efficiency for metachronally beating
magnetically actuated cilia [17].

Here we are motivated by a microfluidic device which
utilizes bacterial flagella for magnetically actuated pump-
ing (Fig. 1). In this “flagellar forest”, bacterial flagella

FIG. 1: The flagellar forest array within a Helmholtz
coil system for 3D magnetic actuation (courtesy of M.J.
Kim, BaST Lab, SMU).

are removed from Salmonella typhimurium, biotinylated,
and fixed to streptavadin-coated magnetic microbeads
via chemical bonding. The beads are deposited onto a
glass substrate, and the flagellar forest array is placed in
a three dimensional Helmholtz coil system which actuates
the beads using a rotating magnetic field. The rotation
of the beads imparts a torque onto the flagella, and their
rotation creates a pumping flow. Bacterial flagella au-
tonomously undergo transformations between polymor-
phic forms in response to changes in certain properties
of the background fluid such as temperature, ionic con-
centration, or pH [18–20], which creates a natural mech-
anism for self-regulation that is of particular interest in
laboratory applications [21, 22]. For example, the flag-
ellar forest could be included as a thermoregulatory el-
ement in a larger system – if heating raises the ambi-
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ent temperature of the fluid above a certain threshold
it could induce a polymorphic transformation which in
turn changes the pumping characteristics of the flagella.
This transformation could cause an increase in flow rate,
thereby dissipating heat and returning the system to its
original temperature. In order to model a microscale de-
vice such as the one shown in Fig. 1, we will define a
magnetic moment m which lies on the substrate at the
base of the flagellum and is free to rotate along with the
flagellum. A rotating external magnetic field B with ro-
tational frequency ω is prescribed and creates a torque
N = m ×B which drives the flagellum in a background
flow. In such a device, the direction and magnitude of
the pumping flow is dependent on the synchronization of
the tilt angle of the flagella.

It is important to note that the magnetic actuation
and our emphasis on tilt synchronization in these mi-
croscale devices differs from previous experimental and
numerical studies performed in modeling the dynamics
and coordination of bacterial carpets and arrays of bac-
terial flagella actuated by flagellar motors of live bacteria
on a substrate [23–26], which highlight the effect of vari-
ous geometric assumptions on the resulting flow field and
focus on phase synchronization. Experimentally, Darn-
ton et al. [23] fixed bacteria to a substrate so that their
flagella could freely rotate, driven by bacterial motors
which transmit a nearly constant torque to the flagella
over their range of natural rotation rates [27]. It was
shown that if the flagella remained upright, “whirlpool”
type flows were observed in a plane parallel with the
substrate and above the flagella. Uchida and Golesta-
nian [16, 24] studied the phase synchronization of rotors
with random intrinsic frequency as a basic model of a
bacterial carpet, and used a mean-field approach to show
that collective motion is acheived only for a very narrow
distribution of intrinsic frequency. Buchmann et al. [26]
performed numerical simulations using a 4×4 regular ar-
ray of helices to show that small random tilt angles and
random phase differences between helices not only repro-
duce experimental results when the helices are upright,
but may also produce observed “river” type transport for
small tilt angles. In the numerical simulations of Buch-
mann et al., the tilt and phase angles were prescribed
along with a direction and magnitude of rotation, so the
synchronization of tilt angles could not be studied.

Buchmann et al. emphasized that random phase differ-
ences between flagella play a crucial role in creating flow
properties one would observe in a micro-scale pumping
setting. One drawback of such direct numerical studies is
that the flagellar array is taken to be finite and small so
that full numerical simulation is tractable. Other studies
examine infinite flagellar arrays using doubly periodic so-
lutions to the Stokes equation [25], but these necessitate
the use of prescribed phase differences over some finite
sized domain to be infinitely duplicated in each direction.
The various constraints in these studies show the need for
a method which enables us to study the collective tilting
effects of large carpets of geometrically realistic flagella

while incorporating random phase differences. In this
paper, we first address the effects of helical geometry,
handedness, and tilt on pumping due to a single rotating
flagellum. We then examine synchronization of tilt angle
– which plays a crucial role in microscale pumping – for
an infinite, regular, two dimensional array of flagella, us-
ing a mean-field approach to classify pumping stability
while averaging over phase differences between flagella.
This methodology allows us to compare and contrast the
collective effects of tilt and handedness on pumping with
those of a single flagellum.

II. HYDRODYNAMIC MODEL

In microscale pumping applications, typical Reynolds
numbers are in the range of 10−5−10−7 for which hydro-
dynamics are governed by the equations of incompressible
Stokes flow,

µ∇2u−∇p = 0

∇ · u = 0,
(1)

where µ is viscosity, u is the fluid velocity, and p the
pressure. The Stokeslet is a fundamental solution to the
Stokes flow equations, corresponding to a velocity field
induced by a point force f at x0

8πµui(x) = Sij(x,x0)fj (2)

Sij =
δij
r

+
(x− x0)i(x− x0)j

r3
, (3)

where Sij is called the Stokeslet kernel, δij is the Kro-
necker delta, and r = |x− x0|.

In the flagellar forest, the glass substrate above which
the flagella rotate is a no-slip boundary. Above a no-slip
plane, the contribution of the Stokeslet plus an image
system – termed the Blakelet – is a fundamental solution
to Eq. 1 [28, 29], corresponding to a velocity field

8πµui(x) = Bij(x,x0)fj (4)

where Bij is called the Blakelet kernel. The velocity field
due to the Blakelet singularity can be found in Eq. 8 in
Blake and Chwang [29].

For numerical simulations in Stokes flow, we use the
method of regularized Stokeslets with the appropriate
image system [30–33] to enforce no-slip conditions on the
plane boundary x1 = 0. In this method, unknown point
forces along the flagellum are regularized by replacing the
Dirac δ-function with a ’blob’ function described by

φε(x− x0) =
15ε4

8π(r2 + ε2)7/2
, (5)

where ε � r is a parameter which controls the spatial
extent of the force and

∫
φε(x) dx = 1. For this choice
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of blob, the regularized Stokeslet kernel becomes

Sεij(x,x0) =
δij(r

2 + 2ε2) + (x− x0)i(x− x0)j
(r2 + ε2)3/2

(6)

and we define the full regularized Blakelet kernel as Bεij .
Details of this kernel along with the velocity field due to
the regularized Blakelet are found explicitly in Eq. 21 of
Ainley et al. [32] and our implementation in Martindale
et al. [34] Note that in the limit ε → 0, the regularized
kernels reduce to the classical singular kernels.

The flagella used in our model are rigid helices of fil-
ament radius a, helical radius R, helical pitch p, helical
arc length L, and chirality (handedness) χ = ±1, with
a tapering region described by the tapering parameter
kE = p/(2π) such that the connection point with the
x1 = 0 plane lies at (x2, x3) = (0, 0). In lieu of explicitly
modeling the magnetic microbeads, helices are translated
to a height h = 10a above the no-slip plane. For exam-
ple, the centerline parameterization of an helical filament
aligned with the ê1-axis is described by [33]

rc(s) =(h+ s)ê1 +
(

1− e−s
2/k2E

)
R
[

cos(2πsχ/p)ê2

+ sin(2πsχ/p)ê3

]
(7)

where {ê1, ê2, ê3} is an orthonormal basis. We prescribe
the helical geometry for each polymorphic form using the
measurements from Hasegawa et al. [20] For example,
in Table I we show the helical radius and pitch of the
normal (n=2) and curly (n=5) forms. These two forms
are selected since they are the most commonly observed
forms as pH and ionic strength are varied [19]. While
a complete flagellar forest has not yet been fabricated,
when single or a few flagella are observed attached to a
substrate, they are nearly always observed in one of these
two forms [35].

TABLE I: The helical geometry of the normal and curly
polymorphic forms

Polymorphism Helical Radius Helical Pitch
number n (µm) (µm)
2 0.196 2.233
5 0.156 1.361

In our model, N regularized Stokeslets are distributed
at collocation points xα along the centerline of the flagel-
lum rc(s), which we have shown to give accurate results
for slender filaments such as bacterial flagella [34]. The
flow due to the helix is written as

8πµuhelix,i(x) =

N∑
α=1

Bεij(x− xα)fαj . (8)

The regularized Blakelet kernel in this formula ensures
that the contribution from the helix will satisfy no-slip

FIG. 2: Diagram of a single flagellum with tilt θ and
rotation rate Ω. The vertical plane in blue is an infinite
upper half-plane through which the flux Q is calculated.

conditions on the plane x1 = 0. For the normal (n=2)
and curly (n=5) polymorphic forms of bacterial flagella
examined here we have used the Stokeslet spacing and
blob parameters described in Martindale et al. [34] This
centerline distribution with optimal parameters greatly
reduces the computational time needed to accurately
model the dynamics of the flagella.

III. PUMPING DUE TO A SINGLE
FLAGELLUM

To understand the pumping flows generated by a sin-
gle flagellum rotating above a no-slip plane, we prescribe
a tilt angle θ from the axis normal to the plane along
with a constant rotation rate Ω in a clockwise direction
about the helical axis. For each of the 10 helical polymor-
phic configurations [20], we create a flagellum with helical
length L = 7.1 µm, filament radius a = 0.00169 L, and
tilt angle θ as seen in Fig. 2.

We calculate the time-averaged volumetric flow rate
through an arbitrary vertical plane P = {x ∈ R3 | x1 >
0, x2 = C} by averaging over one rotational period the
instantaneous volumetric flow rate, which due to the lin-
earity of the Stokes flow equations can be written as a
sum of the volumetric flow rate due to each regularized
Blakelet [12, 21, 36],

Q =

N∑
α=1

xα1 f
α
2

µπ
. (9)

For each helical polymorphic form, we calculate the
non-dimensionalized volumetric flow rate Q̃ = Q/|Ω|L3

for tilt angles 0◦ ≤ θ ≤ 60◦ (since after a 60◦ tilt angle
many forms intersect with the x1 = 0 plane) and plot
the results in Fig. 3. We note that the maximum volu-
metric flow rate is achieved for each polymorphic form
for a tilt angle of approximately 45◦. We have found
that not only does the pumping magnitude vary greatly
depending on polymorphic form, but that left and right
handed helical forms produce pumping in opposite direc-
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FIG. 3: Non-dimensionalized volumetric flow rate over
one rotational period for the 10 helical bacterial
polymorphic forms as a function of tilt angle θ.
Rotational direction is clockwise about the helical axis.

tions, an important feature in autonomously regulated
pumping. Recalling our example from Sec. I, this result
suggests that inducing a polymorphic transformation by
the introduction of a heat source could cause a reversal
of flow which aids the dissipation of heat and acts as a
mechanism for the self-regulation of a system.

In the rest of the paper, we concentrate on the normal
(n=2, left-handed) and curly (n=5, right-handed) forms
since those are the most commonly observed forms dur-
ing the development of flagellar forests. As single flagella,
they pump in opposite directions, but in a forest the pres-
ence of additional flagella complicates matters due to the
hydrodynamic interactions between them. Once hydro-
dynamic interactions are included, we cannot prescribe
the rotation rate and axis, so instead we remove these
constraints to model the magnetic torque which drives
the flagella in our microfluidic device. As the number of
flagella grows, it becomes increasingly difficult to model
the hydrodynamic interactions in order to examine col-
lective effects of tilt on pumping. Next, we attempt to
address how collective effects and interactions alter the
conclusions based on a single flagellum.

FIG. 4: A regular D ×D array of helical flagella, show
here with equal tilt angle and phase. The central helix
is colored black and made bold solely for emphasis in
the mean-field methodology.

IV. MEAN-FIELD METHODOLOGY

To examine collective tilting of bacterial flagella, we
consider a regular array of helices as seen in Fig. 4 to
model a microscale pumping device such as the one in
Fig. 1. The size of a D ×D array will be called D, and
the separation distance between flagella is d. Hydrody-
namic interactions between flagella can promote collec-
tive tilting since a tilted flagellum indues a flow in the
direction of the tilt, which pushes nearby flagella to also
tilt in the same direction. In principle each flagellum may
have a slightly different tilt angle, but in a mean-field ap-
proach [37], we ignore these fluctuations and assume that
due to symmetry each flagellum behaves identically with
the same tilt angle and experiences an identical back-
ground flow caused by all other flagella in the array. The
goal is to find the flagellar configuration (tilt angle) such
that it produces a background flow that leads to that
same tilt angle, i.e. self-consistency. Therefore without
loss of generality, we choose to focus on the central helix,
whose base lies at the standard origin (colored black in
Fig. 4).

The central helix is acted on by a background flow
U∞(x) which we imagine is due to all the other helices
in the array, as well as an external magnetic torque N =
m×B where m is a magnetic moment located at x = 0
that takes a fixed orientation relative to the helix, i.e.
it rotates and tilts with the helix, and B is a rotating
magnetic field described by

B = B0 (0, cosωt, sinωt) . (10)

We represent the full flow field as u(x) = uhelix(x) +
U∞(x) where uhelix(x) is given by Eq. 8 and U∞(x) is
the background flow. Note that uhelix(x) → 0 as r =
|x| → ∞ and uhelix(x1 = 0) = 0 . In order for no-slip
conditions to be met for the full velocity field, we further
require that U∞(x1 = 0) = 0. In the mean-field model
the base of the helix does not translate. We solve for
the unknown force at the base of the helix as well as its
rotation.
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FIG. 5: An example of the epicyclic motion of the
helical axis on a unit sphere and the convergence to a
stable orbit about {θ0, φ0} for a background shear
U∞(x) = γ̇x1x̂2. Scaled helix at final position shown in
red. Inset: a highlighted epicycle to show helical
dynamics.

V. ROTATING HELIX IN BACKGROUND
FLOW

The dynamic motion of a helix embedded in a back-
ground flow and driven by a torque from a rotating mag-
netic field is interesting in and of itself, and helps to
understand the results of the mean-field approach. To
illustrate the typical dynamics, we choose a simple back-
ground shear flow U∞(x) = γ̇x1x̂2. As the magnetic
field rotates in the x1 = 0 plane, the helical axis un-
dergoes small epicyclic orbits (inset in Fig. 5) with the
same rotational period T as the magnetic field while its
orientation is influenced by the background flow.

The rotating magnetic field B causes a torque on the
magnetic moment m at the base of the helix which is bal-
anced by the hydrodynamic torque induced by drag from
the motion of the helix through the fluid. If the field ro-
tation rate ω is slow enough, the magnetic moment of the
bead m will have a constant lag angle behind the mag-
netic field B, and the motion of the helix will be steady
and rotate with the field [38]. However, if ω is too large,
the angle between the magnetic moment m and the mag-
netic field B will become unsteady, and the motion of the
helix will no longer be synchronized with the magnetic
field rotation. The critical frequency ω∗ below which we
have steady rotation is called the step-out frequency of
the helix, and is determined by the magnetic moment as
well as the helical geometry. If the rotation rate of the
magnetic field is below ω∗, the epicyclic motion of the
helix converges to a stable orbit about an axis described
by the tilt and azimuthal angles {θ0, φ0}, seen in Fig. 5.

FIG. 6: The self-consistent nondimensionalized
y-component of the shear-like velocity profile U∞(x)
induced on the central helix by all other helices in the
array versus the normalized arc length for Mason
number Ma = µωR3/|m||B| = 3.32× 10−3 and array
separation distance d = L.

VI. MEAN-FIELD CALCULATION AND
PRECESSION

In the mean-field approach, the background flow
U∞(x) is caused by all the helices in the array except
the central helix. The numerical method finds the forces
and positions of the collocation points on the central he-
lix. Assuming that every helix in the array has the same
force distribution, we calculate a new background flow at
the central helix as the sum of the time-averaged flows
produced by all other helices in the array. Note that poly-
morphic transformations typically occur on the timescale
of 10 ms [39], while rotational frequencies are typically
from 1-50 Hz, so here we consider any transformations to
be instantaneous and the flagellar geometry to be fixed
throughout the calculation. As detailed in Secs. VI A
and VI B, this induces a new flow field U∞(x) (usually
quite shear-like in profile as seen in Fig. 6), and we recal-
culate the behavior of the central helix in this new flow,
again driven by a magnetic torque at its base. After one
period, this process is repeated until a self-consistent so-
lution is found, i.e. the tilt angle of the helix produces
the background flow required to obtain that tilt angle.
Because the flow is found by time-averaging over one ro-
tational period, this process is similar to using random
phase differences in a direct numerical simulation to find
the velocity field, repeating this simulation many times,
and then averaging over these velocity fields.
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FIG. 7: An example of precessional pumping motion for
a pumping angle θ∗. The direction of precession is
clockwise (the same direction as the rotating magnetic
field B). Inset: epicycles with circles drawn through
their average helical axis about the x1-axis.

In the example using a background shear flow, we saw
that the azimuthal angle φ0 of the stable orbit did not
align with the direction of the background flow. This
is reminiscent of the chiral flows tangent to the edge of
a bacterial swarm produced by flagella extended radi-
ally out of the edge [40]. Calculating the background
flow using the time-averaged forces found during this or-
bit results in a shear-like background flow U∞(x) at the
central helix in the direction of φ0. However, in such a
background flow the helix again has a stable orbit which
is not aligned with the new flow. Therefore under con-
tinuous rotation by magnetic torque, the helix and the
resulting background flow precess, with the azimuthal
angle φ steadily increasing in time.

Therefore, rather than requiring {θ, φ} to stay the
same for self-consistency, if we find a tilt angle θ∗ for
which we observe perfect precessional motion of the cen-
tral helix from one period to the next, we say that this
configuration is self-consistent. This is accomplished by
fixing the azimuthal angle at φ0 and searching over a
range of tilt angles θ for epicycles which produce an av-
erage helical axis which is a pure rotation about the x̂1

axis from one period to the next. We define ∆θ as the
difference in tilt angles of the average helical axes for two
consecutive epicycles so that our problem is a search for a
tilt angle θ∗ for which ∆θ = 0 and ∆φ is constant. With
this definition, a self-consistent solution corresponds to
pumping (see below), but because of the precessional
motion, the pumping direction constantly rotates. One
such example of a configuration for which we find a sta-
ble pumping angle is seen in Fig. 7. On the other hand,
if we observe that the central helix always tends toward
upright, there is no net pumping flow.

Physically we interpret precessional self-consistency as
pumping since we believe that wall effects in confined mi-
crochannel geometries used in microfluidic devices such
as the flagellar forest (Fig. 1) set a preferred geometry
which confines the flow and results in a stable pumping

angle. We confirm this intuition in Sec. VII A by adding a
vertical slip wall to our calculation, which selects a single
self-consistent direction and removes precession. In the
following subsections we detail how the time-averaged
background velocity is calculated for an infinite array,
then present results for self-consistent stability of pump-
ing.

A. Time-averaged velocity induced on a flagellum

Consider the central flagellum with centerline r0(s, t)
made of collocation points xα1

0 (t) for α1 = 1, ..., N , along
with another helix with centerline r1(s, t) with colloca-
tion points xα2

1 (t) for α2 = 1, ..., N . To find the back-
ground flow U∞(x), we seek an expression for the time-
averaged fluid velocity on the central helix induced by
another helix undergoing periodic motion with period T .
With helices such as bacterial flagella where the length
is much larger than the helical radius [L/R ≈ 36 for the
normal (n=2) form and L/R ≈ 45 for the curly (n=5)
form], we may perform an expansion in this small radial
component.

To accomplish this, we treat each helix as a straight,
rod-like, time-independent component in the direction of
the average helical axis over an epicycle plus a small
time-dependent component which captures the helical
radius and rotational dynamics over an epicycle, i.e.
r0(s, t) = r0,rod(s) + ∆r0(s, t). We then write the time-
averaged velocity induced at one of the collocation points
on r0,rod(s), called xα1

0,rod as

uj(x
α1

0,rod) =
1

T

∫ T

0

N∑
α2=1

Bjk (xα1
0 (t)− xα2

1 (t)) fα2

k (t)dt

(11)
where Bjk is the Blakelet kernel and fα2(t) is the time-
dependent force at the collocation point xα2

1 (t).

Assuming this time-dependent term ∆r0(s, t) is small,
we expand the Blakelet kernel which appears in Eq. 11
as

Bjk (r0(s, t)− r1(s, t)) ≈ Bjk (r0,rod(s)− r1,rod(s))

+ ∆r0(s, t)
∂Bjk
∂r0,rod

(r0,rod(s)− r1,rod(s))

+ ∆r1(s, t)
∂Bjk
∂r1,rod

(r0,rod(s)− r1,rod(s)) .

(12)

Inserting this expression from Eq. 12 into Eq. 11 and
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collecting time-dependent terms gives

uj(x
α1

0,rod) ≈
N∑

α2=1

Bjk

(
xα1

0,rod − xα2

1,rod

)( 1

T

∫ T

0

fα2

k (t)dt

)

+

N∑
α2=1

∂Bjk
∂r0,rod

(
xα1

0,rod − xα2

1,rod

)( 1

T

∫ T

0

∆xα1
0 (t)fα2

k (t)dt

)

+

N∑
α2=1

∂Bjk
∂r1,rod

(
xα1

0,rod − xα2

1,rod

)( 1

T

∫ T

0

∆xα2
1 (t)fα2

k (t)dt

)
.

(13)

The time-dependent terms collected in parentheses are
evaluated separately as the helix undergoes a rotational
period of motion. We have verified that this approxima-
tion yields results with 5.5% error compared to the full
time-dependent expression for relatively small separation
distances, i.e. d = L/2, with the results becoming more
accurate as the separation distance increases. More im-
portantly, Eq. 13 averages over phase angle differences
between helices, allowing us to take phase angle into ac-
count without explicitly dealing with it at each time step.

B. The infinite array extrapolation

To find the velocity induced on the central rod by a
finite array of helices, we must sum a contribution like
Eq. 13 over each helix in the array. Recall that these
velocities are calculated using time-averaged quantities
taken from the dynamics of only the central helix over
one period, so this process of generating the array veloc-
ity occurs once per rotational period. In order to calcu-
late the velocity field at the central flagellum due to an
infinite array of flagella, we extrapolate the velocity field
produced at the central flagellum by successively larger
arrays. We utilize the far-field expression for the Blakelet
singularity to obtain power law decay rates in the velocity
field, and then fit the finite array data to this prescribed
functional form.

The details of the far-field decay rates due to a finite
array of helices along with the calculation of the appro-
priate array size D needed to form an infinite array ex-
trapolant are found in the Appendix. We find that ex-
trapolating infinite array results from the calculated ve-
locity components of arrays with size 11×11 and 17×17
produce accurate results while still allowing for relatively
fast computation time.

VII. RESULTS

We use the mean-field methodology to find self-
consistent pumping solutions for a variety of magnetic
field rotation rates ω and array separation distances d. In
this study, we prescribe a geometry for the normal (n=2)
and curly (n=5) polymorphic forms of bacterial flagella,

both of helical arc length L = 7.1 µm and filament radius
a = 0.00169 L. As mentioned in Sec. II, these two poly-
morphic forms are chosen as representative examples of
the mean-field methodology because they are common in
biological scenarios such as the run-and-tumble motion
of bacteria and are forms most often observed in experi-
ments using flagella attached to beads [41]. In Fig. 3, we
showed that when considering a single flagellum, these
forms produce a volumetric flow in opposite directions
for the same rotation rate and helical axis due to the
normal and curly forms having opposite chirality. Sim-
ilarly, reversing the direction of rotation would reverse
the pumping direction for each form.

In the mean-field methodology, the self-consistent orbit
of a polymorphic form about θ0 depends on the Mason
number, Ma = µωR3/|m||B|, a ratio of fluid to magnetic
torque [42, 43]. If the Mason number is held constant for
a given helical geometry, the behavior of the orbit will
remain the same. For this reason, we present results in
terms of the Mason number which incorporates experi-
mental variations of both ω and |B|. Including collective
effects, for a clockwise rotation where the volumetric flow
rate for an individual normal (n=2) flagellum is positive,
we find stable self-consistent pumping solutions over a
certain range of Mason numbers and helical separation
distances d. On the other hand, for a counter-clockwise
rotation of the normal form where the volumetric flow
rate is negative for a single flagellum, there is no net
pumping, and we find that the only self-consistent so-
lution is the trivial case where the flagellum is oriented
perpendicular to the no-slip plane. This can be rational-
ized since a background flow in the tilt direction is needed
in order to stabilize the tilt angle. For the curly (n=5)
form, where the flagellum has opposite handedness, the
reverse is true – counter-clockwise magnetic field rota-
tion produces a stable pumping solution, but clockwise
rotation does not.

We report the self-consistent pumping angles in Fig. 8
for the normal (n=2) polymorphic form in a phase space
of scaled Mason number Ma/Mastep-out and grid sepa-
ration distance d, presented as a multiple of the helical
length L for a clockwise rotational direction. X’s show
when self-consistent solutions are upright and produce no
pumping. Pumping is possible for 0.5L ≤ d < 1.75L, but
requires a faster rotation rate as the array separation in-
creases. We are not able to study pumping for d < 0.5L
since the assumptions used to derive Eq. 12 are violated,
but based on the observed trend, the tendency seems
to be that further decreasing the separation would lead
to stronger hydrodynamic interactions, leading to more
tilt and more pumping as long as the frequency is low
enough. For d > 1.75L we never observe collective tilting
since the array becomes too sparse to produce pumping
solutions. We note that the pumping angle θ∗ decreases
as the magnetic field rotation rate ω is decreased or the
grid separation distance d is increased.

Since the chirality of the curly (n=5) form is opposite
from the normal form, we must also reverse the direction
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FIG. 8: Stable pumping angles θ∗ in a phase space of
scaled Mason number Ma/Mastep-out and grid
separation distance d, normal (n=2) form, clockwise
rotation. Patch faces are shaded by non-dimensional
flow rate. “X” indicates self-consistent solution is
upright (non-pumping). Counter-clockwise rotation
always yields non-pumping behavior.

FIG. 9: Stable pumping angles θ∗ in a phase space of
scaled Mason number Ma/Mastep-out and grid
separation distance d, curly (n=5) form,
counter-clockwise rotation. Patch faces are shaded by
non-dimensional flow rate. “X” indicates self-consistent
solution is upright (non-pumping). Clockwise rotation
always yields non-pumping behavior.

of the magnetic field rotation to observe self-consistent
pumping angles. Self-consistent pumping angle for the
curly form are shown in Fig. 9. Recall from Table I that
the helical radius of the curly form is smaller than that of
the normal form, however, this implies that for the same
helical arc length L, the axial length of a helix in the
curly form is longer than the normal form. The velocity
field scales approximately linearly with axial length, but
it also scales with helical radius R. Thus, it is difficult
to balance these competing factors to determine a priori
which polymorphic form will produce a larger velocity
given equivalent separation distances. In the mean-field
methodology, we observe that for the same helical sepa-
ration distance d and field rotation rate ω, the induced
background velocity from the infinite array is larger for
the curly form than that of the normal form. The con-

sequence is that the self-consistent pumping angles θ∗

seen in Fig. 9 are in general slightly higher than those
observed in Fig. 8 for the normal form.

For a single flagellum rotating at a prescribed rate
about a fixed helical axis, we measured the volumetric
flow rate through a vertical plane by averaging the in-
stantaneous rate in Eq. 9 over one rotational period. In
the mean-field case we not only have an infinite number
of helices, but the direction of pumping is constantly ro-
tating. To obtain a measure of the volumetric flow rate
in the case of precessional pumping, we average the in-
stantaneous volumetric flow rate through a vertical plane
normal to the azimuthal direction of the average helical
axis over one epicycle (r0,rod) for the central helix as it
undergoes precessional motion. We calculated the vol-
umetric flow rate under this definition for each stable
pumping angle presented in Figs. 8 and 9. Just as in
the single flagellum case studied in Sec. III, we observe
that the maximum volumetric flow rate occurs for those
self-consistent pumping angles θ∗ closest to 45◦. For the
normal (n=2) form with grid separation d = 0.75L and
Ma/Mastep-out = 0.6 where the self-consistent pumping
angle is θ∗ = 46.41◦ as seen in Fig. 8, the volumetric flow
rate per helix (non-dimensionalized in the same way as

in Sec. III) is found to be Q̃ = 0.05158; within 5% of the

value of Q̃ = 0.05405 found for the single flagellum case.
This result is not surprising since the epicycles are small
and the rotation rates are all below step-out, making this
very similar to the single flagellum case.

To summarize, the use of the mean-field methodol-
ogy allowed us to create a model which takes into ac-
count possible phase differences between flagella through
a time-averaging procedure, as well as allowed for the in-
vestigation of an infinite array. We found a mechanism to
control pumping for a given array separation distance by
tuning the rotation rate of the underlying magnetic field
to obtain specific pumping angles. We also found that
a reversal of chirality, such as the one which would take
place in a polymorphic transformation from the normal
to curly flagellar form, would cause stable pumping solu-
tions to switch to upright configurations and produce no
net pumping. This is in contrast with the single flagellum
case, where we saw that a reversal of chirality still pro-
duces pumping, but in the opposite direction. The differ-
ence in behavior arises from hydrodynamic interactions
since a flagellum that produces flow in the tilt direction
produces positive feedback, pushing nearby flagella in the
same direction, but a flagellum of opposite handedness
that produces a flow opposite the tilt direction produces
negative feedback, pushing nearby flagella in the oppo-
site direction. As discussed in Sec. I, these polymorphic
transformations are an autonomous process in response
to changes in external fluid parameters. Therefore, for
the flagellar forest, the mean-field results predict a mech-
anism comparable to an “on-off switch” which may be
used to regulate the flow and chemical properties of the
fluid, rather than a reversal of pumping direction.
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FIG. 10: A (2D + 1)× 1 line of helical flagella, shown
here with equal tilt angle and phase. The central helix
is colored black and made bold solely for emphasis in
the mean-field methodology.

A. Effects of confinement

In our mean-field methodology we use precession as
the requirement for self-consistent pumping for an infi-
nite array since we believe that physically this will cor-
respond to a fixed pumping angle in a confined channel.
Confined geometries such as microchannels with rectan-
gular cross-section are common in experimental settings.
In such channels, the walls will set a preferred pumping
direction, and we would not observe the precession by
which we classify stability of pumping in the previous re-
sults. A simple demonstration of this effect can be seen
by considering the problem of an infinite line of helices
above a no-slip plane, and comparing two cases with and
without a vertical wall at x3 = zw. An example of this
of this geometry can be seen in Fig. 10.

We impose a slip boundary condition at the vertical
wall in order to obtain a tractable problem. The solution
for a Stokeslet in the presence of a no-slip plane x1 = 0
and a vertical slip wall at x3 = zw is the superposition
of a regularized Blakelet above the x1 = 0 plane and a
regularized anti-Blakelet image mirrored across the x3 =
zw plane. This kernel is described by

W ε
ij = Bεij(x− xα)−Bεij(x− xαw), (14)

where xαw = xα + 2zwx̂3. In contrast, there is no ex-
act solution for the case of a Stokeslet in an infinite mi-
crochannel bounded on four sides by no-slip walls. Thus,
we use this simpler boundary condition as a proof of con-
cept that imposing a preferred direction of flow results
in stable pumping direction about an axis described by
{θ∗, φ∗} by replacing Bεij in Eq. 8 with W ε

ij .

As a proof of concept that wall effects change pre-
cessional solutions to single-direction pumping, we use
the normal (n=2) polymorphic form at Mason number
Ma = 0.994 Mastep-out and helix separation distance of
d = 0.85L. First, like a two-dimensional array of helices,
a line of helices without a vertical slip wall undergoes pre-
cessional motion. Then, adding the vertical wall we find a
single self-consistent solution with single-direction pump-

FIG. 11: Change in tilt angle ∆θ (blue circles) and
azimuthal angle ∆φ (red squares) versus initial
azimuthal angle φ for an initial tilt θ = 27.5◦. We find a
stable pumping configuration for
{θ∗, φ∗} = {27.5◦, 60.7◦}.

ing. To provide specifics, in Fig. 11, we plot the change in
the tilt angle ∆θ and azimuthal angle ∆φ for an initial tilt
θ = 27.5◦ over a range of initial azimuthal angles. We ob-
serve a stable configuration at {θ∗, φ∗} = {27.5◦, 60.7◦}.
This solution has net flow through planes perpendicular
to the vertical slip plane, but no net flow through planes
parallel to the vertical plane.

VIII. CONCLUSIONS

Previous studies have examined the effects of tilt and
phase differences on the resulting flow by way of numeri-
cal simulations which involve small finite arrays of helices
with prescribed helical axes and rotation rates. These
studies found that phase differences between helices are
required to produce the types of flows observed in exper-
imental work with bacterial carpets with flagella driven
by bacterial motors. The importance of phase differences
and an ability to examine flows generated by large arrays
of flagella in microfluidic devices motivated our use of a
mean-field approach which allows us to take into account
phase differences through a time-averaging procedure de-
tailed in Sec. VI A, and allows for the investigation of
an infinite array through an extrapolation procedure de-
tailed in Sec. VI B.

To summarize our results, in Sec. III we showed how
the volumetric flow rate and pumping direction varies
depending on helical geometry. In the single flagellum
case, a reversal of rotation direction or handedness sim-
ply reverses the direction of the pumping flow. In order
to better understand the pumping flows in microfluidic
devices such as the flagellar forest seen in Fig. 1, we inves-
tigated the collective behavior of an infinite regular array
of helical flagella driven by a magnetic torque by apply-
ing a mean-field methodology detailed in Sec. IV to find
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the array separation distances and Mason numbers which
give rise to self-consistent precessional pumping solutions
classified by the synchronization of the flagellar tilt an-
gle. Over the range of solutions for the normal and curly
polymorphic forms, we found that the stable tilt angle
decreased as the array separation distance increased or
the Mason number decreased. Unlike the pumping gen-
erated by a single flagellum, we found that for an infi-
nite array with a separation distance and Mason number
which produced a non-zero stable pumping angle, a re-
versal of magnetic field rotation direction or handedness
gives trivially stable solutions where the helices are up-
right and there is no net pumping. Microfluidic devices
operating in vitro are often used within microchannel
geometries which confine the flow direction. Including a
vertical slip wall, we applied the mean-field methodology
to show that the precessional motion observed for an in-
finite array is halted and a single self-consistent pumping
orientation is found.

Our results have design implications for the proposed
flagellar forest. We predict the ranges of flagellar lengths,
separations, and frequency regimes in which the device
will have on-off response to external stimuli that trig-
ger the transformation between normal and curly forms.
The fabrication method involves specifying the distance
between the bead-flagella complexes by lithographically
patterning the surface with an array of wells, so our re-
sults may help guide the choice of array spacing dur-
ing fabrication. We expect that experiments with fabri-
cated flagellar forests would be able to test our predic-
tions of collective on-off switching and the parameters
under which such behavior can be observed, though with
the caveat that mean-field results may not be quanti-
tatively accurate if tilt angle fluctuations are important.
Furthermore, since the mean-field method finds only self-
consistent solutions, it cannot predict the dynamics of the
formation of predicted solutions.

The mean-field methodology presented here provides a
new and valuable way to explore the collective tilt that in-
fluences pumping flows. Due to our focus on the synchro-
nization of tilt angle, our work provides a complemen-
tary picture to previous studies of the synchronization of
phase angles for rotating flagella or beating cilia and flag-
ella [7–10, 14–17, 23–26]. For our torque-actuated rotors,
we have found Mason number and geometry-dependent
transitions between collectively tilted pumping phases
and upright non-pumping phases.
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Appendix A: Far-field decay rates and extrapolation
procedures for arrays of helical filaments

The far-field velocity for a single Blakelet whose
Stokeslet lies at a height h above the x1 = 0 plane is
given by [29]

ui =
fk

8πµ

[
12hx1xixαδkα

|x|5

+ h2δk1

(
− (12 + 6δi1)x1xi

|x|5
+

30x31xi
|x|7

)] (A1)

where summation in the Einstein convention is implied.
From this equation, we find the decay rates of the velocity
components to be

u1 ∼ |x|−5, u2,3 ∼ |x|−3. (A2)

The overall error between the velocity component UDi
obtained from a D ×D array and the true infinite array
velocity U∗i,∞ is ∆UDi = |UDi −U∗i,∞|. For a D×D array
of flagella with separation distance d, |x| = Dd. For
large enough D, summation of the velocity components
in Eq. A2 over this array give us the asymptotic decay
rates of the overall error ∆UDi in the velocity field as

∆UD1 ∼ |Dd|−3, ∆UD2,3 ∼ |Dd|−1. (A3)

Thus, we first find the time-averaged velocity at the fi-
nal collocation point on the central rod, uj(x

αN

0,rod), sim-
ilar to Eq. 13 with an additional summation to take into
account the velocity induced by all the helices in the finite
array of size D. We then use Richardson extrapolation
for varying array sizeD to find the velocity for the infinite
array: once we have verified that the finite arrays used
to find the infinite extrapolant are sufficiently large to
obey the expected power law behavior, we fit the veloc-
ity data from finite arrays assuming the errors obey the
power law decay rates in Eq. A3 to find the full velocity
profile along the central rod.

For example, in order to ensure that the finite arrays
we use to generate the infinite array extrapolant are large
enough, we examine the velocity at the central rod due
to D×D finite arrays of helices with sizes 3× 3 through
39× 39 with a separation distance of d = L. In Fig. 12,
we present a log-log plot of calculated array velocities at
the endpoint of the central rod versus array size for D =
11, 13, 15, 17. We see that the asymptotic decay rates
match very closely with our measured decay rates, and
note that we see further improvements for larger array
separation distance d. Plots such as the ones in Fig. 12
allow us to choose finite sized arrays for which we can
ensure the velocity field decay rates are in the asymptotic
range. To further illuminate this process, we show the
velocity components at the endpoint of the central helix
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FIG. 12: Log-log plots (base e) of overall error decay rates versus array size for the (a) x- (b) y- and (c) z-
component array velocities for array sizes D = 11, 13, 15, 17 (the solid blue lines). Decay rates from the Blakelet
analysis (the blue dashed lines) are overlayed with the analytical slope from Eq. A3.

FIG. 13: Plots of (a) x- (b) y- and (c) z- component array velocities at the central helix end point for array size D
ranging from 3 to 39 (the solid blue curves). Resulting infinite array extrapolation (the blue dashed lines) from the
velocity components for arrays of size D = 11 and D = 17 (circled).

due to array sizes ranging from 3×3 to 39×39 in Fig. 13,
that demonstrate that extrapolating infinite array results
from the calculated velocity components of arrays with
size 11×11 and 17×17 are sufficient to produce accurate
results.

Finally, for Sec. VII A, for an infinite line of helices
instead of an infinite array, the power-law decay rates of
the overall error in the velocity field are changed from
Eq. A3 to

∆UD1 ∼ |Dd|−4, ∆UD2 ∼ |Dd|−2, ∆UD3 ∼ |Dd|−4,
(A4)

but otherwise the procedure for finding a self-consistent
solution is the same as for an infinite array. Adding the
vertical wall, the power-law decay rates become

∆UD1 ∼ |Dd|−5, ∆UD2 ∼ |Dd|−3, ∆UD3 ∼ |Dd|−5.
(A5)
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