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Abstract ： A parallel direct-forcing fictitious domain method is employed to perform 
fully-resolved numerical simulations of turbulent channel flow laden with finite-size particles. The 
effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are 
investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the 
particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow 
drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density 
ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles 
is observed for large particle-fluid density ratios during the transient stage, but not at the 
statistically stationary stage. The intensity of particle velocity fluctuations generally decreases 
with increasing particle inertia, except that the particle streamwise root-mean-square velocity and 
streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of 
the order of 10. The averaged momentum equations are derived with the spatial averaging theorem 
and are used to analyze the mechanisms for the effects of the particles on the flow drag. The 
results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress 
is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the 
inter-phase drag force for the large particle inertia case. The sum of the total Reynolds stress and 
particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, 
which is the reason for the largest flow drag at this density ratio. The inter-phase drag force 
obtained from the averaged momentum equation (the balance theory) is significantly smaller than 
(but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged 
slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a 
positive inter-phase force on the particles arising from the negative gradient of the particle inner 
stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In 
addition, our results show that both particle collision and particle-turbulence interaction play roles 
in the formation of the inhomogeneous distribution of the particles at the density ratio of the order 
of 10. 
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1 Introduction 
 Particle-laden turbulent flows are commonly encountered in natural and industrial settings, 
such as sediment transport, paper industry, pipeline transport, and fluidized bed. It is important to 
understand the particle-turbulence interaction mechanisms in order to improve the macroscopic 
models for the multiphase flows and the design of the related device. The 
point-particle-approximation based direct numerical simulations have provided much insight into 
the particle-turbulence interactions; for example, such simulations showed that the particles could 
affect the fluid-phase turbulence even at small particle volume fractions. (e.g. Squires & Eaton [1]; 
Ferrante & Elghobashi[2]; Vance et al. [3]), and the turbulence could significantly affect the 
motion and distribution of the particles (e.g., Wang & Maxey [4]). In principle, the point-particle 
model is suited to the case where the particle size is smaller than the turbulence Kolmogorov 
length scale. In recent years, the interface-resolved DNS methods have been developed to deal 
with the case where the particles size is comparable to or larger than the Kolmogorov length scale 
(Balachandar & Eaton [5]). The essential features of the interface-resolved methods are that the 
interfaces between the particles and the fluid are resolved and the hydrodynamic forces on the 
particles are determined from the solution of the flow fields outside the particle boundaries. Such 
methods have been applied to simulations of particle-laden isotropic homogeneous flows (e.g. Ten 
Cate et al. [6]; Lucci et al. [7]; Homann and Bec [8]; Gao et al. [9]; Cisse et al. [10]; Chouippe and 
Uhlmann [11]; Fornari et al. [12]; de Motta et al. [13]), pipe flow (Wu et al. [14]), vertical channel 
flows (Kajishima et al. [15]; Uhlmann 2008 [16]; García-Villalba et al. [17]), horizontal channel 
flows (e.g. Pan & Banerjee [18]; Shao et al. [19]; Kidanemariam et al. [20]; Do-Quang et al. [21]; 
Picano et al. [22]; Wang et al. [23]; Yu et al. [24-25]), as well as the interactions between the 
turbulence and a fixed particle (e.g. Bagchi & Balachandar [26]; Burton & Eaton [27]; Naso & 
Prosperetti [28]).  

Regarding the interface-resolved DNS of the horizontal particle-laden channel flows, Shao et 
al. [19], Picano et al. [22] and Wang et al. [23] investigated the effects of the neutrally buoyant 
spherical particles on the turbulence, and observed that in the near-wall region the particles 
enhance the transverse and spanwise Root-Mean-Square (RMS) velocity fluctuations, but reduce 
the maximum streamwise RMS velocity. In the center region, the particle effects are opposite to 
those in the near-wall region. In addition, the flow drag was found to be enhanced for the particle 
volume fraction of order 1% and 10% in all simulations. Loisel et al. [29] examined the effect of 
neutrally buoyant finite-size particles on the channel flow in the laminar-turbulent transition 
regime, and observed that particles increased the transverse RMS flow velocity fluctuations and 
broke down the flow coherent structures into smaller and sustained eddies, preventing the flow to 
relaminarize at the single-phase critical Reynolds number. Lashgari et al. [30] investigated 
numerically a channel flow laden with solid spherical particles for a wide range of Reynolds 
numbers, and identified three different regimes (laminar, turbulent, and inertial shear-thickening) 
for different values of solid volume fraction and flow Reynolds number. 

For most interface-resolved DNS of particle-laden channel flows in the literature, the 
particle-fluid density ratio was set according to the liquid-solid system, namely, of the order of 
unity, except a very recent work of Fornari et al. [31] who studied the effect of the particle density 
in turbulent channel flow laden with finite-size particles in semi-dilute conditions with the 
particle-fluid density ratio up to 1000. Their results indicated that the flow drag was enhanced 
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slightly as the density ratio was increased from unity to 10, and the effect was smaller than that of 
the particle volume fraction. The authors observed significant lateral migration of the particles 
towards the centerline of the channel at density ratios of the order of 10 due to the particle-inertia 
and shear flow effects. In addition, a preliminary work on the effects of the particle-fluid density 
ratio on the turbulent channel flow has been done in our recent work [32]. The aim of the present 
study is to report the significantly expanded results of the work [32]. Compared to [32], new 
results such as the particle RMS (root-mean-square) velocities, the particle concentration 
distribution and the inter-phase drag behavior are presented, and the effects of the density ratio on 
the flow drag are analyzed with the averaged momentum equation, which was derived by Picano 
et al. [22] using the phase indicator function for spatial averaging and is derived here with an 
alternative approach: the spatial averaging theorem. The main differences between the work of 
Fornari et al. [31] and our work are: 1) The flow rate was fixed in their study, whereas the pressure 
gradient is fixed in our study; 2) regarding the parameter settings, the ratio of the particle diameter 
to the channel width is 1/18, and the volume fraction is typically 5% in their study, whereas we 
consider two size ratios 0.1 and 0.05, and a relatively low volume fraction 0.84%;  3) we 
examine the effects of the density ratio on the flow drag more systematically with the averaged 
equation and new simulation data; and 4) some new results such as the inter-phase drag and the 
explanation of the particle migration are reported.   

Our study is focused on the effects of the particles on the flow drag. It is well known that the 
addition of the polymer or the fiber can bring about drag reduction in the turbulent pipe or channel 
flows [33,34]. But it remains an open question whether the addition of spherical particles has the 
similar drag reduction effect. Radin et al. [35] summarized the previous experimental works, and 
observed that the data on the two-phase flow were conflicting: some works showed a significant 
drag reduction but others showed no drag reduction. Radin et al. [35] provided some possible 
reasons for the inconsistency such as the incorrect definition of the friction factor for the 
suspension, the defects in the experimental set-up (e.g. downward slope of the pipe, insufficient 
entrance length), and the effects of the electrostatic force. Radin et al. [35] conjectured that the 
drag reduction in gas-solid suspensions was due to a delayed and extended laminar-to-turbulent 
transition region probably caused by inter-particle electrostatic forces which had the effect of 
inhibiting particle and fluid motion and hence stabilizing the viscous behavior and yielding a 
larger apparent viscosity. On the other hand, the charged particles adhering to the tube wall could 
increase the wall roughness and thereby the flow resistance. Radin et al. [35] concluded that the 
spherical particles in the liquid-solid suspension had no drag-reduction effect, whereas the 
experiments of Bari & Yunus [36] showed pronounced drag reduction due to the addition of the 
particles in the liquid. In numerical simulations, Zhao et al. [37] observed more than 10% drag 
reduction by the spherical particles in their simulations based on the point-particle model, and the 
reason was attributed to the attenuation in the fluid Reynolds stress.   
 The rest of paper is organized as follows: the numerical method is outlined in Section 2, and 
the method is validated in Section 3. In Section 4, the results on the fluid-phase statistics, the 
solid-phase statistics, and the discussion on the particle effects on the flow drag are presented. The 
concluding remarks are given in Section 5. 
 

2 Numerical method 
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2.1 Flow simulation 
 A schematic diagram of the channel flow is shown in Fig. 1. The no-slip velocity boundary 
condition is imposed on the channel walls (i.e. the boundaries normal to the y-axis) and the 
periodic boundary condition is imposed in both streamwise (x-axis) and spanwise (z-axis) 
directions. The corresponding velocity components in the (x,y,z) direction are u=(u,v,w), 
respectively. We denote the half width of the channel as H. 

 We take H as the characteristic length and the friction velocityuτ as the characteristic velocity 

for the non-dimensionalization scheme. The friction velocity is defined as /w fuτ τ ρ= , with 

wτ being the mean shear stress on the walls, and fρ  the fluid density. Thus, the Reynolds 

number is defined as /Re u Hτ τ ν= , where ν  is the fluid kinematic viscosity. The pressure 

gradient is kept constant in our simulations, implying e wdp
dx H

τ− =  from the force balance for the 

suspension flow at the statistically stationary state, and it follows that the dimensionless pressure 
gradient is one. We note that the pressure gradient is applied to both fluid and solid domains. 

 

Fig. 1 Geometry model of channel 
 

Fig. 1 Schematic diagram of the channel flow, with x, y and z representing the streamwise, 
transverse and spanwise coordinates, respectively. 

 
2.2 Direct-forcing fictitious domain method 
 A parallel direct-forcing fictitious domain method (DF/FD) is employed for the simulation of 
the particle-laden turbulent channel flow. The fictitious domain (FD) method for the particulate 
flows was originally proposed by Glowinski et al. [38]. The key idea of this method is that the 
interior of the particles is filled with the fluids and the inner fictitious fluids are constrained to 
satisfy the rigid body motion through a pseudo body force, which is introduced as a distributed 
Lagrange multiplier in the FD formulation (Glowinski et al. [38]). In the following, we describe 
the DF/FD method briefly, and the reader is referred to Yu & Shao [39] for further details.  

Flow direction

Non-slip wall

Y

Z

X
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For simplicity of description, we will consider only one spherical particle in the following 
exposition. The particle density, volume and moment of inertia, translational velocity, angular 
velocity and position are denoted by ρs, Vp, J, U, ωp and Xp, respectively. Let P(t) represent the 
solid domain and Ω the entire domain including interior and exterior of the solid body. By 

introducing the following scales for the non-dimensionalization: H for length, uτ  for velocity, 

/H uτ  for time, 2
f uτρ

 
for the pressure, and 2 /f u Hτρ for the pseudo body force per unit 

volume, the dimensionless FD formulation for the incompressible fluids and the spherical particles 
can be written as follows: 

2

1 inp
t Reτ

Ω∂ ∇+ ⋅∇ = − ∇ + +
∂
u uu u λ                  (1) 

 in ( )P t= + ×u U rsω                              (2) 

 0 in Ω∇⋅ =u                                  (3) 

 *
p

d( 1) ( ) d
dr P

V Fr
t g

ρ − − = −∫
U g xλ                           (4) 

 * d
( 1) d

d
p

r P
J

t
ρ − = − ×∫ r x

ω
λ                            (5) 

In the above equations, u represents the fluid velocity, p the fluid pressure after excluding the 
mean pressure gradient, the term ‘1’ the mean pressure gradient, λ  the pseudo-body force that is 
defined in the solid domain P(t), r the position vector with respect to the mass center of the 

particle, rρ  the particle-fluid density ratio defined by /r s fρ ρ ρ= , Fr the Froude number 

defined here by 2/Fr gH uτ= , Vp
* the dimensionless particle volume define by * 3/p pV V H= , 

and J* the dimensionless moment of inertia defined by * 5/ sJ J Hρ= .  

    A fractional-step time scheme is used to decouple the system (1)-(5) into the following two 
sub-problems. 
    Fluid sub-problem for u∗ and p: 

 ( ) ( )
* 2 * 2

11 1 11 3
2 2 2

n
n n np

t Re Reτ τ

−− ∇ ∇⎡ ⎤− = −∇ + − ⋅∇ − ⋅∇ + +⎣ ⎦Δ
u u u uu u u u λ  (6) 

 * 0∇ ⋅ =u  (7) 

A finite-difference-based projection method on a homogeneous half-staggered grid is used for 
the solution of the above fluid sub-problem. All spatial derivatives are discretized with the 
second-order central difference scheme. 

Particle sub-problem for 1 1 1, ,n n n
p

+ + +U ω λ and 1n+u : 
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 ( )
1 *

* *1 d
n n

n
r p r p P
V V Fr

t t g t
ρ ρ

+ ⎛ ⎞ ⎛ ⎞
= − − + −⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠ ⎝ ⎠

∫
U U g u xλ  (8) 

 ( )
* 1 * *

1
n n
p p n

r r P

J J
r d

t t t
ω ω

ρ ρ
+ ⎛ ⎞

= − + × −⎜ ⎟Δ Δ Δ⎝ ⎠
∫

u λ x  (9) 

Note that the above equations have been reformulated so that all the right-hand side terms are 

known quantities and consequently the particle velocities 1n+U  and 1n
p
+ω  are obtained without 

iteration. Then, 1n+λ  defined at the Lagrangian nodes are determined from 

 
1 1 *

1
n n

pn n

t

+ +
+ + × −

= +
Δ

U r uω
λ λ  (10) 

Finally, the fluid velocities 1n+u  at the Eulerian nodes are corrected from 

 ( )1 * 1n n nt+ += + Δ −u u λ λ  (11) 

In the above manipulations, the tri-linear function is used to transfer the fluid velocity from the 
Eulerian nodes to the Lagrangian nodes, and the pseudo body force from the Lagrangian nodes to 
the Eulerian nodes. 
 For our parallel algorithm, the domain decomposition is chosen as the parallel-computation 
strategy and MPI is used to transfer data among sub-domains. The reader is referred to Yu et al. 
[32] for the details on the parallel-computation algorithm.  
 
2.4 Collision model 

 A particle-particle collision model is required to prevent the mutual penetration of particles. 
We adopt the following simple soft-sphere collision model: 

0 (1 / )ij ij c ijF d d= −F n ,                          (12) 

where Fij, dij, and nij are the repulsive force acting on particle j from particle i, the gap distance 
and the unit normal vector pointing from the center of particle i to that of particle j, respectively. dc 
represents a cut-off distance and the repulsive force is activated when dij<dc. F0 is the magnitude 
of the force at contact. We set dc=h (h being the fluid mesh size), and F0=103. The motions of the 
particles due to the collision force (12) and due to the hydrodynamic force (8)-(9) are handled 
separately with a fractional step scheme. The time step for the collision model is set to be one 
tenth of the latter (i.e. tΔ /10) to circumvent the stiffness problem arising from the explicit 
integration scheme with a large value of F0, as suggested by Glowinski et al. [38]). The collision 
between a particle and a wall is treated similarly as two particles with the coefficient F0 in (12) 
doubled. This collision model (12) has been used widely in the interface-resolved numerical 
simulations of particle-laden flows [19, 38] due to its simplicity. We note that more sophisticated 
collision models have been proposed by Kempe & Fröhlich [40] and de Motta et al. [41]. The 
particle volume fraction in the present study is low (0.84%), and the collision model is expected 
not to affect the results qualitatively, as shown in our recent work on the particle-laden duct flow 
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at the particle volume fraction of 2.36% [42]. In one sense, one may think that there exist 
physically short-range repulsive forces between the particles (and between the particles and the 
wall) in our fluid-solid system. 
 
2.5 Parameter settings 

Throughout this study the friction Reynolds number Reτ  is set to 180. The average particle 

volume fraction is 0φ =0.84%, unless otherwise specified. Two particle sizes are considered: 

a/H=0.05 and 0.1, here a being the particle radius. Three particle-fluid density ratios are chosen: 

rρ =1.0, 10.42 and 104.2, in order to examine the density ratio effects. The variation of the particle 

density could change both the particle inertia and the particle settling effect. But for simplicity, we 
decouple the two effects and do not consider the settling effect (or gravity effect), so that the 
density ratio is assumed to only reflect the particle inertia. The Froude number (Fr) is zero, since 
gravity effect is not considered. The particles are randomly distributed into the fully-developed 
single-phase flow at the initial time with initial velocities equal to the local fluid velocities at the 
center of the particles. 

In the present study, the computational domain is [0, 8H] × [-H, H] × [0,4H], and the grid 
resolution is 512×128×256, corresponding to the mesh size h=H/64. The time step is 

0.0002 /H uτ  for 10.42rρ ≤  and 0.0001 /H uτ  for 104.2rρ = . A smaller time step for 

larger density ratio is required due to numerical stability. The parameter settings are presented in 
Table 1. 

The flow statistics are obtained from the averaging of the data in the real fluid domain outside 
the particle boundaries over typically fifty non-dimensional time units after the statistically 
stationary stage is reached. The particle-phase statistics are obtained from the data at the fictitious 
fluid points inside the particle boundaries. 

 
Table 1 Parameter settings for the simulations of particle-laden turbulent channel flows 

Case a/H rρ  Reτ Np 0φ  
Domain 

size 
Grid number Δt 

Particle-free   180   8H×2H×4H 512×128×256 0.0002
Particle-laden A 0.05 1.0 180 1024 0.84% 8H×2H×4H 512×128×256 0.0002
Particle-laden B 0.05 10.42 180 1024 0.84% 8H×2H×4H 512×128×256 0.0002
Particle-laden C 0.05 104.2 180 1024 0.84% 8H×2H×4H 512×128×256 0.0001
Particle-laden D 0.1 1.0 180 128 0.84% 8H×2H×4H 512×128×256 0.0002
Particle-laden E 0.1 10.42 180 128 0.84% 8H×2H×4H 512×128×256 0.0002
Particle-laden F 0.1 104.2 180 128 0.84% 8H×2H×4H 512×128×256 0.0001
Particle-laden G 0.05 10.42 180 5 0.0041% 8H×2H×4H 512×128×256 0.0002
Particle-laden H 0.05 10.42 180 100 0.082% 8H×2H×4H 512×128×256 0.0002
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3 Validation 
 The accuracy of our code for the single-phase turbulent channel flow was validated in the 
previous studies [23, 32] by comparing the results to the highly accurate pseudo-spectral 
simulations. For the turbulent particle-laden channel flows, no benchmark data are available to 
validate the accuracy. In a recent study [23], we have compared our results to lattice-Boltzmann 
simulations using interpolated bounce back at the fluid-solid interfaces, for neutrally buoyant 
particles. The comparisons show that the two completely different numerical approaches (one 
conventional and the second mesoscopic) yield quantitatively similar results in general.  

For our simulation case of / 0.05a H = , there are only 3.2 meshes per particle radius, and 
one may question whether such mesh resolution is high enough to ensure acceptable accuracy. 
With the parallel code, a mesh-convergence test has been conducted for / 0.05a H =  and 

104.2rρ = [32], in which case the RMS (root-mean-square) velocities deviate significantly from 

those for the particle-free case. It was shown that the results on the RMS velocities for two meshes 
h=a/3.2 and h=a/6.4 agreed well with each other, with the maximum relative error at the peaks of 
the streamwise RMS velocities being around 3% [32]. 

 

4 Results and discussion 
4.1 Fluid-phase statistics 

 
Fig. 2 Mean fluid velocity profiles for a/H=0.1 at different density ratios. 

 

 The results on the fluid-phase mean and RMS velocities for a/H=0.05 and 0φ =0.84% were 

reported in our previous work [32], and consequently are not presented here. Fig. 2 shows the 
mean fluid velocity profiles for a/H=0.1. One can observe that the flow rate does not change 
monotonically as the density ratio increases from unity to 104.2. For both cases of a/H=0.05 and 

a/H=0.1, the flow rates are lowest at 10.42rρ = , and show the trend of returning back towards 

that of the single-phase flow for 104.2rρ = . The drag coefficient can be defined as the ratio of 



9 
 

the flow rate of the fluid-solid mixture to the pressure gradient. It will be shown that the 
solid-phase contribution to the mixture flow rate is almost independent of the density ratio (Table 
2), and therefore the two-phase flow rate and the fluid-phase flow rate change with the density 
ratio in qualitatively the same way. Since the pressure gradient is fixed, our results indicate that 
the flow drag is largest for the density ratio of the order of 10. Our results are consistent with those 
of Fornari et al. [31] who observed that the flow drag was enhanced slightly as the density ratio 
was increased from unity to 10. Significant drag-reduction by the addition of the spherical particle 
was observed in the point-particle simulations [37], but not in our interfaced-resolved direct 
simulations. Whether the point particles can cause drag reduction is still in debate, as pointed out 
by one anonymous referee of the present paper. For the classic point-particle model in which the 
particle resultant force is acted back on the fluids via spreading of the force on the closest Eulerian 
grid points, the method is sensitive to the grid resolution and lack of numerical convergence to 
grid refinements [43]. A number of different approaches have been developed for two/four-way 
coupling simulations that are shown to be grid independent and accurate at a moderate 
computational cost [44-46]. Further studies based on the simulations with these more accurate 
methods or the interface-resolved direct simulations for small particles are required to confirm 
whether the significant drag reduction can be produced by the spherical particles, since the 
experimental results in literature were inconsistent, as mentioned in the Introduction. 

The mean velocity profiles in Fig. 2 are obtained for the statistically stationary stage. Fig. 3 
shows the evolutions of the fluid-phase flow rate for different density ratios. For all cases, the 
initial flow field is the fully-developed single-phase turbulence, and the particles are initially 
distributed uniformly in the channel with the velocity being equal to the local fluid velocity at the 

particle center. As shown in Fig. 3, for 1rρ =  and 10.42, the flow rates decrease with time till the 

stationary stages are reached, whereas for 104.2rρ =  the flow rate increases rapidly after the 

particles are added, and then decreases slowly to a statistically stationary value. Thus, we observe 
a significant drag-reduction at the transient state for considerably large particle inertia, which may 
indicate that the drag-reduction in some previous experiments might be caused by the unsteady 
effect such as the delay in the turbulence transition due to the particles.  

 

Fig. 3 Evolutions of the fluid-phase flow rate (average velocity) for different density ratios. 
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The root-mean-square (RMS) values of the fluid velocity fluctuations in all three directions 

for a/H=0.1 and the fluid Reynolds shear stresses for both a/H=0.05 and a/H=0.1 are plotted in 

Fig. 4. For 1.0rρ =  and 10.42, the particle addition enhances the transverse and spanwise RMS 

velocities near wall and attenuates the peak streamwise RMS velocity, as observed in the previous 
simulations for the neutrally buoyant case [19,22-23]. When the density ratio reaches the order of 
100, all RMS velocity components and the Reynolds shear stress are attenuated roughly at any 
transverse position, particularly for a/H=0.05, as a result of significant suppression of the 
large-scale vortices by the particles with large inertia (i.e., large density ratio) [32]. 
 

  

  
 
Fig. 4 Fluid RMS velocity components : (a) streamwise, (b) transverse, (c) spanwise; and (d) the 

fluid Reynolds shear stress. 
 

4.2 Solid-phase statistics 
The solid-phase mean velocity profiles for both a/H=0.05 and a/H=0.1 are plotted in Fig. 5, 

and the fluid mean velocities are also plotted for comparison. The solid-phase statistics are 

computed with the data on the grids covered by the particles. For 1.0rρ = , the fluid and solid 

mean velocities are close to each other except at the near-wall region where the solid velocities are 

larger; the slip at the wall region was observed previously [22-23]. For 10.42rρ ≥ , there exists a 

critical distance from the wall, below which the solid mean velocity is larger, and above which the 
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fluid mean velocity is larger. This means that the particle inertia makes the particles lag the 

high-speed fluid and lead the low-speed fluid on average. For 104.2rρ = , the particle inertia is so 

large that the particles are not sensitive to the local fluid velocity and their velocities are roughly 
constant across the channel. Generally, the slip velocity increases with increasing density ratio and 
particle size. 
 

 

                  

(a)                                  (b) 
Fig. 5 Fluid and solid-phase mean velocity profiles at different density ratios for (a) a/H=0.05 and 

(b) a/H=0.1 
 

The solid-phase RMS velocities and kinematic Reynolds shear stresses (here meaning

' '
p pu v− without the density) for all cases are plotted in Fig. 6. For the same particle volume 

fraction, the effects of the smaller particles are more significant because the number of the 
particles (and total particle-fluid interface area) is much higher. The intensity of solid-phase 
velocity fluctuations generally decreases with increasing particle density, except that the 

streamwise RMS velocity and ' '
p pu v−  in the near-wall region are largest at the particle density 

ratio of the order of 10. The solid-phase RMS velocities are larger than those of the fluid in the 
near-wall region due to the collision between the particles and the wall. Our results on the 

streamwise particle RMS velocity are consistent with those of Fornari et al. [31] for 104.2rρ = , 

a/H=1/18 and φ =5%, but the results on the transverse (wall-normal) RMS velocity are 

inconsistent: our results show that the transverse RMS velocity for 10.42rρ =  is smaller than that 

for 1rρ =  over the entire domain, whereas their results showed that at around y=0.15H (i.e., 

y+=27) , the transverse RMS velocity for 10.42rρ =  is larger than that for 1rρ = . A possible 

reason for the discrepancy is that the particle collision interactions are strongest at the density ratio 
of order 10, and stronger particle collision interactions at a higher particle volume fraction 
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increase the transverse RMS velocity for 10.42rρ =  more significantly in the simulations of 

Fornari et al. [31].  
 

 

 
 

Fig. 6 Solid-phase RMS velocity fluctuations: (a) streamwise, (b) transverse and (c) spanwise; and 
(d) the solid-phase kinematic Reynolds shear stress. The single-phase flow statistics are shown for 

comparison. 
 

 
(a) (b) 

Fig. 7 Distribution of the local particle volume fraction for (a) a/H=0.05 and (b) a/H=0.1 
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Fig. 8 Distribution of the local particle volume fraction normalized by the average particle volume 

fraction for a/H=0.05 and 10.42rρ = . 

 
     Fornari et al. [31] observed the particle migration towards the channel centerline at the 
density ratio of the order of 10, and proposed a reasonable explanation: the particle collision leads 
to the lateral motion of the particles and then a net particle diffusion towards the centerline due to 

wall confinement. There is no migration for 1rρ =  because the particles response to the fluid 

motion rapidly after the collision, and no migration for 104.2rρ =  because the particle inertia is 

so strong that the particles hardly respond to the fluid action and the velocity difference for the 
particles in neighboring layers is small (Fig. 5), which reduces the possibility of the particle 
collision. Our results on the distribution of the local particle volume fraction are presented in Fig. 

7, and significant migration can be observed for a/H=0.05 and 10.42rρ = . For the same particle 

volume fraction, the particle number for a/H=0.05 is 8 times that for a/H=0.1, consequently the 
collision frequency is much lower for a/H=0.1, which may explain why the particle migration is 
less pronounced for a/H=0.1, compared to a/H=0.05. 
    Although the particle collision can account for the particle migration towards the channel 
centerline at the density ratio of order 10, it is not clear whether the particle-turbulence 
interactions would play a role. For the wall-bounded turbulent flows, a sharp rise in the particle 
volume fraction near the wall was commonly observed (e.g., Reeks [47]; Uhlmann [15]; Marchioli 
and Soldati [48]; Sardina et al. [49]). The main mechanism for this particle preferential 
accumulation was recognized as turbophoresis, an average migration of particles in the direction 
opposite to gradients in the turbulence intensity. For an individual particle, this means that it is less 
probable to receive the necessary momentum driving it from a region of low turbulence intensity 
toward a high-intensity region than vice versa (Uhlmann [15]). From Fig. 7, the turbophoresis seems 
absent for the neutrally buoyant case. To examine whether the turbophoresis (or turbulence-induced 

particle migration) occurs for 10.42rρ = and a/H=0.05, two cases of lower particle concentrations 

( 0φ =0.0041% and 0.082%, corresponding to the particle number Np=5 and 100) are simulated for 
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a long time (more than 500 time units). The concentration distributions are shown in Fig. 8. The 
collisions between the particles seldom take place for Np=5, however, similar migration can still be 
observed in Fig. 8, indicating that the turbulence plays an important role in the particle migration. 

The concentration distribution is more inhomogeneous for Np=1024 (i.e., 0φ =0.84%), implying 

that the particle collision promotes the particle migration. Thus, we can conclude that both particle 
collision and particle-turbulence interactions are responsible for the particle migration towards the 

channel center in a statistical sense for a/H=0.05 and 10.42rρ = .  

 
4.3 Discussion on the flow drag 
   In this subsection, we will explore the mechanisms for the particle effects on the flow drag. 

The friction coefficient for the channel flow can be defined by 

2

2

4
4

e

f b b

dp H
udxf

u u
τ

ρ

⎛ ⎞−⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⎜ ⎟
⎝ ⎠

                        (13) 

where
 

bu represents the bulk velocity of the two-phase flow. In Eq. (13), the following 

relationship is used: 

 −
dpe

dx

⎛

⎝
⎜

⎞

⎠
⎟=

τ w

H
=

ρ f uτ
2

H
.                         (14) 

The following energy balance equation holds for both single-phase and particle-laden flows: 

−
dpe

dx

⎛

⎝
⎜

⎞

⎠
⎟ua = ρ f ε                               (15) 

where ε is the mean viscous dissipation rate, defined by i i

j j

u u
x x

ε ν ∂ ∂=
∂ ∂

. Eq. (15) means that the 

energy input rate is equal to the energy dissipation rate. From Eq. (15), for the simulations with the 
constant flow rate, the increase in the viscous dissipation rate implies the increase in the flow 
resistance, whereas for the simulations with the constant pressure gradient, the increase in the 
viscous dissipation rate implies the decrease in the flow resistance. Thus, when examining about 
the relationship between the viscous dissipation rate and the flow resistance, we mean the 
dissipation rate normalized by the average velocity, which is proportional to the friction coefficient. 
From the physical point of view, the presence of particles causes additional viscous dissipation in 
the near-surface region (Lucci et al., [7]), which has dual effects on the flow drag. On the one hand, 
more viscous dissipation means higher viscosity of the suspension mixture and thereby larger flow 
drag. On the other hand, more viscous dissipation leads to suppression of the large-scale 
quasi-streamwise vortices which are primarily responsible for the drag enhancement of turbulence 
with respect to the laminar flow, and thereby a lower flow resistance. The competition of these two 
effects may give rise to the results observed earlier: the flow drag first increases and then 
decreases with increasing density ratio. 
   The above argument based on the viscous dissipation rate provides one perspective for 
understanding the particle effects on the flow drag. In the following, we attempt to provide 
alternative explanations from the averaged momentum equation. In the Appendix, we derive three 
equations for the fluid mean velocity, based on the spatial averaging theorem.  

The first is related to the solid-phase Reynolds and inner stresses (Eq. A13): 
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         (16) 

where u and v  are the local velocity components in the x and y directions, respectively, with the 

subscript ‘f’ meaning the fluid-phase and ‘p’ or ‘s’ meaning the solid-phase, pσ  is the solid inner 

stress, fϕ  and sϕ  are the fluid and solid volume fractions at a given y position, and the 

brackets represent the phase averaging, i.e., 
1

i
i iV

i

A A dV
V

= ∫  in which the subscript ‘i’ 

represents the fluid phase or the solid phase. The five terms in Eq. (16) represent the fluid viscous 

stress fVτ , the particle inner stress pIτ , the fluid Reynolds stress fRτ , the particle Reynolds 

stress pRτ , and the total stress Tτ , respectively. Note that here the particle Reynolds stress means 

the solid-phase Reynolds stress, namely, the velocities on the Eulerian grids inside the particle 

boundaries rather than the particle translational velocities are used for the computation of the 

particle Reynolds stress.  

Eq. (16) was derived by Picano et al. [18] who used the phase indicator function for spatial 

averaging, and in the appendix we derive it by using a different averaging technique, i.e., the 

spatial averaging theorem. Eq. (16) indicates that the total shear stress of the two-phase system for 

the channel flow decreases linearly from the wall to the centerline, as in the case of single-phase 

flow. Since the pressure gradient is kept constant in our simulations, the mean wall stress wτ is the 

same for all cases (Eq. 14). Then, the reduction in the particle inner stress, the fluid Reynolds 

shear stress or the solid Reynolds shear stress can lead to the increase in the fluid shear rate and 

thereby the increase in the fluid velocity, and thus the reduction in the flow drag. In the following, 

we will examine the behavior of the individual stresses and their contributions to the flow drag at 

different density ratios.  

Fig. 9 shows the profiles of the fluid viscous stress, the fluid Reynolds stress, the particle 

Reynolds stress, and the particle inner stress for 1rρ = , 10.42 and 104.2. The stresses are 

normalized by 2
f uτρ . The particle inner stress is determined from Eq. (16). As the density ratio 

increases, the particle inner stress does not change significantly, while the particle Reynolds stress 

increases substantially. The particle inner stress has a peak near the wall, and decreases to zero as 

the position approaches the wall due to the depletion of the particle volume fraction in the 

near-wall region. Note that the local volume fraction is included in the definition of the stresses in 

Eq. (16). Since the particle volume fraction is low, the particle Reynolds stresses are much smaller 

than the fluid Reynolds stresses for 1rρ = , 10.42. However, for 104.2rρ =  and a/H=0.05,  the 
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two Reynolds stresses are comparable, because the fluid Reynolds stress is decreased, while the 

particle Reynolds stress is increased, as the density ratio increases.  

 

 

(a)                                 (b)  

 

(c)                                 (d)  

 

 

(e)                                 (f)  

Fig. 9 Profiles of the fluid viscous stress fVτ , the fluid Reynolds stress fRτ , the particle 

Reynolds stress pRτ , and the particle inner stress pIτ defined in Eqs. (16) and (21) for (a,b) 

1rρ = , (c,d) 10.42rρ =  and (e,f) 104.2rρ = .  

 

From Eq. (13), the friction coefficient for the channel flow is related to the ratio of the 



17 
 

average velocity and the friction velocity. The friction velocity is determined from the wall shear 

force, which can be further determined from the pressure gradient. There are two ways to examine 

the effect of the particles on the flow drag: one is to keep the flow rate the same and compare the 

wall shear force, and the other is to keep the pressure gradient (i.e., wall shear force) the same and 

compare the flow rate. Fornari et al. [31] used the former, and we here used the latter. For the latter, 

one can derive the contributions of the individual stresses to the friction coefficient, as shown 

below. 

Eq. (16) can be re-written as follows: 

1 ( )f
T fR pI pR

f

d u
dy

τ τ τ τ
ϕ μ

= − − −                          (17) 

The average velocity at a y position is obtained by integrating Eq. (17), 

0

1 ( )
y

f T fR pI pR
f

u dτ τ τ τ ξ
ϕ μ

= − − −∫              (18) 

The bulk (or average) velocity of the fluid-solid mixture can be calculated from: 
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         (19) 

The friction coefficient is related to the dimensionless stresses:  

0 0 0

2 1 1 1( )
Re y Reb

f T fR pI pR s s
f

u d dy u dy
u Re Ref

τ τ

τ τ τ

ϕ τ τ τ τ ξ ϕ
ϕ

+
++ + + + + + +⎡ ⎤= = − − − + ⎣ ⎦∫ ∫ ∫ ,     

    (20) 

where the stresses are normalized by 2
f uτρ . Specifically, the normalized stresses have the 

following forms 

f
fV f

d u
dy

τ ϕ
+

+
+= ; ' '

fR f f fu vτ ϕ
++ = − ; ' '

pR s r p pu vτ ϕ ρ
++ = −  and (1 )T

y
Reτ

τ
+

+ = −    (21) 

   We define the terms of the total stress, the fluid Reynolds stress, the particle inner stress, the 

particle Reynolds stress and the particle average velocity in Eq. (20) as CT, CfR, CpI, CpR and Cpu 

respectively, and their values and the dimensionless bulk velocity (i.e.
 

2 / f ) are presented in 

Table 2. For the particle-free case, the total stress term is / 3Reτ  and is thus 60 for 180Reτ = . 

For the particle-laden case, its value becomes slightly smaller due to the effect of the fluid volume 

fraction. The fluid Reynolds stress term decreases, while both particle Reynolds and inner stress 

terms increase, as the density ratio increases for the same particle size. The fluid and particle 

Reynolds stress terms change significantly, as the density ratio changes from unity to 104.2, but 

interestingly, their sum (i.e., the total Reynolds stress of the fluid-solid mixture) does not change 
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much, and actually decreases slightly with increasing density ratio. The particle velocity 

contribution is almost independent of the density ratio. Further, since the total Reynolds stress and 

particle inner stress terms are not sensitive to the density ratio, the flow drag is not sensitive to the 

density ratio. The results in Table 2 indicate that the increase in the flow drag (i.e., decrease in the 

flow rate) from 1rρ = to 10.42rρ =  is mainly due to a larger amount of the increase in the particle 

total stress (sum of the particle Reynolds stress and inner stress) than the decrease in the fluid 

Reynolds stress. A smaller amount of the increase in the total particle stress than the decrease in 

the fluid Reynolds stress explains the decrease in the flow drag from 10.42rρ =  to 104.2rρ = . 

In other words, the flow drag reaches maximum at the density ratio of order 10 because the sum of 

the fluid Reynolds stress, the particle Reynolds stress and the particle inner stress terms reaches 

maximum. We note that the contribution of the particle inner stress is important for the 

non-monotonic change of the drag coefficient. 

 
Table 2 Contributions of the individual stresses in Eq. (20) to the flow drag. The relative 

differences between the bulk velocities for the particle-laden and particle-free cases are provided 
in the column of the bulk velocity.  

 
bu+

 (
2
f )  CT CfR CpR CpI Cpu CfR+ CpR 

Particle-free 15.96 60.0 44.04     

a/H=0.05, 1.0rρ =  15.53 (-2.69%) 59.93 43.97 0.32 0.27 0.14 44.29 

a/H=0.05, 10.42rρ =  15.25 (-4.45%) 59.83 40.89 2.76 1.08 0.14 43.65 

a/H=0.05, 104.2rρ =  15.77 (-1.19%) 59.87 28.09 13.82 2.33 0.13 41.91 

a/H=0.1, 1.0rρ =  15.79 (-1.07%) 59.91 43.28 0.23 0.77 0.14 43.51 

a/H=0.1, 10.42rρ =  15.65 (-1.94%) 59.80 41.54 1.69 1.06 0.14 43.23 

a/H=0.1, 104.2rρ =  15.91 (-0.31%) 59.82 38.40 4.16 1.48 0.14 42.56 

 
  The second equation for the fluid mean velocity is related to the inter-phase hydrodynamic force 
(Eq. A6) 

d
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d u f

dy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ϕ f −

dpe

dx

⎛

⎝
⎜

⎞

⎠
⎟+ d

dy
ϕ f ρ f −u f

' v f
'( ) −

Fx

V
= 0 ,        (22) 

where Fx is the inter-phase average drag force on the particles. From Eq. (A7), the inter-phase 

hydrodynamic force is related to the particle total stress:  
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                     (23) 

Since the pressure gradient is constant in our simulations, the gradient of the particle total stress 

reflects the inter-phase drag force. As discussed earlier, the drag-reduction effect due to the 

decrease in the Reynolds shear stress is counteracted by the drag-enhancement effect due to the 

increase in the particle total stress, as the density ratio increases. Eqs. (22) and (23) imply that  

the drag-enhancement effect can also be attributed to the increase in the inter-phase drag force. 

The drag formula modeling the inter-phase drag force is most important for the engineering 

multiphase flow models such as the point-particle model and the two-fluid model. In the following, 

we attempt to calculate the inter-phase drag force from Eq. (22) (referred to as the balance theory 

since it is a force balance equation for the fluid at the statistically stationary state), and examine 

whether the empirical drag formula can qualitatively predict the inter-phase drag for the turbulent 

particle-laden channel flow. The slip velocity is required in the drag formula. For the point-particle 

model, the slip velocity between the individual particle and the fluid is employed, and for the 

two-fluid model, the slip velocity between the phase-averaged velocities is adopted. For the freely 

moving finite-size particle, the slip velocity between the individual particle and the fluid cannot be 

defined unambiguously, consequently, we here take the difference between the phase-averaged 

velocities as the slip velocity.  

Eq. (22) normalized by the friction velocity uτ and half channel width H becomes  
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                 (24) 

Since our particle volume fraction is low, we construct the drag formula without considering 

the hydrodynamic interactions between the particles. The force on one particle is 

Fp =
Cd

2
πa2ρ f u f − up u f − up( )               (25) 

In Eq. (25), dC represents the standard drag coefficient and is calculated with 

Cd = 24
Rep

1+ 0.15Rep
0.687( )                           (26) 

where pRe  is the particle Reynolds number defined and computed by  

2 2f p
p f p

a u u aRe Re u u
Hτν

+ +−
= = −                  (27) 

Then, the dimensionless inter-phase force can be calculated from  
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in which sφ  is the local solid volume fraction at a given y position, as shown in Fig. 7. 

 
(a)                                (b) 

Fig. 10 The inter-phase forces obtained from the balance theory (Eq. 24) and the drag 

formula (Eq. 28) for (a) a/H=0.05 and (b) a/H=0.1. The red dash-dot lines represent zero force for 

reference. 

 

     The inter-phase drag forces obtained from the balance theory (Eq. 24) for 1rρ = , 10.42 and 

104.2 are plotted in Fig. 10. The drag forces from the drag formula (Eq. 28) for 1rρ =  and 104.2 

are also plotted for comparison, and the case of 10.42rρ =  is not shown for the clarity of the 

figure. For 104.2rρ = , the balance theory and the drag formula predict the same behavior of the 

drag force: the drag on the particles is positive in the center region where the fluid average 

velocity is larger than the particle average velocity, and negative in the near-wall region where the 

particle average velocity is larger. Nevertheless, the drag formula underestimates the inter-phase 

force, which is understandable due to the following factors. First, the particle Reynolds number is 

not low so that the drag force is not linearly proportional to the slip velocity. Therefore, the total 

drag obtained from the sum of the drags on the individual particles with different slip velocities is 

larger than that obtained with the average slip velocity. Second, the hydrodynamic interactions 

between the particles may increase the drag. Third, the particle finite-size effect, the wall effect 

and the shear effect may affect the drag.  

For 1rρ = , it is not surprising that the drag forces predicted from both methods are negative 

near the wall and almost vanish in the center region, since the particle average velocity is larger 

than the fluid average velocity near the wall and roughly equal to the fluid average velocity in the 

bulk region (see Fig. 5). However, it is interesting that the balance theory predicts a positive drag 
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force on the particles in the region between the near-wall negative-force region and the center 

zero-force region, which cannot be predicted by the drag formula based on the inter-phase average 

slip velocity. From Eq. (23), the positive drag force is caused by the negative gradient of the 

particle total stress. Further, Fig. 9(b) shows that the particle inner stress is much larger than the 

particle Reynolds stress at 20 40y+ = − , and the decay of the particle inner stress with increasing 

y in this region is obviously responsible for the positive drag force on the particles.  

The third equation for the fluid mean velocity is related to the pseudo body force (or 

Lagrange multiplier) λ  introduced in the fictitious domain method for the rigid-body motion 

constraint on the fictitious fluids inside the particles (Eq. A16).  

   ' '

0
( ) (1 )

y

f w
du yd u v
dy H

μ λ ξ ρ τ+ + − = −∫                     (29) 

where the overline represents the spatial averaging over a domain comprising both fluid and solid 

phases, i.e., 
1

V
A AdV

V
= ∫ . The role of the pseudo body force is similar to the inter-phase force. 

Eq. (A17) gives the relationship between them, which provides a simpler approach to compute the 

inter-phase force by using the pseudo body force than integrating the stress on the particle surface.  

 

5 Conclusions 
We have investigated the effects of finite-size particles with different density ratios on the 

turbulent channel flow by using a parallel direct-forcing fictitious domain method. The main 
findings are: 
1. The variation of the flow drag with increasing particle-fluid density ratio is non-monotonic 

and the flow drag is largest at the density ratio of the order of 10, as compared to the cases of 
the order of unity and 100. The drag-reduction by the particles is observed during the transient 
stage for large particle density ratios, but not at the statistically stationary stage. It is not 
possible to judge whether the spherical particles can cause drag-reduction for the fully 
developed turbulent flows without quantitative computations, since the presence of particles 
causes additional viscous dissipation which has dual effects on the friction drag of the 
turbulent flow: on the one hand, more viscous dissipation brings about directly larger flow 
drag, as for the laminar flow case, while on the other hand, more viscous dissipation leads to 
suppression of the large-scale quasi-streamwise vortices and thereby a lower flow resistance. 
Accurate simulations of the particle-fluid (turbulence) interactions with the improved discrete 
particle methods [44-46] or the interface-resolved direct simulations for small particles are 
required to confirm whether the significant drag reduction can be produced by the spherical 
particles.  

2. The particle fluctuation velocity generally decreases with increasing particle inertia, except 

that the particle streamwise fluctuation velocity and ' '
p pu v−  in the near-wall region are 

largest when the particle density ratio is of the order of 10.  
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3. Both particle collision and particle-turbulence interactions are responsible for the particle 

migration towards the channel center in a statistical sense for a/H=0.05 and 10.42rρ = . 

4. The equations for the fluid mean velocity in terms of the solid stress and the inter-phase force 
are derived respectively from the spatial averaging theorem. 

5. The fluid Reynolds stress term decreases, while both particle Reynolds and inner stress terms 
increase, as the density ratio increases for the same particle size. The sum of the fluid 
Reynolds stress, the particle Reynolds stress and the particle inner stress terms does not 
change significantly with increasing density ratio, rendering the flow drag insensitive to the 
variation of the density ratio. The drag-reduction effect due to the decrease in the Reynolds 
shear stress is counteracted by the drag-enhancement effect due to the increase in the particle 
total stress or the inter-phase drag force particularly for the case of large particle inertia. The 
contribution of the particle inner stress on the drag force is not sensitive to the density ratio, 
but is important for the non-monotonic change of the drag coefficient. 

6. The inter-phase drag force obtained from the averaged momentum equation (the balance 
theory) agrees qualitatively with that from the empirical drag formula based on the 
phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the 
balance theory predicts a positive inter-phase force on the particles arising from the negative 
gradient of the particle inner stress, which cannot be predicted by the drag formula based on 
the phase-averaged slip velocity. The drag formula based on the conditionally averaged slip 
velocity is a relevant subject for future study.  
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Appendix  
In this appendix, we will derive the equations for the fluid mean velocity (or the flow drag) of 

the particle-laden turbulent channel flow under constant pressure gradient by using the spatial 
averaging theorem [50,51].  
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Fig. A1 Definitions of the volumes and interfaces for the spatial averaging  

Suppose the volume V for averaging comprises the volume occupied by the fluid V f and that 

by the particles V p, and its surface comprises the fluid part f
eS  and the solid part p

eS , as shown 

in Fig. A1. The particle-fluid interface inside V is denoted by SI . Note that the surface of V f  is 
f

e IS S+ , whose outward unit normal is denoted by nf, and the surface of V p  is p
e IS S+ , whose 

outward unit normal is denoted by n. The spatial averaging of the fluid quantity fA is defined by 

1
f fV

A A dV
V

= ∫ and its intrinsic phase average is defined by 
1

f
f fV

f

A A dV
V

= ∫ . Clearly, 

f f fA Aϕ= , fϕ  being the local fluid volume fraction. 

The spatial averaging theorem states that [50] 
1

f
e

f f fS
A A ds

V
∇ ⋅ = ⋅∫ n                             (A1) 

which implies that the spatial derivative of an averaged quantity is related to the variation of this 

quantity on the surface of the volume. 
From the spatial averaging theorem and the Guass Theorem, one can obtain [50,51] 

1
I

f f fS
A A A ds

V
∇ ⋅ = ∇ ⋅ − ⋅∫ n                             (A2) 

In addition,  

1
I

f
f fS

A
A A ds

t t V
∂ ∂= + ⋅
∂ ∂ ∫ w n                             (A3) 

where w is the velocity of the interface which is equal to the fluid velocity at interface in the 

absence of the phase-change. 
The fluid momentum equation can be written as follows 
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where , ,f f fuρ σ and ( )edp
dx

−  represent the fluid density, velocity, stress and extra pressure 

gradient in the x-axis direction, respectively. Applying the spatial averaging theorem to (A4) 

yields 
( ) 1( ) ( ) ( )

I

f f f e
f f f f f f f x fS

dp ds
t dx V

ϕ ρ
ϕ ρ ϕ σ ϕ σ

∂
+ ∇ ⋅ = ∇ ⋅ + − − ⋅

∂ ∫
u

u u e n  (A5) 

For the channel flow at the statistically stationary state, Eq. (A5) for the x-axis direction is 
' '( ) ( ) ( ) 0e x

f f f f f f fxy

dp Fd d u v
dy dx dy V

ϕ σ ϕ ϕ ρ+ − + − − =         (A6) 

where uf and vf are the velocity components in the x and y directions, respectively, and 

[ ]
I

x f xS
F dsσ= ⋅∫ n ,being the total inter-phase drag force on the particles in the band volume V 

(i.e. the volume between y+Δy for the case of channel flow). Note that the pressure term 

( )f f
d p
dx

ϕ  (i.e. ( )f f xx

d
dx

ϕ σ in (A5) vanishes because fp  is periodic in the x-axis 

direction, and this term would exist and give identically the extra pressure gradient term in (A6) if 

the extra pressure gradient is not introduced in the momentum equation (A1) as the body force. 

Since the solid momentum equation has the same form as the fluid one (A4), one can obtain 

the following solid counterpart of (A6) 
' '( ) ( ) ( ) 0e x

s p s s s p pxy

dp Fd d u v
dy dx dy V

ϕ σ ϕ ϕ ρ+ − + − + =              (A7) 

where the subscripts ‘s’ and ‘p’ denote the solid phase. 

Adding (A6) to (A7) leads to 

 ( ) ( ) ( ) 0' ' ' 'e
f f s p f f f f s s p pxy xy

dpd d u v u v
dy dx dy

ϕ σ ϕ σ ϕ ρ ϕ ρ+ + − + − + − =   (A8) 

Eq. (A8) is essentially the momentum equation for the fluid-solid mixture (i.e., suspension). 

( )f f s pxy xy
ϕ σ ϕ σ+  is the shear stress of the suspension, and its value at the wall is the 

total wall stress wτ . Integrating (A8) from the wall (y=0) to y and recalling that ( )e wdp
dx H

τ− = , 

one obtains 

   ( ) ( ) (1 )' ' ' '
f f s p f f f f s s p p wxy xy

yu v u v
H

ϕ σ ϕ σ ϕ ρ ϕ ρ τ+ + − + − = −        (A9) 

The average fluid shear stress is related to the average fluid strain rate, which is  
1[ ( ) ( ) [ ( )] [ ( ) ]

I

T T
f f f f f f f fS

ds
V

ϕ ϕ∇ + ∇ = ∇ + ∇ − +∫u u u u nu u n           (A10) 

From the spatial averaging theorem, 
1

I
f S

ds
V

ϕ∇ ≈ ∫ n  , thus 

1( ) ) ( )
I

f f f f f fS
ds

V
ϕ ϕ∇ + ∇ ≈ +∫u u n u u n , and then (A10) reads 

' '1[ ( ) ( ) [ ( ) ]
I

T T
f f f f f f f fS

ds
V

ϕ ϕ∇ + ∇ = ∇ + ∇ − +∫u u u u nu u n      (A11)  
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The last term in (A11) is probably not important, considering that ( ) 0f fP
ds

∂
+ =∫ nu u n  for 

the case of rigid particle, here ∂P being the surface of any rigid particle. Therefore, this term is 

neglected here, and then  

f
f f fxy

d u
dy

ϕ σ ϕ μ≈                         (A12) 

Substituting (A12) into (A9), one obtains 

   ( ) ( ) (1 )f ' ' ' '
f s p f f f f s s p p wxy

d u yu v u v
dy H

ϕ μ ϕ σ ϕ ρ ϕ ρ τ+ + − + − = −        (A13) 

The momentum equation for our fictitious domain method is  

2( )
( ) ( )f e

f x
dpp

t dx
ρ

ρ μ
∂

+ ∇ ⋅ = −∇ + ∇ + + −
∂

u
uu u λ e           (A14) 

and its corresponding averaged equation in the x-axis direction is  

' '( ) ( ) ( ) 0e
f

dpd du d u v
dy dy dx dy

μ ρ λ+ − + − + =           (A15) 

Integrating (A18) yields 

' '

0
( ) (1 )

y

f w
du yd u v
dy H

μ λ ξ ρ τ+ + − = −∫                     (A16) 

Because f f p pu u uϕ ϕ= +  and ' ' ' ' ' '
f f f s p pu v u v u vϕ ϕ− = − + − , from (A6), (A12) 

and (A15), we obtain 

             ' '( ) ( ) ( ) 0p e x
s s s f p p

d u dp Fd d u v
dy dy dx dy V

ϕ μ ϕ ϕ ρ λ+ − + − + + =      (A17) 

Eq. (A17) gives the relationship between the average pseudo body force and the average 

inter-phase drag force on the particles.  
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